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SUMMARY

Edge detection is a signal processing algorithm

common in artificial intelligence and image recogni-

tion programs. We have constructed a genetically

encoded edge detection algorithm that programs an

isogenic community of E. coli to sense an image of

light, communicate to identify the light-dark edges,

and visually present the result of the computation.

The algorithm is implemented using multiple genetic

circuits. An engineered light sensor enables cells

to distinguish between light and dark regions. In the

dark, cells produce a diffusible chemical signal

that diffuses into light regions. Genetic logic gates

are used so that only cells that sense light and the

diffusible signal produce a positive output. A mathe-

matical model constructed from first principles and

parameterized with experimental measurements of

the component circuits predicts the performance

of the complete program. Quantitatively accurate

models will facilitate the engineering of more com-

plex biological behaviors and inform bottom-up

studies of natural genetic regulatory networks.

INTRODUCTION

Living cells can be programmed with genetic parts, such as

promoters, transcription factors and metabolic genes (Andria-

nantoandro et al., 2006; Benner and Sismour, 2005; Canton

et al., 2008; Endy, 2005; Haseltine andArnold, 2007). These parts

can be combined to construct genetic versions of electronic

circuits, including switches (Atkinson et al., 2003; Gardner et al.,

2000; Kramer and Fussenegger, 2005; Kramer et al., 2004), logic

(Anderson et al., 2007; Guet et al., 2002; Rackham and Chin,

2005), memory (Ajo-Franklin et al., 2007; Gardner et al., 2000;

Ham et al., 2006), pulse generators (Basu et al., 2004), and oscil-

lators (Atkinson et al., 2003; Elowitz and Leibler, 2000; Fung et al.,

2005; Stricker et al., 2008; Tigges et al., 2009). The current chal-

lenge is to assemblemultiple genetic circuits into larger programs

for the engineering of more sophisticated behaviors (Purnick and

Weiss, 2009).

The characterization of transfer functions or the quantitative

relationship between circuit input(s) and output(s) (Bintu et al.,

2005a; Tabor et al., 2009; Voigt, 2006; Weiss et al., 1999) will aid

the development of accurate mathematical models (Ajo-Franklin

et al., 2007; Guido et al., 2006) which will allow complex genetic

programs to be examined in silico prior to physical construction.

Predictive models for the design of genetic programs will drive

applications in biotechnology and aid bottom-up studies of

natural regulatory systems.

Edge detection is a well-studied computational problem used

to determine the boundaries of objects within an image (Suel

et al., 2000). This process reduces the information content in

a complex image and is used in applications ranging from retinal

preprocessing (Maturana and Frenk, 1963) to the analysis of

microarray data (Kim et al., 2001). For a digital black and white

image, a typical algorithm operates by scanning for a white pixel

and then comparing the intensity of that pixel to its eight neigh-

boring pixels. If any of the neighbors is black, the algorithm clas-

sifies those pixels as being part of an edge. The serial nature of

this search process results in a computation time that increases

linearly with the number of pixels in the image. We aimed to

implement a parallel edge detection algorithm wherein each

bacterium within a spatially distributed population functions as

an independent signal processor. In this design, each bacterium

(up to 109 individuals for a 90 mm Petri dish image) processes

a small amount of local information simultaneously, and the pop-

ulation cooperates to find the edges.

RESULTS

A Genetic Program for Edge Detection

The genetic edge detection algorithm programs a lawn of

bacteria to identify the light-dark boundaries within a projected

image of light (Figures 1A and 1B). To accomplish this, each

bacterium in the population executes the following pseudocode

(Figure 1C): IF NOT light, produce signal. IF signal AND NOT

(NOT light), produce pigment.

The ‘‘produce signal’’ and ‘‘produce pigment’’ functions make

the cell generate a diffusible communication signal and a black

pigment, respectively. The conversion of this pseudocode into

a molecular genetic system is shown in Figure 1D.

When cells sense that they are in the dark, they produce the

diffusible signal (Figure 1B). Cells that sense light do not make

the signal, but are allowed to respond to it. Thus only those cells

that are in the light but proximal to dark areas activate the output

which results in the enzymatic production of a black pigment.

The biological edge detection algorithm requires: (1) a dark
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sensor (NOT light), (2) cell-cell communication, and (3) X AND

(NOT Y) genetic logic. Each of these components is constructed

as an independent genetic circuit and the behavior is character-

ized. This data is used to parameterize a mathematical model

which in turn is used to analyze the complete system.

Construction and Characterization of Genetic Circuits

In an effort to make photographic bacteria, we previously con-

structed a dark sensor (Levskaya et al., 2005) based on genetic

parts from the blue-green algae Synechocystis (Yeh et al.,

1997). The sensor consists of a chimeric two-component system

and a two gene metabolic pathway to make the chromophore

phycocyanobilin (PCB) (Gambetta and Lagarias, 2001). To rewire

the two-component system, the osmosensing domain of the

E. coli protein EnvZwas replacedwith the photoreceptor domain

of the Synechocystis phytochrome Cph1. This programmed

phosphotransfer from EnvZ to OmpR and subsequent trans-

cription from the PompC to be repressed as a function of red light.

The sensor therefore functions as a genetic circuit with NOT

light logical behavior. When the dark sensor is connected to the

production of b-galactosidase, a plate of bacteria can print an

image of light as a pattern of black pigment (Figure 3A).

The transfer function, which characterizes how the output of

a circuit varies with input at steady-state, has been shown to be

a useful tool for connecting genetic circuits (Anderson et al.,

2007; Bintu et al., 2005a; Voigt, 2006; Weiss et al., 1999; Yoko-

bayashi et al., 2002).Here, the transfer function of thedark sensor

is determined in response to light in the 650 nm band (Figure 2A).

The dark sensor generatesmaximal transcriptional output at light

intensities between 0.000 and 0.002W/m2, reaches minimal

Figure 1. Bacterial Edge Detection

(A) Light is projected through a mask onto a large community (lawn) of bacteria grown on a Petri dish. The lawn computes the edges, or boundaries between light

and dark regions, and visually presents the output.

(B) To find the edges, bacteria in the dark produce a communication signal (green circles) that diffuses across the dark/light boundary. Bacteria in the dark cannot

respond to the communication signal. Only bacteria that are exposed to light and receive the signal become positive for the expression of a visible reporter gene.

The sum of this activity over the entire two-dimensional population is equivalent to the edges of the input image.

(C) (Top) A NOT light gate (lightning box + adjacent triangle) drives a cell-cell communication circuit (green X) and an inverter (red Y + adjacent triangle). These two

signals combine as inputs for a downstream AND gate (semi-circle) which drives the final output (Z). Because signal is inverted at Y, the gate driving Z can also be

described as an X AND (NOT Y) gate, and it is referred to as such throughout this work. (Bottom) Z is produced in only one of four possible combinations of X and Y

(presence of X, absence of Y).

(D) Conversion of the edge detection algorithm into a molecular genetic system. (Left) The light-sensitive protein Cph8 is a chimeric sensor kinase bearing the

photoreceptor domain of the Synechocystis phytochrome Cph1 and the kinase domain of E.coli EnvZ (Levskaya et al., 2005). Cph8 requires the covalently asso-

ciated chromophore phycocyanobilin (PCB, blue pentagons) which is produced from heme by the products of the two constitutively expressed genes ho1 and

pcyA (Gambetta and Lagarias, 2001). In the presence of red light, the kinase activity of Cph8 is inhibited, precluding the transfer of a phosphoryl group (light green

circle) to the response regulator OmpR (orange dumbbell) and subsequent transcription from the ompC promoter (PompC). The dark sensor therefore functions as

a NOT light transcriptional logic gate. (Center) luxI and cI are expressed polycistronically from the NOT light gate. LuxI is a biosynthetic enzyme from V.fischeri that

produces the cell-cell communication signal 3-oxohexanoyl-homoserine lactone (AHL). CI is the transcriptional repressor protein from phage l. AHL binds to the

constitutively expressed transcription factor LuxR to activate expression from the Plux-l promoter while CI dominantly represses it. Plux-l therefore functions as an

X AND (NOT Y) transcriptional logic gate. (Right) The output of Plux-l is lacZ, the product of which (b-galactosidase) cleaves a substrate in the media to produce

black pigment (Experimental Procedures). The edge detection algorithm is encoded as 10,020 basepairs of DNA, carried on three plasmid backbones (Exper-

imental Procedures).
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output at �0.04W/m2 and is repressed rapidly and continuously

asa functionof light (Figure 2A). The transfer functionhas the form

flight =
K

K + L
ðbmax ÿ bminÞ+ bmin (1)

where bmax = 298 and bmin = 125 are the maximum andminimum

output values (in Miller units), L is the intensity of light (W/m2) and

the fit parameter is K = 0.0017 W/m2 (R2 = 0.75) (Experimental

Procedures).

The edge detection algorithm also requires that neighboring

bacteria communicate. It has previously been shown that E.coli

can be programmed to communicate using the quorum sensing

system from V. fischeri (Anderson et al., 2006; Balagadde et al.,

2008; Basu et al., 2005; Weiss and Knight, 2001; You et al.,

2004). We placed this communication system under the control

of the dark sensor (Figure 3B). In this circuit, dark activates tran-

scription of luxI, the product of which catalyzes the formation of

the membrane diffusible compound 3-oxohexanoyl-homoserine

lactone (AHL) (Engebrecht and Silverman, 1984). AHL binds to

the constitutively expressed transcription factor LuxR to acti-

vate expression of b-galactosidase. This produces a pattern of

b-galactosidase expression similar to the photographic bacteria,

but with an additional blurring component due to AHL diffusion

across the dark/light boundary (Figure 3B).

In addition to communication, the edge detection algorithm

requires that b-galactosidase be expressed only where AHL

AND light, or equivalently NOT (NOT light), are present. This

requires genetic circuits that encode theNOT andAND logic func-

tions to be combined with the NOT light circuit. Genetic logic can

be constructed by rewiring regulatory interactions (Anderson

et al., 2007; Cox et al., 2007; Guet et al., 2002; Mayo et al.,

2006;Weiss et al., 1999). TheNOT function can be achieved using

a genetic inverter, which has previously been shown to invert the

activity of an input promoter (Yokobayashi et al., 2002). We con-

structed an inverter using the cI gene fromphage l, the product of

which forms a dimeric transcriptional repressor that turns OFF the

output promoter when the input promoter is ON. By inserting the

inverter between the dark sensor input and b-galactosidase

output, a negative bacterial photograph can be generated where

black pigment is produced only in the light (Figure 3C).

The full logic function AHL ANDNOT (NOT light) is implemented

at the two-input promoter Plux-l, which is activated by AHL-bound

LuxR but dominantly repressed by CI. By adding a constitutively

expressed copy of the luxR gene to the inverter, the two-dimen-

sional transfer function of this promoter can be determined in

batch culture experiments by exogenously varying AHL and light

whilemeasuring b-galactosidaseactivity as the output. Transcrip-

tion fromPlux-l increases proportional to the concentration of AHL

between 2 nM and 200 nM. At a given AHL concentration, tran-

scription is repressed approximately 4-fold by maximal (dark) CI

levels as compared to those in saturating light (Figure 2B, left).

The experimental data is used to fit a two-dimensional transfer

function (Figure 2B, right) that uses the Shea-Ackers formalism

(Shea and Ackers, 1985) to model transcription factor binding to

Plux-l as a function of AHL (u1) and CI (u2) concentrations,

flogicðu1;u2Þ=
ðc0 + c1fLuxÞ

1+ c0 + c1fLux + c2f
n
CI + c1c2fLuxf

n
CI

(2)

where fLux is the concentration of LuxR dimers bound to AHL

(Urbanowski et al., 2004) and fCI is the concentration of dimeric

CI (Koblan and Ackers, 1991). The parameters c0 to c2 are deter-

mined by fitting the output of flogic to the transcription measure-

ments (c0 = 0.04, c1 = 0.05, c2 = 0.011, R2 = 0.81) (Experimental

Procedures) and n is 1.5. Taken together, the data in Figure 2

demonstrate that the dark sensor and the X AND (NOT Y) logic

circuit function as needed for use in the edge detection algo-

rithm. Moreover the transfer functions of the two circuits are

Figure 2. Transfer Functions of the Dark Sensor and X AND (NOT Y) Logic Gate

(A) The transfer function of the dark sensor is determined in batch culture (Experimental Procedures and Figure S4) and fit to a sigmoidal function (Equation 1). The

error bars indicate ±1 standard deviation. (B) (Left) The transfer function of the X AND (NOT Y) logic gate as determined in batch culture experiments. AHL (X) was

added exogenously to the growth media while CI (Y) levels were controlled by varying the intensity of light (Experimental Procedures and Figure S5). The data

shown are single replicates of 5 assays taken over 5 separate days where the concentration of CI was altered in each assay. (Right) Mathematical Model. The

output of flogic (Equation 2) as a function of AHL andCI. b-galactosidase output levels (Z) for the experiment and themodel are normalized by dividing by the output

value in the absence of CI with maximum exogenous AHL (Experimental Procedures).
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properly matched; transcription from the X AND (NOT Y) gate

can be controlled by AHL and CI over the output ranges gener-

ated by the dark sensor.

Assembling Circuits into the Full Program

Figure 3 shows the stepwise assembly of the edge detection

algorithm from the component genetic circuits. When a lawn of

bacteria programmed with the edge detection algorithm is

exposed to an image of light, the community prints the dark-light

edges (Figure 3D), with an average edge width of 6.0 ± 1.8 mm

(n = 3) (Figure 5A). Figure 4 demonstrates that the bacterial lawns

can accurately solve the edges of a circle, a square, and the

silhouette of a man.

Reaction-Diffusion Model

A model of the complete edge detector system is constructed

based on the individually measured dark sensor and logic trans-

fer functions flight and flogic (Experimental Procedures). Themodel

quantifies the dynamics of light-dependent production of AHL

andCI, AHL diffusion, production of the b-galactosidase reporter

and degradation of all products. Assuming that AHL diffusion is

the slowest process, the system is described by the equations,

vu1

vt
=DV2u1 + k1flight ÿ k2u1 (3)

u2 = k3flight (4)

u3 = k4flogicðu1;u2Þ (5)

where u1 is the AHL concentration on the plate (nM), u2 is the

concentration of CI dimers (nM), and u3 is the concentration

of b-galactosidase in Miller Units. The diffusivity and half-life

of AHL are obtained from previously published values (D =

1.67x10ÿ7 cm2/sec, k2 = 0.012 hr-1) (Basu et al., 2005; Flagan

et al., 2003). The production rate of AHL is a function of the

density of the bacteria on the plate and is obtained by fitting to

the edge profile (k1 = 0.03 nM/hr). The maximum CI and b-galac-

tosidase concentrations are determined by fitting the experi-

mental data to the individual transfer functions (k3 = 0.8 nM/

Miller, k4 = 289 Miller) (Experimental Procedures). Because the

system is an agarose plate, the reaction-diffusion model is

defined on polar coordinates with a no-flux boundary condition

on the outer border.

The model accurately describes the pattern of b-galactosi-

dase on a plate of bacteria expressing the edge detector and

each of the sub-circuits for each of the light patterns shown

in Figures 3 and 4. The quantitative accuracy of the model is

evaluated in Figure 5. Figure 5A shows a one-dimensional anal-

ysis of the circle pattern where the in silico and in vivo edge

intensity profiles are compared as a function of radial distance

from the center. For complex images, the edge intensity is

greater at acute angles and along convex arcs than flat edges.

In these areas there are more cells producing AHL per unit

area. This increases the local AHL concentration and conse-

quently the b-galactosidase output in adjacent illuminated

areas. The relationship between edge intensity and the angle

of line intersection is also accurately captured by the model

(Figure 5B).

Figure 3. Construction of the EdgeDetector

from Individual Genetic Circuits

Various circuits are constructed and the effect on

image processing is assayed (left) and compared

to the mathematical model (right). The details of

the genetic circuits and simulations are presented

in the Experimental Procedures and Figure S2.

(A) The bacterial photography circuit, where the

b-galactosidase output is expressed directly

under the control of the light-sensitive PompC1157

promoter. This produces a positive print of the

projected image.

(B) Cell-cell communication components are

added by placing luxI under the control of the

dark sensor and expressing luxR constitutively.

This produces a positive image with an additional

blurring component due to AHL diffusion.

(C) A genetic inverter is inserted between the dark

sensor input and the b-galactosidase output. This

produces an inverted (negative) print of the image,

where the light regions are printed as dark and

vice-versa.

(D) A population of cells programmed with the

complete edge detector system produces black

pigment only at the boundary between light and

dark regions. The model solutions are reported in

Miller units (color bars, right).
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DISCUSSION

Individual genetic circuits that mimic basic electronic functions

have previously been constructed (Anderson et al., 2007; Atkin-

son et al., 2003; Basu et al., 2004; Elowitz and Leibler, 2000;

Gardner et al., 2000; Guet et al., 2002; Ham et al., 2006; Yoko-

bayashi et al., 2002). The next step is to understand how to

combine these functions to create more complex genetic

programs (Purnick and Weiss, 2009). This requires well-charac-

terized parts and circuits that perform reliably when linked to

Figure 4. Edge Detection of Complex Patterns

Circle (top), square (middle) and silhouette (bottom) images are

projected onto lawns of bacteria programmed with the edge

detector. Signal intensities and distances are shown under each

bacterial lawn. For the asymmetrical silhouette pattern, the signal

intensity profile is computed for a small horizontal rectangle

centered at the two red arrows. The model solutions are reported

in Miller units (color bars, right).

Figure 5. Quantitative Comparison of Model and

Experimental Edges in One and Two Dimensions

(A) Comparison of the in vivo (black) and in silico (red) radial

intensity profiles for the circle pattern. The average of three

circle images (Figure S3) is shown along with the standard

deviation (gray region) (Experimental Procedures).

(B) The relationship between the intersection angle (q =

degrees of light) of edges and the signal intensity is shown.

Six points with five different q values are sampled from the

silhouette plate in Figure 4 (circles). The background intensity

is subtracted from each point and the data is divided by the

maximum intensity value. For each intersection angle, the

maximum edge intensity is computed from the solution of

the model with a unit circle mask with q degrees of light (solid

line) (Experimental Procedures).

others, without unforeseen higher-order effects (Kim

and Tidor, 2003). Here, we have demonstrated that

a number of well-characterized genetic circuits can

be reliably combined to create a larger program.

Different circuit combinations produce expected

behaviors that can be predicted by a mathematical

model parameterized with data from the character-

ization of the individual circuits. This will not be true

for all circuit combinations, and understanding the

origins of higher-order effects and how they can be

accounted for in the design process is an

outstanding challenge (Arkin and Fletcher, 2006). As

the programs become larger, it will also become

increasingly important to include information on

how the engineered circuits impose burdens upon

the host cells, including transcriptional, translational,

metabolic, and energy resources (Canton et al.,

2008; Tabor et al., 2008). Detailed studies of the

interactions between synthetic circuits and host

systems (Guido et al., 2007) may lead to new conclu-

sions regarding regulatory and metabolic cross-talk

and the ability of cells to tolerate or adapt to

increased genetic load.

Logic and cell-cell communication form the core of regulatory

networks that drive fundamental biological processes such as

pattern formation (Kondo and Asai, 1995; Meinhardt and Gierer,

2000; Sick et al., 2006) and development (Freeman, 2000;

Materna and Davidson, 2007). The combination of these two

functions allows each cell in a population to respond appropri-

ately to local signals without the need for information regarding

its position within the global system. Here, we have programmed

a population of bacteria to form a pattern corresponding to the

edges within a projected image of light. As in natural systems,
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communication greatly reduced the information-processing

requirement for each member of the population while simple

genetic logic allowed the proper integration of local signals for

the formation of the final pattern.

Edge Detection is used for the identification of objects in

a wide variety of in silico image processing applications (Suel

et al., 2000) and has also been shown to be a natural function

of the retina (Maturana and Frenk, 1963). In silico edge detection

algorithms address each pixel of an image in series, resulting in

a computation time that increases linearly with the number of

pixels. In the bacterial edge detector the computation is

massively parallel, resulting in a computation time that is inde-

pendent of image size. This strategy is also an example of

‘‘Amorphous Computing’’ (Abelson et al., 2000) whereby a

computation is performed as the emergent result of many

spatially distributed processors working together locally without

the need for global coordination. The applications of biological

amorphous computers are still largely unexplored but are

intriguing in light of the astounding feats of self-organization

and information processing seen in natural pattern forming and

neural network systems.

Several other efforts have leveraged cell-cell communication

to program coordinated multicellular behaviors. These include a

genetically-encoded turbidostat (You et al., 2004), one (Kobaya-

shi et al., 2004) and two (Brenner et al., 2007) cell density-depen-

dent transcription regulators, a transcriptional pulse generator

(Basu et al., 2004), synthetic ecosystems (Balagadde et al.,

2008; Weber et al., 2007) and a pattern forming system (Basu

et al., 2005). In the latter case, twogenetically distinct populations

of bacteria (AHL senders and receivers) weremanually overlayed

in different configurations in order to generate different patterns.

By contrast, the edge detector is implemented within an isogenic

cell population that forms patterns in response to an external

input with no requirements for cell placement.

Synthetic systems such as these could be used as early in vivo

models for studying the ‘design principles’ that govern natural

processes. Their simplicity and tractabilitymakes themamenable

to rigorousmathematical analysis,whichcanbeused togenerate

rapidly testable hypotheses regarding the contribution of specific

parameters to overall function. Because regulatory motifs recur

ubiquitously in biology, the synthetic systems can then serve as

working models for their natural counterparts (Sprinzak and Elo-

witz, 2005). The connection between primary DNA sequence and

phenotype then closes the design cycle, expediting the engi-

neering of novel biological behaviors.

The construction of very large fragments of DNA (Cello et al.,

2002; Chan et al., 2005; Endy, 2008; Gibson et al., 2008a; Gibson

et al., 2008b; Smith et al., 2003; Tumpey et al., 2005) is no longer

a limitation in the engineering of biological systems. Predicting

the behavior of complex genetic programs de novo is now the

limiting step in the programming of cellular behavior. Thorough

characterization of the performance of simple genetic parts and

their resulting circuits will allow the development of predictive

mathematical tools which will be required to program cells and

cellular communities for functions which approach the sophisti-

cation of natural systems. This, in turn, will enable rigorous

bottom-up testing of structure-function relationships in natural

genetic systems.

EXPERIMENTAL PROCEDURES

Strain and Media

The strain for all experiments in this study is E. coli JW3367 (E. coli K12W3110,

envZ-lacZ- NCBI-GI: 89110606) from which the Kanamycin resistance marker

is removed (termed JW3367c). Transformations are plated on LB agar supple-

mented with 50mg/mL Kanamycin, 34mg/mL Chloramphenicol and 50mg/mL

Ampicillin as necessary. The strains are maintained in LB + 0.1M HEPES

pH = 8.0 supplemented with the antibiotics. Glycerol stocks of the strains

are maintained by adding 300 mL 60% glycerol (sterile) to 700mL actively

growing culture (log phase) and freezing at ÿ80�C.

Edge Detection Plasmids

E. coli JW3367c is transformed with the light sensing plasmids pPLPCB (p15a

KanR) (Gambetta and Lagarias, 2001), pCph8 (ColE1, CmR) (Levskaya et al.,

2005) and a third plasmid carrying the circuit. All of the circuit plasmids are

based on the pSB4A3 BioBrick vector backbone (Shetty et al., 2008), which

contains the pSC101* origin of replication and AmpR. The pSC101* origin is

carried at 2-3 copies per cell (Lutz and Bujard, 1997). The edge detector

plasmid, pEDL3, is constructed from a series of DNA parts many of which

are Biobricks (Knight, 2002) (see the Supplemental Data available with this

article online). Other functional DNA elements used in the construction of the

edge detector are the weak ribosome binding site RBS3(Weiss, 2001) and

the ORF of the lacZ gene. The lacZ ORF is amplified from the plasmid

pEXPlacZ (Invitrogen) using primers that encode the Biobricks prefix and suffix

sequences, which carry the restriction sites EcoRI, XbaI (forward) and SpeI

and PstI (reverse) respectively. This allows the lacZ gene to be cloned down-

stream of J13023 in its host plasmid via a suffix operation(Knight, 2002) using

XbaI and PstI.

Photography, Inverter, and Communication Circuit Plasmids

The plasmids the carry the photography, inverter and cell-cell communication

circuits are pJT108, pJT106 and pJT105, respectively. The plasmids pJT105

and pJT106 are constructed by deleting single genes from pEDL3 using seam-

less inverse PCR and ligation with the Phusion Site Directed Mutagenesis Kit

(Finnzymes, Woburn, MA) according to manufacturer’s instructions. Plasmid

pJT108 is constructed by amplifying the PompC1157 genomic region of E. coli

RU1012(Utsumi et al., 1989) with overhanging homology regions to pJT103

and seamlessly replacing R0082 via the MEGAWHOP method (Miyazaki,

2003). The PompC1157 promoter (pJT108) is used for the bacterial photographs

because when read out by b-galactosidase directly, it produces smoother,

higher contrast images than the shorter ompC promoter BBa_R0082.

Miller Assays

Miller Assays are conducted in 700 mL total volume with the Yeast b-Galacto-

sidase Assay Kit (Pierce, Cat# 75768) in sterile, clear 1.7 mL microcentrifuge

tubes at 28�C in ambient light according to the manufacturer’s instructions.

The reactions are quenched after visible yellow color develops and the

OD420 measurements are taken in VWR disposable cuvettes (VWR Cat#

97000-586) on a Cary 50 Bio spectrophotometer. The equation to calculate

Miller Units is (1000*OD420)/(t*V*OD600), where t is the reaction time of the

assay in minutes, and V is the volume of cell culture added to the reaction.

The Light Camera

A ‘‘Light Camera’’ (Incubator-Projector), which enables the projection of an

image onto a plate of growing bacteria, is constructed as described before

(Levskaya et al., 2005). A Kodak Ektagraphic III AMT projector equipped with

an 82 V, 300 W Philips FocusLine quartz bulb is used as the light source. The

broad wavelength light is filtered through a 650 nm bandpass filter (Edmund

Optics catalog #43–189), stenciled through a 34x24 mm slide printed with

a black and white image at 2032 dpi (mask), and focused through a lens.

The images projected onto the slabs have power characteristics of 0.08 to

0.15 W/m2 in the 620–680 nm band as determined by a EPP2000C Concave

Grating spectrometer (Stellarnet, Oldsmar, FL). Dark areas of the images typi-

cally have 0.0000 to 0.0003W/m2 light over the same range. Bleedthrough light

outside this band is negligible.
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Plate-Based Assays

The output of the edge detector and other circuits are assayed using plates

that are developed in the light camera. Detailed instructions for these assays

are provided in the Supplemental Data. The agar slabs containing the bacteria

are grown and exposed to light for 14 hr (Edge Detector, Inverter, Communi-

cation). The projector is then turned off and the slabs are allowed to ‘develop’

at 36�C in the dark for 10 hr. For photography the slabs are exposed to the

image for 45 hr. The slabs are placed at 4�C overnight to stop bacterial growth

and gene expression, before being photographed.

Image Analysis

Photographs of the bacterial plates are taken with a Canon SD900 digital

camera. All four sample plates shown in Figure 3 of the main text were taken

in a single photograph and the brightness, levels and contrasts were optimized

identically. This preserves the relative signal intensity of each of the plates.

Determination of Background Intensity

The background intensity ismeasured to be 75 (where 0 is purewhite and 255 is

pure black), which is the ‘‘leaky’’ pixel intensity value taken from the illuminated

region of the plate of bacteria expressing the inverter circuit in Figure 3C. This

background intensity value is a constant through the entire image analysis.

Radial Edge Intensity Profiles

The radial edge intensity profiles in Figure 5A are extracted from the three

circle images (Figure S3) (Matlab Image Processing Toolbox, Mathworks).

These high resolution images are first converted to grayscale and subjected

to a 5 point nearest neighbor smoothing to reduce digital artifacts. For each

circle image, the radial pixel profile is calculated in the following way: starting

from the center of each circle, the pixel intensities at each radial position (r =

0 to 2.8 cm) and at a constant q coordinate are extracted. A set of radial pixel

profiles are then extracted by performing this procedure while varying the q

coordinate. This set is then averaged together to create a mean radial pixel

profile. This analysis is repeated for each circle image, creating a total of three

independent mean radial pixel profiles. The background intensity is subtracted

from each mean radial pixel profile. Then, each profile is divided by its radial

pixel value at the r = 0 cm position, which is at the center of the circle, creating

three independent fold-change edge profiles. The average and standard devi-

ation of the fold-change edge profiles is computed.

Edge Intensity versus Angle

The raw grayscale pixel intensities from the asymmetrical silhouette mask are

extracted at selected angle intersections (ImageJ, 1.40 g, Wayne Rasband,

NIH) and background corrected. The background corrected intensities are

then normalized by dividing by the maximum value in the data set (x = 51�,

y = 1.0 in Figure 5B). The experimental values are compared to Miller Unit

predictions from varying the angle of intersection in the reaction diffusion

model as described below.

Determination of an Average Edge Width

The average edge width and error presented in the main text is determined by

repeating three separate 36 mm circle pattern plates on three different days.

The plates (Figure S3) are photographed and analyzed using ImageJ 1.40 g

(Wayne Rasband, NIH). Raw images are converted to grayscale and inverted.

The horizontal pixel intensity profile across the plate is determined using rect-

angle probe traversing the center of the circle. The width of the edge is deter-

mined from the pixel intensity profile by drawing a straight line from the start of

the edge (point of rapid signal intensity rise) to the point at which the signal

intensity drops to the approximate average maximum signal intensity in the

nearby internal illuminated area. Two edges (one from the left side of the circle

and one from the right) are measured on each plate. The individual widths

measured from the three plates in Figure S3 are 0.86 cm, 0.76 cm, 0.46 cm,

0.62 cm, 0.37 cm, and 0.53 cm. The error values reported are the standard

deviation.

Determination of the Dark Sensor Transfer Function, flight

The transfer function of the dark sensor is determined in batch culture Miller

Assay experiments using strain JW3367c carrying the plasmids pJT103,

pPLPCB and pCph8. pJT103 is comprised of the shortened PompC promoter

(BBa_R0082) upstream of the strong RBS (BBa_B0034) (Elowitz and Leibler,

2000) and the lacZ ORF in the pSB4A3 backbone (Figure S4).

Overnight starter cultures are inoculated from ÿ80C stocks in 3 mL LB +

Ampicillin, Kanamycin and Chloramphenicol and grown to OD600 �4. Cultures

are then diluted into 1 mL LB + 0.1M HEPES pH = 6.6 to a final OD600 of 0.001

and added to a single, internal well of a sterile 24-well plate (Falcon, Part#

351147). The plate (with lid on) is then fixed onto a VWR incubating mini shaker

(Cat# 12620-942) from which the plastic lid has been removed, placed inside

of a dark incubator, illuminated with a defined amount of 650 nm filtered light

and shaken at 420 rpm for 330–345min at 36�C. The light ismeasured as previ-

ously (Levskaya et al., 2005) with the spectrometer probe placed at the posi-

tion equivalent to the x,y center of the assay plate. The cultures, which have

reached log phase (final OD600 between 0.6 and 1.2), are immediately

collected under a safe green light and pipetted into black 1.7 mL microcentri-

fuge tubes. Then, 100 mL of each sample is immediately used to determine the

OD600 while 350 mL is used for the Miller Assay.

The quantity flight is the expression rate of the light-repressed BioBrick ompC

promoter as a function of light input and has been experimentally determined

using a b-galactosidase readout (Figure 2A).We fit the experimental data to the

sigmoidal function,

flight =
K

K +L
ðbmax ÿ bminÞ+ bmin (1)

where the fit parameter is K = 0.0017 W/m2 (R2 = 0.75), the maximum expres-

sion level bmax=298Miller Units, theminimumexpression level bmin=125Miller

Units, and the light intensity in units of W/m2 passing through the mask at

position ðr; qÞ is Lr;q.

Determination of the Logic Transfer Function, flogic

The two-input transfer function of the signal integrating promoter Plux-l

(BBa_R0065) is determined in strain JW3367c carrying plasmids pJT104,

pPLPCB and pCph8. pJT104 is the edge detection plasmid pEDL3 from which

the luxIORF (BBa_C0061) has been removed (Figure S5). This allows indepen-

dent control of CI and AHL abundance via light and exogenous addition to

the media, respectively. The readout of the Plux-l (BBa_R0065) promoter is

b-galactosidase in Miller Units.

The quorum signal 3OC6HSL (N-(b-Ketocaproyl)-L-homoserine lactone,

Sigma-Aldrich# K3007) is added at different concentrations across different

wells of the plate while a single light intensity is applied to the entire plate.

The data in Figure 2B are the result of 25 data points taken as 5 sets of 5 points

over 5 days, where the 5 data points for a given light intensity are collected on

a single day. The cell cultures are in mid-log phase and typically between

OD600 0.6 and 0.85 at the time of the assay.

The steady-state concentration of b-gal is determined by the transcription

rate of the LuxR-activated, CI-repressed Plux-l promoter, which is quantified

by the flogic function. The Shea-Ackers formalism is used to enumerate the

binding states of LuxR and CI bound to the promoter (Ackers et al., 1982; Bintu

et al., 2005b). The steady-state concentration of b-galactosidase is propor-

tional to the probability of RNA polymerase initiating transcription. The expres-

sion for flogic(u1,u2) is

flogicðu1; u2Þ=
ðc0 + c1fLuxÞ

1+ c0 + c1fLux + c2f
n
CI + c1c2fLuxf

n
CI

(2)

where n = 1.5 and fLux is the concentration of LuxR dimer bound to

AHL (K2
AK

LuxR
D = 270,000 nM3, LuxRtot = 2000 nM) (Urbanowski et al., 2004),

which is

fLux =
1

2

"

�

LuxRtot +
K2

AK
LuxR

4u2
1

�

ÿ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

LuxRtot +
K2

AK
LuxR

4u2
1

�2

ÿLuxR2
tot

s

#

(6)

and fCI is the concentration of dimeric CI (KCI
D = 5 nM (Koblan and Ackers,

1991)), which is

fCI =
u2

2
+

1

8KCI
D

�

1ÿ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ 8KCI
D u2

q

�

(7)
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The constants c0 to c2 reflect the apparent in vivo Gibbs free energies of

binding for each state and are determined by minimizing the differences

between the output of flogic and the two-input transfer function over the 25

different conditions of 3OC6HSL concentration and light intensity. The best

fit values are c0 = 0.04, c1 = 0.05 and c2 = 0.011 (R2 = 0.81).

Reaction-Diffusion Model

Given a light mask, the reaction-diffusion model calculates the time- and posi-

tion-dependent expression level of the b-galactosidase (b-gal) output gene.

The model consists of (1) a partial differential equation describing 3OC6HSL

production, degradation, and diffusion and (2) two algebraic equations

describing the steady-state concentrations of CI and b-gal in response to

3OC6HSL and light. In dimensionless form, these equations are

vu1

vt�
=

1

r�
vu1

vr�
+

v2u1

vr�2
+

1

r�2
v2u1

vq2
+ k1flight ÿ k2u1 (8)

u2 = k3flight (9)

u3 = k4flogicðu1; u2Þ (10)

Where u1, u2, and u3 represent the concentrations of 3OC6HSL, CI, and b-gal

at a position on the plate whose polar coordinates are given by (r, q). The flight

and flogic functions quantify the transcription rates of the light-dependent

ompC promoter and the CI-repressed, LuxR::3OC6HSL-activated lux-l

promoter, respectively.

The constants k1 and k2 quantify the maximum production rate and the

degradation rate of 3OC6HSL, respectively. The production rate of 3OC6HSL

is estimated so that the maximum concentration on the plate is 2.5 nM while

the degradation rate of 3OC6HSL is slow; it has a half-life of about 2.5 days

at pH 6.6 (Flagan et al., 2003). The conversion factor between the ompC tran-

scription rate, characterized by flight, and CI concentration is k3 = 0.8 nM/Miller.

The constant k4 is the maximum b-gal concentration, which is 289 Miller units.

This value was determined in batch culture experiments as described above at

500 nM (maximum) exogenous AHL in the absence of any CI protein (plasmid

pJT105).

When solving these equations, the space and time coordinates are de-

dimensionalized so that r* = r / R and t* = tD/R2 where r is the radial position

from the center of the plate, R is the radius of the plate, t is time and D =

1.67x10ÿ7 cm2/sec is the diffusivity of 3OC6HSL (Basu et al., 2005). The

system is an agarose plate with radius R = 4.25 cm (3.55 mm operating

depth), homogeneously filled with stationary bacteria. Because the bacterial

photographs are crisp in our system we assume that there is no appreciable

bacterial movement in the agarose plates. There is a no-flux boundary

condition (Neumann type) at r* = 1 and a uniformly zero initial 3OC6HSL

concentration.

The differential equations in Equations (8–10) are solved using the finite

difference method. We substitute 2nd order central differences for all spatial

derivatives to create a sparse system of ordinary differential equations. The

ordinary differential equations are solved using theMatlab (Mathworks, Natick,

MA) ode23 s stiff numerical integrator with a final time of 24 hr (t* = 0.0027). A

sufficient number of radial and axial elements are used to accurately resolve

each light mask. The solution yields the dynamics of edge formation in

response to a given light mask.

Quantifying the Effect of Angle of Intersection on Edge Intensity

The effect of changing the angle of intersection between light and dark

boundaries on the edge intensity is examined, comparing the model predic-

tions to the experimentally observed behaviors. We create a series of unit

circle in silico masks where q degrees of the circle are in the light with 360-q

degrees in the dark and where q is varied from 50 to 345 degrees. For each

mask, the solution of the reaction-diffusionmodel is computed, which predicts

the maximum edge intensity. The maximum edge intensity is the b-galactosi-

dase concentration at the edge location. The model predictions compare

favorably with the experimentally observed edge intensities of the asymmet-

rical silhouette mask at the selected angle intersections (Figure 5B). The image

analysis procedure to obtain the experimental data is described above.

Calculating the Radial b-gal Profile

The radial edge intensity profile of the circle images are compared to the in

silico radial b-galactosidase profile from the model solution (Figure 5A). We

compute the in silico radial b-galactosidase profile by first inputting the circle

light mask into the model and determining the solution. Then, the b-galactosi-

dase concentration in terms of Miller units (u3) is outputted along the radial

coordinate (r = 0 to 1.8 cm) and divided by the value of u3 at r = 0 to obtain

the normalized intensity in Figure 5A.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, five

figures, and Supplemental References and can be found with this article online

at http://www.cell.com/supplemental/S0092-8674(09)00509-1.
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