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/A new strategy for genome sequencing

. Craig Venter, Hamilton O. Smith and Leroy Hood
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(Translating the cloning jargon)

CLONE LIBRARIES USED FOR GENOME MAPPING

AND SEQUENCING
Vector Human-DNA insert Number of clones
size range required to cover
the human genome
Yeast artificial 100-2,000 kb 3,000 (1,000 kb)
chromosome
(YAC)
Bacterial artificial 80-350 kb 20,000 (150 kb)
chromosome
(BAC)
Cosmid 30-45 kb 75,000 (40 kb)
Plasmid 3-10 kb 600,000 (5 kb)
M13 phage 1 kb 3,000,000 (1 kb)

NATURE - VOL 381 - 30 MAY 1996




Thinking about the basic shotgun concept

e Start with a very large set of random
sequencing reads

e How might we match up the
overlapping sequences?

e How can we assemble the overlapping
reads together in order to derive the
genome?

Thinking about the basic shotgun concept

e At a high level, the first genomes were
sequenced by comparing pairs of reads
to find overlapping reads

e Then, building a graph (i.e., a network)
to represent those relationships

e The genome sequence is a “walk”
across that graph




The “Overlap-Layout-Consensus” method

Overlap:

Layout:

Compare all pairs of reads
(allow some low level of mismatches)

Construct a graph describing the overlaps

sequence
overlap
read

Simplify the graph read

Find the simplest path through the graph

Consensus: Reconcile errors among reads along that

path to find the consensus sequence

Building an overlap graph

Edge Overlap
5 A 7
AT—= R & IB
A
A>—>B ren B
A
A<——B qu AR RRRNARN RN =
A
A>——<B Emmmen B

ﬁ

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290




Building an overlap graph

Reads
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EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph

1. Remove all contained nodes & edges going to them

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)




Simplifying an overlap graph

2. Transitive edge removal:
GivenA-B—-C and A-C,removeA-C

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph
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3. If un-branched, calculate consensus sequence
If branched, assemble un-branched bits and then decide
how they fit together

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)




Simplifying an overlap graph
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“contig” (assembled contiguous sequence)

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

This basic strategy was used for most of
the early genomes.
Also useful: “mate pairs”

2 reads separated by a known distance
|

Read #1 _ [ \
—_—
DNA fragment of known size —
Read #2

Contigs can be ordered using these paired reads

v N

Contig #1 Contig #2




GigAssembler (used to assemble the public
human genome project sequence)

Jim Kent David Haussler

Whole genome Assembly: big picture

STS

Mapped Genome
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http://www.nature.com/scitable/content/anatomy-of-whole-genome-assembly-20429




GigAssembler — Preprocessing

1. Decontaminating & Repeat Masking.

2. Aligning of mMRNAs, ESTs, BAC ends & paired
reads against initial sequence contigs.

. psLayout — BLAT
3. Creating an input directory (folder) structure.

chrl/

chrl/contigl.e
chrl/contigl.a
chrl/contigl.c
chrl/contigl.b
chrli/contigl.d

chr3/
chr2/
chr2/contig2.d
chr2/contig2.b
chr2/contig2.a
chr2/contig2.c

RepBase + RepeatMasker

>MER51D ERV1 Homo sapiens
tgaggcaggagaaaatagcagagggaattggaagt tggataaagggagaatgagtaaaagcangagagca
gaagcaaggtaaagaggcgggtgagcaagaagcaagataagaagcagaagt tgagcagccaaaacaaaag
taagatnanaaagaagtgagtaaggagcccacatggetggctagatccagaccaaaccagtaaggggcag
ctcctcagagatgggcatgtacattagagagaaaaagtatccttaaaatgaccecgtatgataatcaget
cattaaagctcatgcatatggactgcatatcatgcatgtacttaaaattatgggatggaggtgacgegea
agawgtcacaagcacacaggggccatagkattaagtaactaagcaacccacctatcaatcaaaaggcaga
tgctggctagagattaggcagecttgggaagagaagaaaaaaaaaacacataaaaagacccaaagtacac
taejoon@fourierseq:~/RepBase/RepBasel5.05.fastas 1s -a caaactgacgctgatctcatttcgcagaggtcageccacteteccctetetgagagtgtaatactgtget
dcotrep.ref mamsub.ref rodsub.ref taataaacttttgctgctttgctatctgtgtgtgtettgtccaattctttgtttgggacaccaagagect
diarep.ref mcotrep.ref simple.ref ggaactgcacrgcaccakctggtaaca
drorep.ref mousub.ref  spurep.ref >MIRb SINE2/tRNA Mammalia
fngrep.ref  nemrep.ref synrep.ref cagaggggcagcegtggtgcagtggaaagagcacgggctttggagtcaggcagacctgggttcgaatectg
fugrep.ref oryrep.ref tmplanrep.ref gctctgccacttactagetgtgtgaccttgggcaagtcacttaacctctctgagecteagtttecteate
grasrep.ref plnrep.ref tmpnemrep. ref tgtaaaatggggataataatacctacctcgcagggttgttgtgaggattaaatgagataatgcatgtaaa
humrep.ref  prirep.ref tmpxenrep.ref gcgettagcacagtgectggcacacagtaagegctcaataaatggtagetctattatt
humsub.ref prisub.ref version >LTR45 ERV1 Homo sapiens
invrep.ref  pseudo.ref vrirep.ref tgtaaccgcgggaccageccaaactgggectactctgtigataacaaaatgtcaagttaccttgtaggta
invsub.ref ratsub.ref zebrep.ref taacagagcccaaaactgcaagtcatgtagcccgggeatgtgcaatagaaaaagetttgacctctaacaa
mamrep.ref  rodrep.ref cacccagaaccaatgattcctcccctcggaaccaagaagaccgggacatgaccggaacctgaatgecgga
actctttcagaagcaaaggggtccgttggcccggaagatctggggctaaaatctgectcaacatacctta
ccgtaaatggtcaaatttgaagccctccaatcagaccctgcecaagecaacattectaaatectttccctt
gcectctgatcccttaaaacttgecccagaccccaaatcggggagacagatttgageccacctectget
ccttgetggecggttttgeaataaagectttcttttetcaaaagetggtgccatagttattggettctgt
gtgcatcaggcageaageccatttgctegataaca
>MER86B hAT Homo sapiens
cagggcttcttaaccagaggtccatggatgggcttcaggaggtctgtgaaccctctgaaattatatacaa
aaatgttgtgtatatgtgcatatatgtatttttctggggagagggttcatagetttcatcagattcteaa
aggggtctatgatctmaaaaaggttaagaagccctg




Build merged

GigAssembler

sequence contigs (“rafts”)

FEEETEETIT

I

RNRRRRRRNRY

Figure 1 Two sequences overlapping end to end. The sequences
are represented as dashes. The aligning regions are joined by vertical

bars. End-to-end overlap is an extremely strong indication that two

sequences should be joined into a contig.

Sequencing quality (Phred Score)
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Sequencing quality (Phred Score)

Base-calling
Q = -10 lOgm P Error
Probability

or

P =107

Phred quality scores are logarithmically linked to error probabilities
Phred Quality Score Probability of incorrect base call Base call accuracy

10 1in10 90 %

20 1in 100 99 %

30 1in 1000 99.9 %
40 1 in 10000 99.99 %
50 1 in 100000 99.999 %

http://en.wikipedia.org/wiki/Phred_quality score

GigAssembler: Build merged
sequence contigs (“rafts”)

extension tail

tail extension

Figure 2 Two sequences with tails. The nonaligning regions on
either side can be classified into “extensions’ and ‘tails.” Short tails are
fairly common even when two sequences should be joined into a
contig because of poor quality sequence near the ends and occasional
chimeric reads. Long tails, however, are generally a sign that the
alignment is merely due to the sequences sharing a repeating ele-
ment.
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GigAssembler: Build merged
sequence contigs (“rafts”)

Figure 3 Merging into a raft. A contig (‘raft’) of three sequences: A,
B, and C has already been constructed by GigAssembler. The pro-
gram now examines an alignment between sequence C and a new
sequence, D, to see whether D should also be added to the raft. The
parts of D marked with +s are compatible with the raft because of the
C/D alignment. The program must also check that the parts of D
marked with ?s are compatable with the raft by examining other
alignments.

GigAssembler: Build sequenced
clone contigs (“barges”)

AAAARAMAARAAMARARARR
alalalal a2a2a2a2a2
BEBERBEBBBBEEBEBEBEEB
blblblblblbl b2b2b2
cgeeeececceeeccececee
clclcl c2c2c2c2

Figure 4 Three overlapping draft clones: A, B, and C. Each clone
has two initial sequence contigs. Note that initial sequence contigs
al, b1, and a2 overlap as do b2 and c1.
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GigAssembler:
Build a “raft-ordering” graph

Figure 4 Three overlapping draft clones: A, B, and C. Each clone
has two initial sequence contigs. Note that initial sequence contigs
al, b1, and a2 overlap as do b2 and c1

—>e— >0 >0 >0 >0
As Bs Ae Cs Be Ce
Figure 5 Ordering graph of clone starts and ends. This represents
the same clones as in Fig. 4. (As) The start of clone A; (Ae) the end of
clone A. Similarly Bs, Be, Cs, and Ce represent the starts and ends of
clones B and C.

b2c1

Lo

®
c2
As Bs Ae Cs Be Ce

atbla2

Figure 6 Ordering graph after adding in rafts. The initial sequence
contigs shown in Fig. 4 are merged into rafts where they overlap. This
forms three rafts: alb1a2, b2c1, and c2. These rafts are constrained to
lie between the relevant clone ends by the addition of additional
ordering edges to the graph shown in Fig. 5.

GigAssembler:
Build a “raft-ordering” graph

« Add information from mRNAs,
ESTs, paired plasmid reads,
BAC end pairs: building a
“bridge”

. Different weight to different data
type: (MRNA ~ highest)

« Conflicts with the graph as
constructed so far are rejected.

« Build a sequence path through each
raft.

« Fill the gap with N's.
« 100: between rafts
« 50,000: between bridged barges

bZct1
®.
c2
As S Ae Cs Be Ce

albla2

Figure 6 Ordering graph after adding in rafts. The initial sequence
contigs shown in Fig. 4 are merged into rafts where they overlap. This
forms three rafts: alb1a2, b2c1, and c2. These rafts are constrained to
lie between the relevant clone ends by the addition of additional
ordering edges to the graph shown in Fig. 5.
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Finding the shortest path across the
ordering graph using the
Bellman-Ford algorithm

http://compprog.wordpress.com/2007/11/29/one-source-shortest-path-the-bellman-ford-algorithm/

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

14



Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

+7

a D - E

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

+5

Inf. Inf.
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Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)
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Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)
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Answer: A-D-C-B-E

0
START

Modern assemblers now work a bit differently,
using so-called DeBruijn graphs:

Here’s what we saw before:

v A\
LA L
GGCGTGC
o o i
........ > [N
o @  Short-read TGCAATG
5 NN
< S sequencing CAATGGC

2 (GGCaTGC | [ CAATGGC ] .
VIGGLG

Genome: ATGGCGTGCAATGGCGT

In Overlap-Layout-Consensus:
Nodes are reads
Edges are overlaps

Nature Biotech 29(11):987-991 (2011)
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Modern assemblers now work a bit differently,
using so-called DeBruijn graphs:

" » In a DeBruijn graph:
= n} Vertices are (k-1)-mers
-------- > *-.. Edges are k-mers
o @  Short-read Yo
< 3 sequencing
2 [cGeaTaC [ CAATGGC |
\
ATG
11
TGG
L1
GGC
[N
i
CGT
11 e seressesesmmmmmmmmmmmmemmmemmmmemmmm——————-
GT‘:’ k-mers from edges
TGC
11
GCA
i
CAA
(0]
AAT
[
ATG Eulerian cycle
Genome: ATGGCGTGCAATG

Nature Biotech 29(11):987-991 (2011)

Visit each edge once

Once a reference genome is assembled,
new sequencing data can ‘simply’ be
mapped to the reference.

reads

Reference genome
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Mapping reads to assembled
genomes

Table 1 A selection of short-read analysis software
Open  Handles ABI color Maximum read

Program Website source? space? length
Bowtie http://bowtie.cbcb.umd.edu Yes No None
BWA http://maq.sourceforge.net/bwa-man.shtml Yes Yes None
Maq http://maq.sourceforge.net Yes Yes 127
Mosaik http://bioinformatics.bc.edu/marthlab/Mosaik No Yes None
Novoalign  http://www.novocraft.com No No None
SOAP2 http:/soap.genomics.org.cn No No 60
Z00OM http://www.bioinfor.com No Yes 240

Trapnell C, Salzberg SL, Nat. Biotech., 2009

a Spaced seeds b Burrows-Wheeler
Reference genome Short read Reference genome Short read
(> 3 gigabases) (> 3 gigabases)
Chr1 ACTGGCGTACTCTAAT Chr1 ACTCCOGTAGTGTAAT
Chr2 == Chr2
Chr3m== Chra===
Chr4 Chra

Concatenate into

Extract seeds single string l M a p p i n g

e
|5 J

Burrows-Wheeler 1 St ra t e g i e S

transform and indexing

Position N
Position 2
CTGC CGTA AACT AATG

Position 1 Y

ACTG CCGT AAAC TAAT ACTC CCGT ACTC TAAT

b Bowtie index I3 v

2 gzgabytes) "\\ ACTCOOGTACTCTAAT

.
ACTG +aee ARAC weme L1 7T
wsss CCGT ssss TAAT Six seed L2] Look up AT
ACTG ssss sees TAAT pairs per —— 3 ‘suffixes’ AAT
ssss sese AAAG TAAT read/ 4 of read il

ACTG CCGT s+e= weow fragment 5 H

a2 COGT AAAC 6 & / >
- [~ ACTCCCGTACTCTAAT
llndex seed pairs Hits identify ii |

positions in
Seed index genome where "

(tens of gigabytes) Look up each pair read is found
— of seeds in index
ACTG w=swe AAAC wsew
Hits identify positions
in genome where
spaced seed pair
is found

e sesse

wees COGT =+e= TAAT

wses COOT AAAC sess

ACTG wees sres TAAT W Confirm hits
L=

by checking

Convert each
hit back to

“sass” positions

T Report alignment to user €«——

genome location

Trapnell C, Salzberg SL, Nat. Biotech., 2009
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Referen

Chr1
Chr2
Chr3ie==
Chr4

Concatenate into
single string

L

(> 3 gigabases)

ce genome Short read

ACTCCCGTACTCTAAT

Burrows-Wheeler

b gl

Burroughs
Wheeler
indexing

transform and indexing

Bowtie index 57
(~2 gigabytes) g i 4

| ACTCCCGTACTCTAAT
T N

Wy o
Look up Uy — ==

‘suffixes’

of read lr yr £
1

P /
- y

y

-
== ACTCCCGTACTCTAAT

Hits identify
positions in
genome where ” §

read is found -2
Trapnell C, Salzberg SL, Nat. Biotech., 2009

Burroughs-Wheeler transform indexing

BWT is often used for file compression (like bzip2),
here used to make a fast ‘lookup’ index in a genome

BWT = ‘reversible block-sorting’

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

This sequence is

ForwardBWT " more compressible

Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIONIT

Reverse BWT

Recovered SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES
input

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni
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Burroughs-Wheeler transform indexing

Input

~“BANANA |

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

Burroughs-Wheeler transform indexing

All
Rotations

~“BANANA |
| "BANANA
A| ~“BANAN
NA | “"BANA
ANA | “BAN
NANA | “BA
ANANA| "B
BANANA |~

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni
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Burroughs-Wheeler transform indexing

Sorting All Rows in Alphabetical
Order

ANANA| "B
ANA | “BAN
A | "BANAN
BANANA | ©
NANA| "BA
NA | “BANA
ABANANA |
| "BANANA

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

Burroughs-Wheeler transform indexing

Taking
Last Column

ANANA | "B
ANA | “"BAN
A| ~"BANAN
BANANA | #
NANA | “BA
NA | “BANA
~BANANA |
| "BANANA

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni




Burroughs-Wheeler transform indexing

Output
Last Column

BNN"AA A

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

Burroughs-Wheeler transform indexing

All

Ingac Rotations

“BANANA |
| "BANANA
A| “BANAN
NA | “BANA
ANA | “BAN
NANA | “BA
ANANA | “B
BANANA |7

~BANANA |

Transformation

Sorting All Rows in Alphabetical Taking Output
Order Last Column | Last Column
ANANA | B ANANA | "B
ANA | “BAN ANA | “BAN
A| “BANAN A | “BANAN
BANANA |~ BANANA | #
BNN"AA|A
NANA | “BA NANA | “BA ‘
NA | “BANA NA | “BANA
ABANANA | ~BANANA |
| “BANANA | "BANANA

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

24



BWT is remarkable because it is
reversible.

Any ideas as how you might reverse it?

Burroughs-Wheeler transform indexing

Input

BNN"AA|A

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni
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Burroughs-Wheeler transform indexing

Add 1

> 2 2 W

i

Write the
sequence as
the last column

Sort 1

> = 2w

Sort it...

Add 2 Sort 2
BA AN
NA AN
NA Al
~B BA
AN NA
AN NA
|~ "B
Al |~

Add the Sort those...

columns..

http://en.wikipedia.org/wiki/Burrows-Wheeler transforn

Burroughs-Wheeler transform indexing

Add 3 Sort 3 Add 4 Sort 4
BAN ANA BANA ANAN
NAN ANA NANA ANA |
NA | Al" NA| " Al"B
~BA BAN “BAN BANA
ANA NAN ANAN NANA
ANA NA | ANA | NA |~
| *B ~BA | “BA ~BAN
Al” | B A|"B | “BA
Add the Sort those... Add the Sort those...

columns...

columns.|..

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni
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Burroughs-Wheeler transform indexing

Add 5 Sort5 Add 6 Sort 6
BANAN ANANA BANANA ANANA |
NANA | ANA | " NANA |~ ANA| "B
NA|"B A|"BA NA|"BA A|"BAN
~"BANA BANAN ~“BANAN BANANA
ANANA NANA | ANANA | NANA | *
ANA| " NA| "B ANA| "B NA| "“BA
| “"BAN “BANA | "BANA ~BANAN
A|"BA | “"BAN A|~"BAN | "BANA

Add the
columns...

Sort those...

Add the
columns...

Sort those...

http://en.wikipedia.org/wiki/Burrows-Wheeler transforn

Burroughs-Wheeler transform indexing

Add 7 Sort7 Add 8
BANANA | ANANA |~ BANANA | »
NANA| "B ANA | ~BA NANA | “BA
NA | “BAN A|~“BANA NA | “"BANA
~“BANANA BANANA |
ANANA| " NANA | ~B ANANA| "B
ANA | "BA NA | “BAN ANA | ~BAN
| “BANAN ~BANANA | “BANANA
A| ~"BANA | “"BANAN A| “BANAN

Add the

Sort those...

Add the

columns...

columns...

The row with
the "end of file"

character at the

end is the
original text

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni
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Burroughs-Wheeler transform indexing

Output

~“BANANA |

The row with the "end of file"
character at the end is the
original text

http://en.wikipedia.org/wiki/Burrows-Wheeler transforn

Reference genome Short read
(> 3 gigabases)

Chr1
Chr2
Chr3m==

S Burroughs

Concatenate into

single string v Whee | er
— indexing

ACTCCCGTACTCTAAT

L

Burrows-Wheeler
transform and indexing

b

Bowtie index

(~2 gigabytes) py \/
¥ ‘Nm TACTCTAAT
- ) L
Look up 1 —
'suffixes’ | -

of read !’

Hits identify “
positions in
genome where "
read is found ==

—

ACTCCCGTACTCTAAT

Trapnell C, Salzberg SL, Nat. Biotech., 2009
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