Assembling Genomes

BCH364C/391L Systems Biology / Bioinformatics — Spring 2015

Edward Marcotte, Univ of Texas at Austin

Edward Marcotte/Univ. of Texas/BCH364C-391L/Spring 2015

AANAAMMAM
— ) 2

-

; The image from
Reference: Jones NC, Pevzner PA, Introduction to Bioinformatics Algorithms, MIT press




/A new strategy for genome sequencing

. Craig Venter, Hamilton O. Smith and Leroy Hood

Conventional 2 . 5 Sequence-tagged connectors

Chromosome (250 Mb) Chromosome

et AP
t ekl - BAC library
VARG e S e uma in ”
p p g (58l Array 300,000
..... [l BACs
..... Ml Sequence both ends
IS ELES080 Fingerprint each BAC
e e el S e A e Pl Select seed BAC
Cosmid ~———————-—"" map l
\ 150 kb
S «u ” , -
refor S otgu n ¥ M13 or plasmid library
Plasriid e ° *-_—_—_—:::_
—_—— . Sequence 3,000 clones
(5—11\?;[37) — =] SequenC|ng § and assemble
or
(1 kb) § and assemble | Find 30 overlapping
BACs from STCs
Choose minimum cosmid overlap Fingerprint comparisons
‘ nkosh Sequence BACs with minimal
l ‘ overlap at each end and repeat
’ | ——]
Cosmids e i == =8 B8 B—8 pacg
<=Cosmid walking=+ <= BAC walking =

‘sTCs

NATURE - VOL 381 - 30 MAY 1996

(Translating the cloning jargon)

CLONE LIBRARIES USED FOR GENOME MAPPING

AND SEQUENCING
Vector Human-DNA insert Number of clones
size range required to cover
the human genome
Yeast artificial 100-2,000 kb 3,000 (1,000 kb)
chromosome
(YAC)
Bacterial artificial 80-350 kb 20,000 (150 kb)
chromosome
(BAC)
Cosmid 30-45 kb 75,000 (40 kb)
Plasmid 3-10 kb 600,000 (5 kb)
M13 phage 1 kb 3,000,000 (1 kb)

NATURE - VOL 381 - 30 MAY 1996




Thinking about the basic shotgun concept

e Start with a very large set of random
sequencing reads

e How might we match up the
overlapping sequences?

e How can we assemble the overlapping
reads together in order to derive the
genome?

Thinking about the basic shotgun concept

e At a high level, the first genomes were
sequenced by comparing pairs of reads
to find overlapping reads

e Then, building a graph (i.e., a network)
to represent those relationships

e The genome sequence is a “walk”
across that graph




The “Overlap-Layout-Consensus” method

Overlap:

Layout:

Compare all pairs of reads
(allow some low level of mismatches)

Construct a graph describing the overlaps

sequence
overlap
read

Simplify the graph read

Find the simplest path through the graph

Consensus: Reconcile errors among reads along that

path to find the consensus sequence

Building an overlap graph

Edge Overlap
5 A 7
AT—= R & IB
A
A>—>B ren B
A
A<——B qu AR RRRNARN RN =
A
A>——<B Emmmen B

ﬁ

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290




Building an overlap graph

Reads
’ 3’
I > E >
B F I
C G
D= H-‘h
Overlap graph
> > B> < D€ > E> < G¢€ <TI

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph

1. Remove all contained nodes & edges going to them

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)




Simplifying an overlap graph

2. Transitive edge removal:
GivenA-B—-C and A-C,removeA-C

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph

e
N
N
o)
N
\
o
N
N
=
v
A
)
N
\
H

3. If un-branched, calculate consensus sequence
If branched, assemble un-branched bits and then decide
how they fit together

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)




Simplifying an overlap graph

1
1
1
1
D=1
1
1
1

“contig” (assembled contiguous sequence)

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

This basic strategy was used for most of
the early genomes.
Also useful: “mate pairs”

2 reads separated by a known distance
|

Read #1 _ [ \
—_—
DNA fragment of known size —
Read #2

Contigs can be ordered using these paired reads

v N

Contig #1 Contig #2




GigAssembler (used to assemble the public
human genome project sequence)

Jim Kent David Haussler

Whole genome Assembly: big picture

STS

Mapped Genome

Henthldys S e ey SSipers mpe =gl S ot oo

Scaffold: | ] | ; ]

t Read pair (mates) Gap (mean & std. dev. Known)
Contig: e Consensus
=== -@— ——_ Reads (of several haplo
- ( haplotypes)
® SNPs
= BAC Fragments

http://www.nature.com/scitable/content/anatomy-of-whole-genome-assembly-20429




GigAssembler — Preprocessing

1. Decontaminating & Repeat Masking.

2. Aligning of mMRNAs, ESTs, BAC ends & paired
reads against initial sequence contigs.

. psLayout — BLAT
3. Creating an input directory (folder) structure.

chrl/

chrl/contigl.e
chrl/contigl.a
chrl/contigl.c
chrl/contigl.b
chrli/contigl.d

chr3/
chr2/
chr2/contig2.d
chr2/contig2.b
chr2/contig2.a
chr2/contig2.c

RepBase + RepeatMasker

>MER51D ERV1 Homo sapiens
tgaggcaggagaaaatagcagagggaattggaagt tggataaagggagaatgagtaaaagcangagagca
gaagcaaggtaaagaggcgggtgagcaagaagcaagataagaagcagaagt tgagcagccaaaacaaaag
taagatnanaaagaagtgagtaaggagcccacatggetggctagatccagaccaaaccagtaaggggcag
ctcctcagagatgggcatgtacattagagagaaaaagtatccttaaaatgaccecgtatgataatcaget
cattaaagctcatgcatatggactgcatatcatgcatgtacttaaaattatgggatggaggtgacgegea
agawgtcacaagcacacaggggccatagkattaagtaactaagcaacccacctatcaatcaaaaggcaga
tgctggctagagattaggcagecttgggaagagaagaaaaaaaaaacacataaaaagacccaaagtacac
taejoon@fourierseq:~/RepBase/RepBasel5.05.fastas 1s -a caaactgacgctgatctcatttcgcagaggtcageccacteteccctetetgagagtgtaatactgtget
dcotrep.ref mamsub.ref rodsub.ref taataaacttttgctgctttgctatctgtgtgtgtettgtccaattctttgtttgggacaccaagagect
diarep.ref mcotrep.ref simple.ref ggaactgcacrgcaccakctggtaaca
drorep.ref mousub.ref  spurep.ref >MIRb SINE2/tRNA Mammalia
fngrep.ref  nemrep.ref synrep.ref cagaggggcagcegtggtgcagtggaaagagcacgggctttggagtcaggcagacctgggttcgaatectg
fugrep.ref oryrep.ref tmplanrep.ref gctctgccacttactagetgtgtgaccttgggcaagtcacttaacctctctgagecteagtttecteate
grasrep.ref plnrep.ref tmpnemrep. ref tgtaaaatggggataataatacctacctcgcagggttgttgtgaggattaaatgagataatgcatgtaaa
humrep.ref  prirep.ref tmpxenrep.ref gcgettagcacagtgectggcacacagtaagegctcaataaatggtagetctattatt
humsub.ref prisub.ref version >LTR45 ERV1 Homo sapiens
invrep.ref  pseudo.ref vrirep.ref tgtaaccgcgggaccageccaaactgggectactctgtigataacaaaatgtcaagttaccttgtaggta
invsub.ref ratsub.ref zebrep.ref taacagagcccaaaactgcaagtcatgtagcccgggeatgtgcaatagaaaaagetttgacctctaacaa
mamrep.ref  rodrep.ref cacccagaaccaatgattcctcccctcggaaccaagaagaccgggacatgaccggaacctgaatgecgga
actctttcagaagcaaaggggtccgttggcccggaagatctggggctaaaatctgectcaacatacctta
ccgtaaatggtcaaatttgaagccctccaatcagaccctgcecaagecaacattectaaatectttccctt
gcectctgatcccttaaaacttgecccagaccccaaatcggggagacagatttgageccacctectget
ccttgetggecggttttgeaataaagectttcttttetcaaaagetggtgccatagttattggettctgt
gtgcatcaggcageaageccatttgctegataaca
>MER86B hAT Homo sapiens
cagggcttcttaaccagaggtccatggatgggcttcaggaggtctgtgaaccctctgaaattatatacaa
aaatgttgtgtatatgtgcatatatgtatttttctggggagagggttcatagetttcatcagattcteaa
aggggtctatgatctmaaaaaggttaagaagccctg




Build merged

GigAssembler

sequence contigs (“rafts”)

FEEETEETIT

I

RNRRRRRRNRY

Figure 1 Two sequences overlapping end to end. The sequences
are represented as dashes. The aligning regions are joined by vertical

bars. End-to-end overlap is an extremely strong indication that two

sequences should be joined into a contig.

Sequencing quality (Phred Score)

40

30
NG OG AG ATC TCG C C G WG TG ATTC TCCA T TCCCAC TTACTCCATCATGG TCAGC

20

10

9929751

>gnl|tij2299297598 name:fiuw1a01.x1 NCBI Accession: AC243926 Mate pair:

>=80 - <100

>=60 - <80

20 - <40 >=40 - <60

5=

nat available >0 - <20

Quality score;

BebEA BERRBBBB!
RonbB3BBBBCB88880¢
Ron-BBBEBBBB8883:
BB EEEEBR888E3:
NORGRRBRRBBBBBER!
NeREBBBBBBBOBBEG!
CoRREEBEEBBEBBER!
HeRBBEEBBEEUBEER!
CERBBEBBERBBLBBBR!
SEHEREBRBBREBBAR!
SINRRBBERBREBEBEE:
2oRBFEEEEBREBE88:
CrIRHBBEBRBBBBBBAB!
rarREEBEBEB88888!
ennhEEEEBB88888

wnASFEEEEBE8BBBR:
207 EBRRBBEBBBR!
whIrFBBEBBBE8883:
«HREEEEEERER8E88:
«BREEEEEBBBLBEEE!
«EHEREBERBBLBBBA!
wBCEREBEBEEEBBBE!
oAECBEEERB8888E8!
wRTIZBEEEBEEBBEE!
0BLeBrBBBBBEBBBR!
B8R rBEBBBBBBBE!
olTebrBEBB8888E8!
oflTeB-BEBBBEBBEAR!
wleedRBBBBBBBBLERB!
wReeFEBBEBBBEBBB8E!
wholFEEBB8E8888G!
wBon-BBBBREBBBBG!
wflohFEBBBBEEBBBR!
mPRerEEBEBBLB8880!
ol FFEEEBBLEBBEBR!

10



Sequencing quality (Phred Score)

Base-calling
Q = -10 lOgm P Error
Probability

or

P =107

Phred quality scores are logarithmically linked to error probabilities
Phred Quality Score Probability of incorrect base call Base call accuracy

10 1in10 90 %

20 1in 100 99 %

30 1in 1000 99.9 %
40 1 in 10000 99.99 %
50 1 in 100000 99.999 %

http://en.wikipedia.org/wiki/Phred_quality score

GigAssembler: Build merged
sequence contigs (“rafts”)

extension tail

tail extension

Figure 2 Two sequences with tails. The nonaligning regions on
either side can be classified into “extensions’ and ‘tails.” Short tails are
fairly common even when two sequences should be joined into a
contig because of poor quality sequence near the ends and occasional
chimeric reads. Long tails, however, are generally a sign that the
alignment is merely due to the sequences sharing a repeating ele-
ment.

11



GigAssembler: Build merged
sequence contigs (“rafts”)

Figure 3 Merging into a raft. A contig (‘raft’) of three sequences: A,
B, and C has already been constructed by GigAssembler. The pro-
gram now examines an alignment between sequence C and a new
sequence, D, to see whether D should also be added to the raft. The
parts of D marked with +s are compatible with the raft because of the
C/D alignment. The program must also check that the parts of D
marked with ?s are compatable with the raft by examining other
alignments.

GigAssembler: Build sequenced
clone contigs (“barges”)

AAAARAMAARAAMARARARR
alalalal a2a2a2a2a2
BEBERBEBBBBEEBEBEBEEB
blblblblblbl b2b2b2
cgeeeececceeeccececee
clclcl c2c2c2c2

Figure 4 Three overlapping draft clones: A, B, and C. Each clone
has two initial sequence contigs. Note that initial sequence contigs
al, b1, and a2 overlap as do b2 and c1.

12



GigAssembler:
Build a “raft-ordering” graph

Figure 4 Three overlapping draft clones: A, B, and C. Each clone
has two initial sequence contigs. Note that initial sequence contigs
al, b1, and a2 overlap as do b2 and c1

—>e— >0 >0 >0 >0
As Bs Ae Cs Be Ce
Figure 5 Ordering graph of clone starts and ends. This represents
the same clones as in Fig. 4. (As) The start of clone A; (Ae) the end of
clone A. Similarly Bs, Be, Cs, and Ce represent the starts and ends of
clones B and C.

b2c1

Lo

®
c2
As Bs Ae Cs Be Ce

atbla2

Figure 6 Ordering graph after adding in rafts. The initial sequence
contigs shown in Fig. 4 are merged into rafts where they overlap. This
forms three rafts: alb1a2, b2c1, and c2. These rafts are constrained to
lie between the relevant clone ends by the addition of additional
ordering edges to the graph shown in Fig. 5.

GigAssembler:
Build a “raft-ordering” graph

« Add information from mRNAs,
ESTs, paired plasmid reads,
BAC end pairs: building a
“bridge”

. Different weight to different data
type: (MRNA ~ highest)

« Conflicts with the graph as
constructed so far are rejected.

« Build a sequence path through each
raft.

« Fill the gap with N's.
« 100: between rafts
« 50,000: between bridged barges

bZct1
®.
c2
As S Ae Cs Be Ce

albla2

Figure 6 Ordering graph after adding in rafts. The initial sequence
contigs shown in Fig. 4 are merged into rafts where they overlap. This
forms three rafts: alb1a2, b2c1, and c2. These rafts are constrained to
lie between the relevant clone ends by the addition of additional
ordering edges to the graph shown in Fig. 5.

13



Finding the shortest path across the
ordering graph using the
Bellman-Ford algorithm

http://compprog.wordpress.com/2007/11/29/one-source-shortest-path-the-bellman-ford-algorithm/

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

14



Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

+7

a D - E

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

+5

Inf. Inf.

15



Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

16



Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

17



Answer: A-D-C-B-E

0
START

Modern assemblers now work a bit differently,
using so-called DeBruijn graphs:

Here’s what we saw before:

v A\
LA L
GGCGTGC
o o i
........ > [N
o @  Short-read TGCAATG
5 NN
< S sequencing CAATGGC

2 (GGCaTGC | [ CAATGGC ] .
VIGGLG

Genome: ATGGCGTGCAATGGCGT

In Overlap-Layout-Consensus:
Nodes are reads
Edges are overlaps

Nature Biotech 29(11):987-991 (2011)

18



Modern assemblers now work a bit differently,
using so-called DeBruijn graphs:

" » In a DeBruijn graph:
= n} Vertices are (k-1)-mers
-------- > *-.. Edges are k-mers
o @  Short-read Yo
< 3 sequencing
2 [cGeaTaC [ CAATGGC |
\
ATG
11
TGG
L1
GGC
[N
i
CGT
11 e seressesesmmmmmmmmmmmmemmmemmmmemmmm——————-
GT‘:’ k-mers from edges
TGC
11
GCA
i
CAA
(0]
AAT
[
ATG Eulerian cycle
Genome: ATGGCGTGCAATG

Nature Biotech 29(11):987-991 (2011)

Visit each edge once

Once a reference genome is assembled,
new sequencing data can ‘simply’ be
mapped to the reference.

reads

Reference genome

19



Mapping reads to assembled
genomes

Table 1 A selection of short-read analysis software
Open  Handles ABI color Maximum read

Program Website source? space? length
Bowtie http://bowtie.cbcb.umd.edu Yes No None
BWA http://maq.sourceforge.net/bwa-man.shtml Yes Yes None
Maq http://maq.sourceforge.net Yes Yes 127
Mosaik http://bioinformatics.bc.edu/marthlab/Mosaik No Yes None
Novoalign  http://www.novocraft.com No No None
SOAP2 http:/soap.genomics.org.cn No No 60
Z00OM http://www.bioinfor.com No Yes 240

Trapnell C, Salzberg SL, Nat. Biotech., 2009

a Spaced seeds b Burrows-Wheeler
Reference genome Short read Reference genome Short read
(> 3 gigabases) (> 3 gigabases)
Chr1 ACTGGCGTACTCTAAT Chr1 ACTCCOGTAGTGTAAT
Chr2 == Chr2
Chr3m== Chra===
Chr4 Chra

Concatenate into

Extract seeds single string l M a p p i n g

e
|5 J

Burrows-Wheeler 1 St ra t e g i e S

transform and indexing

Position N
Position 2
CTGC CGTA AACT AATG

Position 1 Y

ACTG CCGT AAAC TAAT ACTC CCGT ACTC TAAT

b Bowtie index I3 v

2 gzgabytes) "\\ ACTCOOGTACTCTAAT

.
ACTG +aee ARAC weme L1 7T
wsss CCGT ssss TAAT Six seed L2] Look up AT
ACTG ssss sees TAAT pairs per —— 3 ‘suffixes’ AAT
ssss sese AAAG TAAT read/ 4 of read il

ACTG CCGT s+e= weow fragment 5 H

a2 COGT AAAC 6 & / >
- [~ ACTCCCGTACTCTAAT
llndex seed pairs Hits identify ii |

positions in
Seed index genome where "

(tens of gigabytes) Look up each pair read is found
— of seeds in index
ACTG w=swe AAAC wsew
Hits identify positions
in genome where
spaced seed pair
is found

e sesse

wees COGT =+e= TAAT

wses COOT AAAC sess

ACTG wees sres TAAT W Confirm hits
L=

by checking

Convert each
hit back to

“sass” positions

T Report alignment to user €«——

genome location

Trapnell C, Salzberg SL, Nat. Biotech., 2009

20



Referen

Chr1
Chr2
Chr3ie==
Chr4

Concatenate into
single string

L

(> 3 gigabases)

ce genome Short read

ACTCCCGTACTCTAAT

Burrows-Wheeler

b gl

Burroughs
Wheeler
indexing

transform and indexing

Bowtie index 57
(~2 gigabytes) g i 4

| ACTCCCGTACTCTAAT
T N

Wy o
Look up Uy — ==

‘suffixes’

of read lr yr £
1

P /
- y

y

-
== ACTCCCGTACTCTAAT

Hits identify
positions in
genome where ” §

read is found -2
Trapnell C, Salzberg SL, Nat. Biotech., 2009

Burroughs-Wheeler transform indexing

BWT is often used for file compression (like bzip2),
here used to make a fast ‘lookup’ index in a genome

BWT = ‘reversible block-sorting’

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

This sequence is

ForwardBWT " more compressible

Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIONIT

Reverse BWT

Recovered SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES
input

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

21



Burroughs-Wheeler transform indexing

Input

~“BANANA |

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

Burroughs-Wheeler transform indexing

All
Rotations

~“BANANA |
| "BANANA
A| ~“BANAN
NA | “"BANA
ANA | “BAN
NANA | “BA
ANANA| "B
BANANA |~

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

22



Burroughs-Wheeler transform indexing

Sorting All Rows in Alphabetical
Order

ANANA| "B
ANA | “BAN
A | "BANAN
BANANA | ©
NANA| "BA
NA | “BANA
ABANANA |
| "BANANA

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

Burroughs-Wheeler transform indexing

Taking
Last Column

ANANA | "B
ANA | “"BAN
A| ~"BANAN
BANANA | #
NANA | “BA
NA | “BANA
~BANANA |
| "BANANA

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni




Burroughs-Wheeler transform indexing

Output
Last Column

BNN"AA A

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

Burroughs-Wheeler transform indexing

All

Ingac Rotations

“BANANA |
| "BANANA
A| “BANAN
NA | “BANA
ANA | “BAN
NANA | “BA
ANANA | “B
BANANA |7

~BANANA |

Transformation

Sorting All Rows in Alphabetical Taking Output
Order Last Column | Last Column
ANANA | B ANANA | "B
ANA | “BAN ANA | “BAN
A| “BANAN A | “BANAN
BANANA |~ BANANA | #
BNN"AA|A
NANA | “BA NANA | “BA ‘
NA | “BANA NA | “BANA
ABANANA | ~BANANA |
| “BANANA | "BANANA

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

24



BWT is remarkable because it is
reversible.

Any ideas as how you might reverse it?

Burroughs-Wheeler transform indexing

Input

BNN"AA|A

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

25



Burroughs-Wheeler transform indexing

Add 1

> 2 2 W

i

Write the
sequence as
the last column

Sort 1

> = 2w

Sort it...

Add 2 Sort 2
BA AN
NA AN
NA Al
~B BA
AN NA
AN NA
|~ "B
Al |~

Add the Sort those...

columns..

http://en.wikipedia.org/wiki/Burrows-Wheeler transforn

Burroughs-Wheeler transform indexing

Add 3 Sort 3 Add 4 Sort 4
BAN ANA BANA ANAN
NAN ANA NANA ANA |
NA | Al" NA| " Al"B
~BA BAN “BAN BANA
ANA NAN ANAN NANA
ANA NA | ANA | NA |~
| *B ~BA | “BA ~BAN
Al” | B A|"B | “BA
Add the Sort those... Add the Sort those...

columns...

columns.|..

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

26



Burroughs-Wheeler transform indexing

Add 5 Sort5 Add 6 Sort 6
BANAN ANANA BANANA ANANA |
NANA | ANA | " NANA |~ ANA| "B
NA|"B A|"BA NA|"BA A|"BAN
~"BANA BANAN ~“BANAN BANANA
ANANA NANA | ANANA | NANA | *
ANA| " NA| "B ANA| "B NA| "“BA
| “"BAN “BANA | "BANA ~BANAN
A|"BA | “"BAN A|~"BAN | "BANA

Add the
columns...

Sort those...

Add the
columns...

Sort those...

http://en.wikipedia.org/wiki/Burrows-Wheeler transforn

Burroughs-Wheeler transform indexing

Add 7 Sort7 Add 8
BANANA | ANANA |~ BANANA | »
NANA| "B ANA | ~BA NANA | “BA
NA | “BAN A|~“BANA NA | “"BANA
~“BANANA BANANA |
ANANA| " NANA | ~B ANANA| "B
ANA | "BA NA | “BAN ANA | ~BAN
| “BANAN ~BANANA | “BANANA
A| ~"BANA | “"BANAN A| “BANAN

Add the

Sort those...

Add the

columns...

columns...

The row with
the "end of file"

character at the

end is the
original text

http://en.wikipedia.org/wiki/Burrows-Wheeler transforni

27



Burroughs-Wheeler transform indexing

Output

~“BANANA |

The row with the "end of file"
character at the end is the
original text

http://en.wikipedia.org/wiki/Burrows-Wheeler transforn

Reference genome Short read
(> 3 gigabases)

Chr1
Chr2
Chr3m==

S Burroughs

Concatenate into

single string v Whee | er
— indexing

ACTCCCGTACTCTAAT

L

Burrows-Wheeler
transform and indexing

b

Bowtie index

(~2 gigabytes) py \/
¥ ‘Nm TACTCTAAT
- ) L
Look up 1 —
'suffixes’ | -

of read !’

Hits identify “
positions in
genome where "
read is found ==

—

ACTCCCGTACTCTAAT

Trapnell C, Salzberg SL, Nat. Biotech., 2009

28



