Network biology
(& predicting gene function
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There are many types of biological networks.
Here’s a small portion of a large metabolic network.
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A typical
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Contacts between proteins define protein interaction networks

X-ray structure Schematic Network
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Let’s look at some of the types of
interaction data in more detail.

Some of these capture physical
interactions, some genetic, some
informational or logical.

Pairwise protein interactions

In general, purifying proteins one at a time, mixing them, and assaying
for interactions is far too slow & laborious. We need something faster!
Hence, high-throughput screens, e.g. yeast two-hybrid assays
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High-throughput yeast two-hybrid assays
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activation domain-
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Uetz, Giot, et al. Nature (2000
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A variant: tandem affinity purification (TAP)
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The current state-of-the-art in animal PPl maps — AP/MS
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Guruharsha et al. (2011) Cell 147, 690-703




The current state-of-the-art in animal PPl maps — co-fractionation/MS
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Comparative genomics

Functional relationships between genes impose
subtle constraints upon genome sequences. Thus,
genomes carry intrinsic information about the
cellular systems and pathways they encode.

Linkages can be found from aspects of gene
context, including:

Distances between sequence elements

Order of sequences

Variation in order between organisms

Regulatory sequences near genes

Gene content of an organism

Variation in gene content between organisms
Fusions between genes from different organisms

Phylogenetic profiles

Organisms with e.g. a
flagellum have the
necessary genes; those
without tend to lack them.

Specific trends of gene
presence/absence thus
inform about biological
processes.

PNAS 96, 4285-4288 (1999)
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Operons and evolutionary conservation of gene order

Prokaryotic operons tend to favor certain intergenic distances
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Again, such observations can be turned into pairwise scores:
L e T B (L

[ pairs within operons | ]
g — pairs at t.u. borders | 1

log-likelihood | |

ol
@

0.1

Distance (bp)

T L)

G T 0 0 0 I 0 I I T 0 I R M W
-100 0 100 200 300 400 500 600

Frequency
o
—r—rr
ut—*

(=]
pooqaI-3o]

1
[=
L4}

Operons in Escherichia coli: Genomic analyses and
predictions

6652-6657 | PNAS | Juneé, 2000 | wvol,97 no. 12 Haladia Salgado*!, Gabrial Moreno-Hagelsieb**, Temple F. Smith!, and Julio Collado-Vides!s

To summarize so far:

Data about gene interactions comes many sources but is
dominated by several major ones:

MRNA co expression. Historically microarrays & ESTs,
increasingly RNAseq. Typically very high coverage data.

* Comparative genomics. Available for free for all
organisms (typically phylogenetic profiles & operons)

¢ Protein interactions, especially co-complex interactions
from mass spectrometry

¢ Genetic interactions (more so matching profiles of
interaction partners than the interactions themselves)

¢ Transfer from other species
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More abstractly, we might consider all of these as
indicating “functional linkages” between genes

* Protein-protein interactions
e Participating in consecutive metabolic reactions
e Sharing genetic interactors
* Forming the same protein complex
* Giving rise to similar mutational phenotypes
e Exhibiting similar biological function
and so on...

These sorts of data can be combined into

functional gene networks
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These sorts of data can be combined into
functional gene networks

Networks
F
E. G
Gene expression A
(RNA-seq/arrays) Genes .

A B CDEFG

A
B A
wv
@ c B c
go — >
QE £
F
. . F G
Protein expression G I
and interactions ‘ A
(Mass spectrometry) 1l N

AAACTGCATCGA  Geneorganization  Likelihood of 2 genes
ATCGCGCATCGC (Genome sequences) working in the same
AGCTCTAGCTCCC... | biological process

P \ P e Confidence
T R

wiktype

e . - .
. tlves an estimate of cell’s “wiring diagram”

o,
m-( A i .

_ . . &
Gene gene interactions = g
(Genetic assays) Vi

These sorts of data can be combined into
functional gene networks
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In more detail: Constructing a functional gene network

mRNA co-expression

Protein physical interactions

Likelihood of genes’
functional association

Synthetic lethal interactions

d (Infer associations by

® regression models
in supervised

Bayesian framework)

Other types of functional
genomics data that may imply
functional coupling between genes

Lee & Marcotte, Methods Mol Biol. 453:267-78. (2008)
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e.g., inferring functional linkages from mRNA co-expression

Frequency

Log likelihood score

across a given set of conditions

T Gene Ontalogy (GO)

< | biclogical process «— bins of 20K gene pairs

Corraation coofficient bos
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Repeat for other datasets
Integrate scores for each link

Assess performance by cross-

08

06 04 02z 00 02 04 05 08 10 validation or bootstrapping
Correlation coefficient between expression vectors

Lee et al. Science, 306:1555-8 (2004)

Typically calculated for many different sets of experiments
sampling many different conditions...

Each represents a
different set of mMRNA
abundance profiling
experiments (here,
DNA microarrays)
interrogating a given
set of conditions.

Different gene pairs
may be correlated in
each condition.

...and soon

Lee et al. Science, 306:1555-8 (2004)
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21 evidence types contribute to the HumanNet human gene network

Table §1. Twenty-one different lines of evidence supporting HumanNet linkages.

Note: ma ny are not human! Data Description #genes | #gene
- set pairs
« CE-CC | Co-citation of worm genes 1,370 12,928
g CE-CX | Co-expression among worm genes 2,633 41,645
g CE-GT | Worm genetic interactions 1,040 5,430
= 90 CE-LC | Literature-curated worm protein physical 1,402 2,640
°© —8— CECC interactions
E’ : g:£¥ CE-YH | High-throughput yeast 2-hybrid assays among 1,561 3,254
° CELC worm genes
a —8— CE-YH DM-PI | Fly protein physical interactions 4,153 15,738
] - HS-CC | Co-citation of human genes 3423 6,172
E = :g: HS-CX | Co-expression among human genes 11,050 156,317
@ —A— HS-0C HS-DC | Ci of domains among human proteins 8,737 38,797
£ t :ﬁ: HS-GN | Gene neighborhoods of bacterial and archaeal 3,504 36487
ED —— ISS orthologs of human genes
=] —8— HSPG HS-LC | Literature-curated linkages from protein-protein 8,783 56,505
g_ —8— HS-YH interaction DBs (HPRD, BIND, BioGRID, IntAct,
‘S ¥ sec MINT) and Rual et al., and pathway DB
= —¥— 5CCX
T —8— SCGT (Reactome)
s ~8— SCAC HS-MS | Human protein complexes from affinity 1,485 3,575
5 s :::'T‘: purification/mass spectrometry
o —a— SCYH HS-PG | Co-inheritance of bacterial and archaeal orthologs 1,170 18,868
= 4 Humannet of human genes
Y T T HS-YH | High-throughput yeast 2-hybrid assays among 1,358 1,365
'g 1 10 100 huma.n genes
o SC-CC _| Co-citation of yeast genes 2,798 31,353
é Coverage of 18,714 human SC-CX | Co-expression among yeast genes 2,001 48,423
g validated protein-coding genes (%) SC-GT_| Yeast genetic i ion: 2,584 17,678
= SC-LC | Literature-curated yeast protein physical 2,661 17,280
interactions
SC-MS | Yeast protein complexes from affinity 2,382 65,986
purification/mass spectrometry
SC-TS | Yeast protein interactions inferred from tertiary 839 6,270
structures of compl
SC-YH | High-throughput yeast 2-hybrid assays among 1,292 1,801
yeast genes
Lee, Blom et al., Genome Research 21:1109-21 (2011) Edward Marcotte/Univ. of Texas/BI0337/Spring 2014

Evolutionary information is usually a key predictor—e.g.,
predictions for plant-specific traits often use fungal & animal data

For example, new seedling pigmentation genes...

Wild type AT5G45620-1  ATEG45620-2 AT4G26430-1  AT4G26430-2 AT5G50110-1 ATS5G50110-2

O Known seed pigmentation genes

e New seed pigmentation genes
(two alleles tested)

®) New seed pigmentation genes
O (one allele tested)

@ Linkage by plant-derived data
esss Linkage by animal-derived data
e Linkage by plant + animal data

N B 4
Photomorphogenesis Chloroplast development
Lee, Ambaru, et al. Nature Biotech 28(2):149-156 (2010)




These networks are hypothesis generators.
Given a gene, what other genes does it function with?
What do they do?

Guilt-by-association
in the gene network

o= 1
=] €
o 5]
Genes already linked New candidate genes
to a disease or function for that process

We can propagate annotations across the graph to infer new
annotations for genes (network “guilt-by-association”, or GBA).
Measuring how well this works on hidden, but known, functions gives
us an idea how predictive it will be for new cases.

o ; o]
: . ® 8 "
) @
] A & 0 e
® el E A e @@ e®
) o9 ® ] @ @
o §° = : P . §°2
3 il Es #3-qY P ®
LIy 0 1
.1 il ’ False-positive rate .;

Query with genes already Assess the network’s Infer new candidate
linked to a disease or predictive ability for that genes for that process
function, e.g. the red or function using cross- (e.g. predicting the green

blue function validated ROC or genes for the red
recall/precision analysis function)
Lee, Ambaru et al. Nature Biotechnology 28:149-156 (2010) Edward Marcotte/Univ. of Texas/BI0337/Spring 2014
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Prediction

NI

Calculating ROC curves

Actual
P N
True False
Positive Positive
False True
Negative Negative

Basic idea: sort predictions
from best to worst, plot TPR
vs. FPR as you traverse the

ranked list

TPR=TP/P=TP/(TP + FN)
= True Positive Rate
= Sensitivity, Recall

FPR=FP/N=FP/(FP +TN)
= False Positive Rate
=1 - Specificity

Also useful to plot Precision[= TP / (TP + FP) ] vs. Recall (= TPR)

For example, predicting genes linked with worm phenotypes in
genome-wide RNAI screens

True-positive rate (%)

Some very
poorly
predicted
pathways:

50 100
False-positive rate (%)

Sensitivity (%)

1-Specificity (%)

———=- Dumpy
—— Growth defective

Clear
Patchy coloration

—— Protruding vulva
-==- Small

Radiation sensitive
—— Molting defect
Polyglutamine toxicity
Synthetic multivulva

- Lifespan increased (Hansen) ---- Egg osmotic integrity abnormal
—- Body morphology defect —— Pace of development abnormal
—— Nonviable

Pace of P lineage
development abnormal
—— Severe early pleiotropic defects
-——- Long
—-——- Ruptured
Blistered
———- Osmotic stress
—— Distal tip cell migration
———- dsRNA uptake
———- Meitoic maturation
———- Suppressors of par-2 lethality

Transposon silencing defective ———- MAT-3 suppressors

—— RNAI defective

Random
Fat cantent meteasod
Fat content reduced
Gemnline ool apoplosis

inereased
- FSHR1 synthatics

Lifespan increased (essentials)

ROC analysis indicates
the likely predictive
power of the network for
a system of interest.

A poor ROC - no better
than random guessing.

Lee, Lehner et al., Nat Genet, 40(2):181-8 (2008)
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A variety of algorithms have been developed for GBA

0.24 0.34
430 0.80 0.94 0.33 0.45 043
024 034
0.62 0.20 0.19 0.37 0.38
s (b) naive Bayes (c) iterative ranking (d) Gaussian smoothing

McGary, Lee, Marcotte Related to GeneMANIA
Genome Biol. (2007) Google's PageRank Mostafavi et al.,
/I\ Ramakrishnan et al. Genome Biol. (2008)
1.0 " Bioinformatics (2009) r\ /
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Remarkably, this strategy works quite well
Some examples of network-guided predictions:

In worms:
Genes that can
reverse ‘tumors’
in a nematode
model of

tumorigenesis
Lee, Lehner et al.
Nature Genetics (2008)

In mice/frogs:

= Functions for a
i birth defect gene

Gray et al., Nature
Cell Biology (2009)

In Arabidopsis:

New genes
regulating root
formation / y !
e o1o) | i ers:
v Predicting tissue
) ! | specific gene
. i i expression
In east: New ()] wild type L pgnrr-1::GFP,Aduit,d00x Chill::inaet al.. PLoS
mitochondrial 3 Comp Biology (2009)
biogenesis genes

Hess et al., PLoS
Genetics (2009)

pr.?DfZ&HJ‘H‘.#Ox
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Applicable to non-model organisms:
In rice: Identifying genes regulating A new gene promoting
resistance to Xanthomonas oryzae resistance to rice blight

infection ... Infection with Xoo ====b- ‘
Rice is the primary food source for >2 billion people worldwide
* >500 million tons rice/year are grown
* Bacterial rice blight destroys up to 10-50% / vear in Africa/Asia
Normal Infected
r. ‘i 3 v I. ‘ ‘ Y . : 7 L
$ ;

wild type resistant resistant +

Lee, Seo, et al. PNAS 108:18548-18553 (2011) Edward Marcotte/Univ. ufTexasﬁ(!\Slié\Slprmg 2014

Summary of the major themes

¢ Gene networks serve as general frameworks for studying gene function

¢ Functional gene networks can be (re)constructed based upon millions of
experimental observations via integrating these data into statistical models of
functional connectivity among genes

¢ Guilt-by-association in such a network allows association of genes with
functions, and genes with phenotypic traits, even highly polygenic ones

¢ Functional gene networks have been constructed for yeast, C. elegans,
Arabidopsis, rice, mice, humans, many prokaryotes, and many other organismes...




Live demo of
functional networks
and Cytoscape
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