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Network biology

(& predicting gene function)

BCH364C/391L Systems Biology / Bioinformatics – Spring 2015 

Edward Marcotte, Univ of Texas at Austin

There are many types of biological networks.

Here’s a small portion of a large metabolic network.



2

A typical

genetic

network

α β

ε

γδ

b2

c12a

Network
representation

X-ray structure
of ATP synthase

Schematic
version

Total set = protein complex
Sum of direct + indirect

interactions

Contacts between proteins define protein interaction networks
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Let’s look at some of the types of 

interaction data in more detail.

Some of these capture physical 

interactions, some genetic, some 

informational or logical.

In general, purifying proteins one at a time, mixing them, and assaying 

for interactions is far too slow & laborious.  We need something faster! 

Hence, high-throughput screens, e.g. yeast two-hybrid assays
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Diploid yeast

probed with 

DNA-binding domain-

Pcf11 bait

fusion protein

Haploid yeast

cells expressing

activation domain-

prey fusion proteins

High-throughput yeast two-hybrid assays

Uetz, Giot, et al. Nature (2000)
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493 bait proteins

3617 interactions
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A variant:  tandem affinity purification (TAP)
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Guruharsha et al. (2011) Cell 147, 690–703

~3,500 affinity purification

experiments

~11K interactions / 

~2.3K proteins

���� spans 556 complexes

Still daunting for the

human proteome

The current state-of-the-art in animal PPI maps – AP/MS



7

>2,000 

biochemical 

fractions,

including 

replicates

>9,000 hours

mass spec 

machine 

time

Havugimana,
Hart, et al.,
Cell (2012)

The current state-of-the-art in animal PPI maps – co-fractionation/MS

Genetic interactions

5.4 million gene-gene pairs assayed for synthetic genetic interactions in yeast

Costanzo et al., Science 327: 425 (2010)
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Comparative genomics

Functional relationships between genes impose 

subtle constraints upon genome sequences. Thus, 

genomes carry intrinsic information about the 

cellular systems and pathways they encode. 

Linkages can be found from aspects of gene 

context, including:

PNAS 96, 4285-4288 (1999)

Phylogenetic profiles

Organisms with e.g. a 

flagellum have the 

necessary genes; those 

without tend to lack them.

Specific trends of gene 

presence/absence thus 

inform about biological 

processes.
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Nature 402, 83-86 (1999)

Grayscale indicates 
sequence similarity to 

closest homolog in 
that genome

Phylogenetic profiles

Prokaryotic operons tend to favor certain intergenic distances

Conserved gene neighbors also reveal functional relationships

Operons and evolutionary conservation of gene order
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Again, such observations can be turned into pairwise scores:

Data about gene interactions comes many sources but is 

dominated by several major ones:

• mRNA co expression. Historically microarrays & ESTs, 

increasingly RNAseq. Typically very high coverage data.

• Comparative genomics.  Available for free for all 

organisms (typically phylogenetic profiles & operons)

• Protein interactions, especially co-complex interactions 

from mass spectrometry 

• Genetic interactions (more so matching profiles of 

interaction partners than the interactions themselves) 

• Transfer from other species 

To summarize so far:



11

More abstractly, we might consider all of these as 

indicating “functional linkages” between genes 

• Protein-protein interactions

• Participating in consecutive metabolic reactions

• Sharing genetic interactors

• Forming the same protein complex

• Giving rise to similar mutational phenotypes

• Exhibiting similar biological function

and so on…

Yeast
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Gene organization
(Genome sequences)

Gene-gene interactions
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Bacteria

These sorts of data can be combined into

functional gene networks
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Gene expression
(RNA-seq/arrays)

AAACTGCATCGA  
ATCGCGCATCGC  
AGCTCTAGCTCCC...

Protein expression
and interactions

(Mass spectrometry)

Gene organization
(Genome sequences)

Gene-gene interactions
(Genetic assays)

These sorts of data can be combined into

functional gene networks
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Adapted from Fraser & Marcotte, Nature Genetics (2004)

These sorts of data can be combined into

functional gene networks
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Lee & Marcotte, Methods Mol Biol. 453:267-78. (2008)

In more detail:  Constructing a functional gene network

(Infer associations by

regression models

in supervised

Bayesian framework)
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Lee et al. Science, 306:1555-8 (2004)

e.g., inferring functional linkages from mRNA co-expression

across a given set of conditions

bins of 20K gene pairs

LLS

Frequencies in the dataset (D) of gene 

pairs sharing pathway annotations (I) 

and not sharing annotations (~I), 

calculated per bin

Background frequencies of gene 

pairs sharing and not sharing 

annotations

Fit regression model, score all 

expressed gene pairs (annotated + 

unannotated)

Repeat for other datasets

Integrate scores for each link

Assess performance by cross-

validation or bootstrapping

Typically calculated for many different sets of experiments

sampling many different conditions…

… and so on
Lee et al. Science, 306:1555-8 (2004)

Each represents a 
different set of mRNA 
abundance profiling 
experiments (here, 
DNA microarrays) 
interrogating a given 
set of conditions.

Different gene pairs 
may be correlated in 
each condition.
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21 evidence types contribute to the HumanNet human gene network
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Lee, Blom et al., Genome Research 21:1109-21 (2011)

Note: many are not human!

Edward Marcotte/Univ. of Texas/BIO337/Spring 2014

Evolutionary information is usually a key predictor– e.g., 

predictions for plant-specific traits often use fungal & animal data

For example, new seedling pigmentation genes…

…were predicted from both plant and animal data:

Lee, Ambaru, et al. Nature Biotech 28(2):149-156 (2010)
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Genes already linked

to a disease or function

Guilt-by-association

in the gene network

New candidate genes

for that process

These networks are hypothesis generators.

Given a gene, what other genes does it function with?

What do they do?

Query with genes already 

linked to a disease or 

function, e.g. the red or 

blue function

Infer new candidate 

genes for that process 

(e.g. predicting the green 

genes for the red 

function)

We can propagate annotations across the graph to infer new 

annotations for genes (network “guilt-by-association”, or GBA). 

Measuring how well this works on hidden, but known, functions gives 

us an idea how predictive it will be for new cases.

Assess the network’s 

predictive ability for that 

function using cross-

validated ROC or 

recall/precision analysis

Lee, Ambaru et al. Nature Biotechnology 28:149-156 (2010) Edward Marcotte/Univ. of Texas/BIO337/Spring 2014



17

Calculating ROC curves

Actual

Prediction

P N

P’

N’

True
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False

Negative

False
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True

Negative

Basic idea: sort predictions 
from best to worst, plot TPR 
vs. FPR as you traverse the 

ranked list

TPR = TP / P = TP / (TP + FN)
= True Positive Rate
= Sensitivity, Recall

FPR = FP / N = FP / (FP + TN)
= False Positive Rate
= 1 - Specificity

Also useful to plot Precision [ = TP / (TP + FP) ] vs. Recall ( = TPR)

Lee, Lehner et al., Nat Genet, 40(2):181-8 (2008)

For example, predicting genes linked with worm phenotypes in 

genome-wide RNAi screens

Some very 
poorly 
predicted 
pathways:

ROC analysis indicates 
the likely predictive 
power of the network for 
a system of interest.

A poor ROC � no better
than random guessing.
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GeneMANIA
Mostafavi et al.,

Genome Biol. (2008)

A variety of algorithms have been developed for GBA

Related to
Google’s PageRank
Ramakrishnan et al.

Bioinformatics (2009)

Wang & Marcotte, J. Proteomics (2010)

McGary, Lee, Marcotte
Genome Biol. (2007)

Predicting genes for 318
C. elegans RNAi phenotypes
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The score of a gene is the 

combination of the initial 

seeds and the weighted 

average of scores of the 

protein's neighbors, 

defined iteratively.

The score of a gene is the 

sum of LLS edge weights to 

the query genes

Remarkably, this strategy works quite well
Some examples of network-guided predictions:

In Arabidopsis:
New genes 

regulating root 

formation

In worms:
Genes that can 

reverse ‘tumors’ 

in a nematode 

model of 

tumorigenesis

In mice/frogs:
Functions for a

birth defect gene

In worms:
Predicting tissue

specific gene

expressionIn yeast: New 

mitochondrial

biogenesis genes

Lee, Ambaru et al. 
Nature Biotech (2010)

Lee, Lehner et al. 
Nature Genetics (2008)

Gray et al., Nature 
Cell Biology (2009)

Chikina et al., PLoS
Comp Biology (2009)

Hess et al., PLoS
Genetics (2009)

Reviewed in Wang & Marcotte, J Proteomics (2010)
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Applicable to non-model organisms:

In rice: Identifying genes regulating

resistance to Xanthomonas oryzae

infection …

Rice is the primary food source for >2 billion people worldwide

• >500 million tons rice/year are grown

• Bacterial rice blight destroys up to 10-50% / year in Africa/Asia   

wild type resistant resistant +

RNAi

A new gene promoting

resistance to rice blight

Infection with Xoo
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Lee, Seo, et al. PNAS 108:18548–18553 (2011) Edward Marcotte/Univ. of Texas/BIO337/Spring 2014

Summary of the major themes

• Gene networks serve as general frameworks for studying gene function

• Functional gene networks can be (re)constructed based upon millions of 

experimental observations via integrating these data into statistical models of 

functional connectivity among genes

• Guilt-by-association in such a network allows association of genes with

functions, and genes with phenotypic traits, even highly polygenic ones

• Functional gene networks have been constructed for yeast, C. elegans, 

Arabidopsis, rice, mice, humans, many prokaryotes, and many other organisms… 



20

Live demo of

functional networks 

and Cytoscape


