

So far, we've talked about

- DNA, RNA and protein sequences
- How to compare sequences to decide if they are related
- Having databases full of sequences and comparing them rapidly (BLAST)

In fact, <u>many</u> such databases exist, so today we'll start with a brief tour of <u>some</u> of the biological data on the web.

	Database	Perords	Addross
lust some of	BioGRID	1.6 M protein interactions	https://thebiogrid.org
Just some of	EcoCyc/MotoCyc	>2.600 pathways	http://www.ecocyc.org. http://www.metacyc.org
the resources available for bioinformatics Think of these as the raw data for new discoveries		Major repository of DNA sequences genomes	http://uceast.ensembl.org/index.html
	Ensembl	genes, proteins, and transcripts	ntp.//useast.ensembl.org/index.ntmi
	Entrez Genome	Thousands of genome sequences	http://www.ncbi.nlm.nih.gov/genome?db=genome
	Genbank	>285 billion bases sequenced; > 3 trillion bases as whole genome shotgun data	https://www.ncbi.nlm.nih.gov/genbank/
	Gene Expression Omnibus (GEO)	>2.8M mRNA or protein expression data sets	http://www.ncbi.nlm.nih.gov/geo/
	Genomes Online Database (GOLD)	>150K genome sequences, many in progress	https://gold.jgi.doe.gov/index
	Human Protein Atlas	millions of high-res images of ~17K human proteins across tissues, cancers, & cell lines	http://www.proteinatlas.org/
	KEGG	Most known pathways, in 530 graphical diagrams and >6K organisms (via homology)	http://www.genome.ad.jp/kegg/
	Medline	>29 million references	https://www.ncbi.nlm.nih.gov/PubMed/
	Mouse Genome Informatics	~20,000 mouse genes, diverse associated data & annotations	http://www.informatics.jax.org/
	Online Mendelian Inheritance in Man (OMIM)	Compendium of human genes and genetic phenotypes, data for >16,000 human genes	https://www.ncbi.nlm.nih.gov/omim/
	Pride	> 342 million peptide mass spectra from 27K experiments	https://www.ebi.ac.uk/pride/archive/
	Reactome	>2K pathways involving >10K human proteins, also other organisms	https://www.reactome.org/
	SGD	~6,000 yeast genes, diverse associated data & annotations	https://www.yeastgenome.org/
	UniProtKB/SWISS-PROT	>500K hand-curated sequence entries from >9K organisms	https://www.uniprot.org/

It's nice to know that all of this exists, but ideally, you'd like to be able to so something constructive with the data.

That means getting the data inside your own programs.

All of these databases let you download data in big batches, but this isn't always the case, so....

Let's empower your Python scripts to grab data from the web.

We'll use Python <u>library/module</u> = an optional, specialized set of Python methods

This particular Python module is called *urllib2*.

urllib2 is:

- A collection of programs/tools to let you to surf the web from inside your programs.
- Much more powerful than the simple tasks we'll do with it.
- More details: <u>http://docs.python.org/2/library/urllib2.html</u>

The basic idea:

We first set up a "request" by opening a connection to the URL.

We then save the response in a variable and print it.

If it can't connect to the site, it'll print out a helpful error message instead of the page.

You can more or less use the commands in a cookbook fashion....

import urllib2	# include the urllib2 module	
url = "http://www.marcottelab.	org/index.php/BCH394P_BCH364C_2019"	
y: # this 'try' statement tells Python that we might expect an error		
request = urllib2.urlopen(url)	# setup a request	
page = request.read()	# save the response	
print page	# show the result to the user	
except urllib2.HTTPError: print "Could not find page."	# handle a page not found error	

...and so on, and on, and on...

Here's a complete Python program to retrieve a single entry from Medline:

```
import urllib2
pmid = 11237011
```

Insert the pmid where the {} are in the following URL: url = "https://www.ncbi.nlm.nih.gov/pubmed/{0}?report=medline&format=text".format(pmid)

except urllib2.HTTPError: # handle page not found error print "Could not connect to Medline!"

