
Assembling Genomes

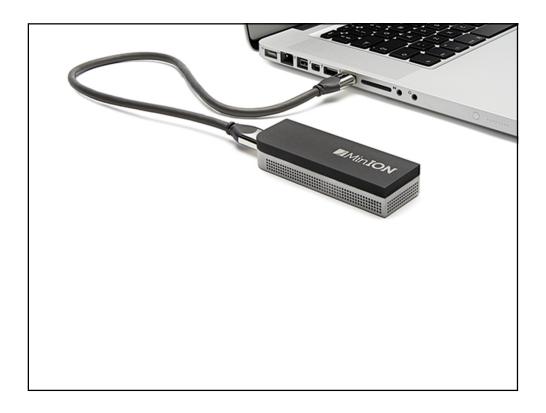
BCH394P/364C Systems Biology / Bioinformatics Edward Marcotte, Univ of Texas at Austin

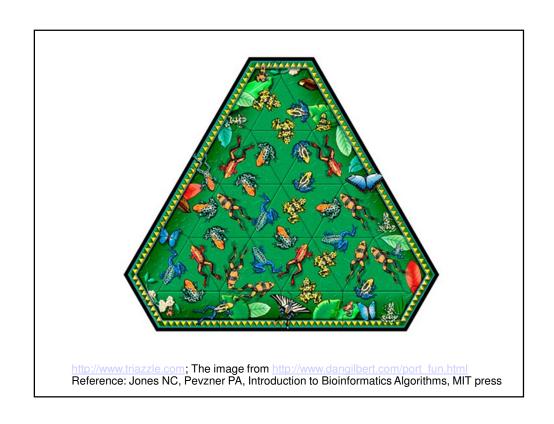
Bloomberg

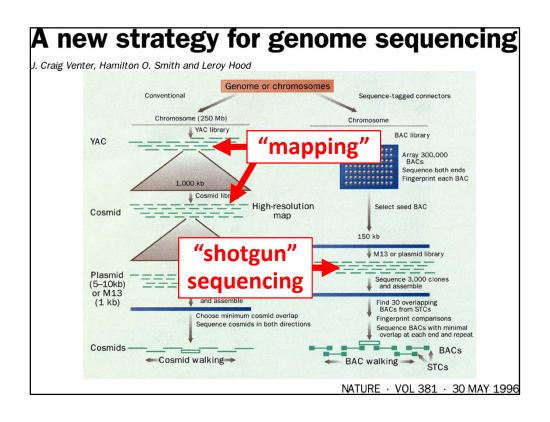
Prognosis

A \$100 Genome Within Reach, Illumina CEO Asks If World Is Ready

By <u>Kristen V Brown</u> February 27, 2019, 1:04 PM CST


- ► In 2017, the company promised a \$100 genome within a decade
- ► CEO Francis deSouza says tech isn't the only thing in the way





"Illumina Inc.'s first machines, introduced in 2006, could decode a full human genome for about \$300,000. A model released in 2014 can do so for about \$1,000 The company's latest machines could one day bring the cost close to \$100."

https://www.bloomberg.com/news/articles/2019-02-27/a-100-genome-within-reach-illumina-ceo-asks-if-world-is-ready

CLONE LII	BRARIES USED FOR GENON AND SEQUENCING	IE MAPPING
Vector	Human-DNA insert size range	Number of clones required to cover the human genome
Yeast artificial chromosome (YAC)	100–2,000 kb	3,000 (1,000 kb)

80-350 kb

30-45 kb

3-10 kb

1 kb

(Translating the cloning jargon)

Bacterial artificial

chromosome

(BAC) Cosmid

Plasmid

M13 phage

NATURE · VOL 381 · 30 MAY 1996

20,000 (150 kb)

75,000 (40 kb)

600,000 (5 kb)

3,000,000 (1 kb)

Thinking about the basic shotgun concept

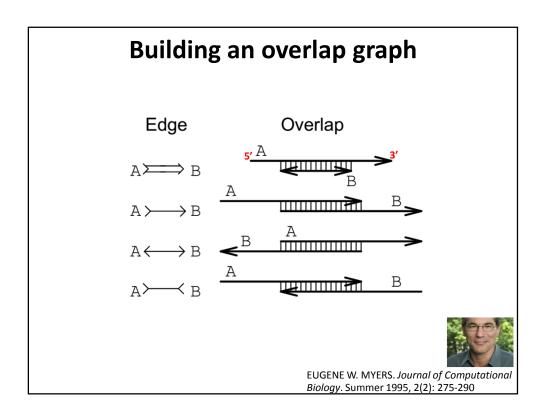
- Start with a very large set of random sequencing reads
- How might we match up the overlapping sequences?
- How can we assemble the overlapping reads together in order to derive the genome?

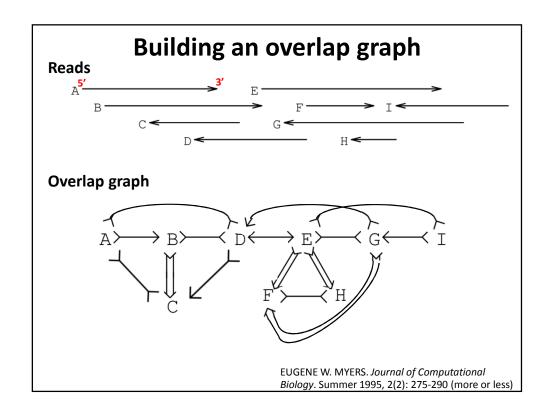
Thinking about the basic shotgun concept

- At a high level, the first genomes were sequenced by comparing pairs of reads to find overlapping reads
- Then, building a graph (i.e., a network) to represent those relationships
- The genome sequence is a "walk" across that graph

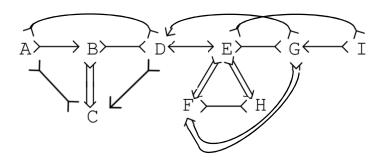
The "Overlap-Layout-Consensus" method

Overlap: Compare all pairs of reads


(allow some low level of mismatches)


<u>Layout</u>: Construct a graph describing the overlaps

sequence overlap read


Simplify the graph read
Find the simplest path through the graph

<u>Consensus</u>: Reconcile errors among reads along that path to find the consensus sequence

Simplifying an overlap graph

1. Remove all contained nodes & edges going to them

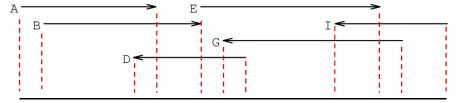
EUGENE W. MYERS. *Journal of Computational Biology*. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph

2. Transitive edge removal: Given A - B - D and A - D, remove A - D

EUGENE W. MYERS. *Journal of Computational Biology*. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph


$$A \longrightarrow B \longrightarrow C \longrightarrow E \longrightarrow G \longleftarrow I$$

3. If un-branched, calculate consensus sequence
If branched, assemble un-branched bits and then decide
how they fit together

EUGENE W. MYERS. *Journal of Computational Biology*. Summer 1995, 2(2): 275-290 (more or less)

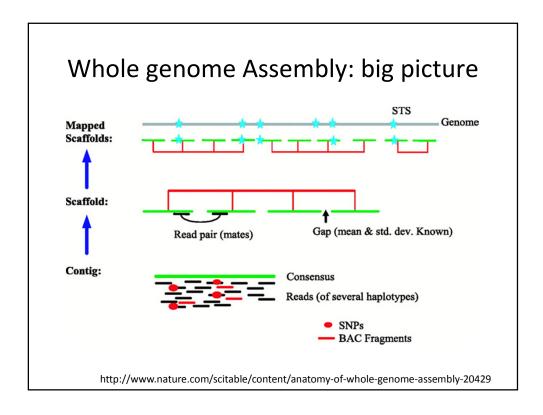
Simplifying an overlap graph

$$A \rightarrowtail B \rightarrowtail C \longleftarrow E \rightarrowtail G \longleftarrow I$$

"contig" (assembled contiguous sequence)

EUGENE W. MYERS. *Journal of Computational Biology*. Summer 1995, 2(2): 275-290 (more or less)

This basic strategy was used for most of the early genomes. Also useful: "mate pairs" 2 reads separated by a known distance Read #1 DNA fragment of known size Contigs can be ordered using these paired reads Contig #1 Contig #2 to produce "scaffolds"


GigAssembler (used to assemble the public human genome project sequence)

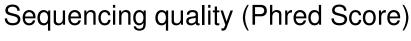
Jim Kent

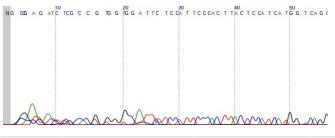
David Haussler

Let's take a little walk through history to see what they did...

GigAssembler - Preprocessing

- 1. Decontaminating & Repeat Masking.
- 2. Aligning of mRNAs, ESTs, BAC ends & paired reads against initial sequence contigs.
 - psLayout → BLAT
- 3. Creating an input directory (folder) structure.


RepBase + RepeatMasker



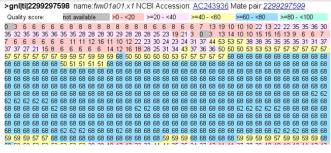
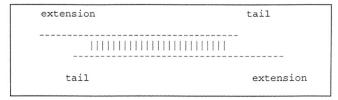

GigAssembler: Build merged sequence contigs ("rafts")

Figure 1 Two sequences overlapping end to end. The sequences are represented as dashes. The aligning regions are joined by vertical bars. End-to-end overlap is an extremely strong indication that two sequences should be joined into a contig.

Sequencing quality (Phred Score)

$$Q = -10 \, \log_{10} P - Base-calling$$
 Error Probability


$$P = 10^{\frac{-Q}{10}}$$

Phred quality scores are logarithmically linked to error probabilities

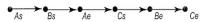
. , , , , , , , , , , , , , , , , , , ,				
Phred Quality Score	Probability of incorrect base call	Base call accuracy		
10	1 in 10	90 %		
20	1 in 100	99 %		
30	1 in 1000	99.9 %		
40	1 in 10000	99.99 %		
50	1 in 100000	99.999 %		

http://en.wikipedia.org/wiki/Phred_quality_score

GigAssembler: Build merged sequence contigs ("rafts")

Figure 2 Two sequences with tails. The nonaligning regions on either side can be classified into 'extensions' and 'tails.' Short tails are fairly common even when two sequences should be joined into a contig because of poor quality sequence near the ends and occasional chimeric reads. Long tails, however, are generally a sign that the alignment is merely due to the sequences sharing a repeating element.

GigAssembler: Build merged sequence contigs ("rafts")


Figure 3 Merging into a raft. A contig ('raft') of three sequences: A, B, and C has already been constructed by GigAssembler. The program now examines an alignment between sequence C and a new sequence, D, to see whether D should also be added to the raft. The parts of D marked with +s are compatible with the raft because of the C/D alignment. The program must also check that the parts of D marked with ?s are compatable with the raft by examining other alignments.

GigAssembler: Build sequenced clone contigs ("barges")

Figure 4 Three overlapping draft clones: A, B, and C. Each clone has two initial sequence contigs. Note that initial sequence contigs a1, b1, and a2 overlap as do b2 and c1.

GigAssembler: Build a "raft-ordering" graph

Figure 4 Three overlapping draft clones: A, B, and C. Each clone has two initial sequence contigs. Note that initial sequence contigs a1, b1, and a2 overlap as do b2 and c1.

Figure 5 Ordering graph of clone starts and ends. This represents the same clones as in Fig. 4. (As) The start of clone A; (Ae) the end of clone A. Similarly Bs, Be, Cs, and Ce represent the starts and ends of clones B and C.

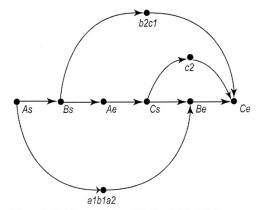
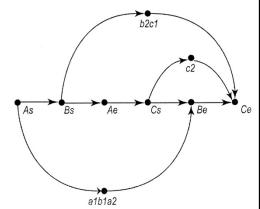
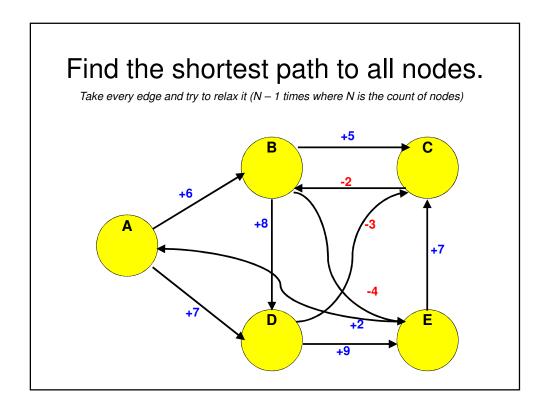
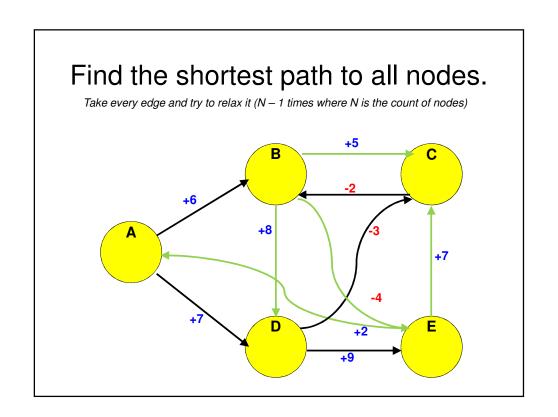
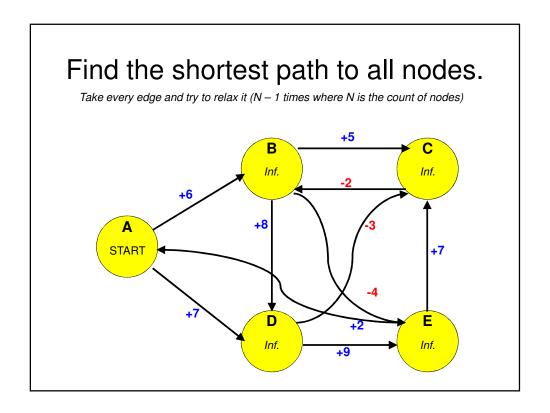



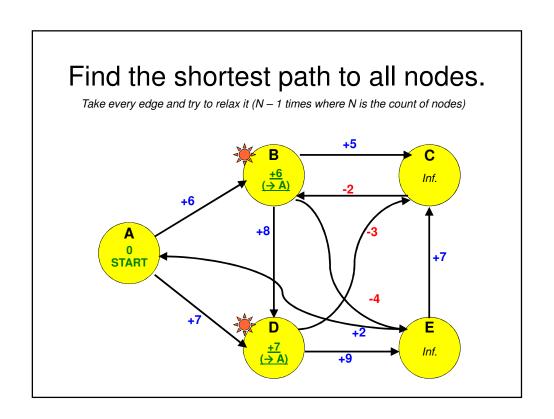
Figure 6 Ordering graph after adding in rafts. The initial sequence contigs shown in Fig. 4 are merged into rafts where they overlap. This forms three rafts: a1b1a2, b2c1, and c2. These rafts are constrained to lie between the relevant clone ends by the addition of additional ordering edges to the graph shown in Fig. 5.

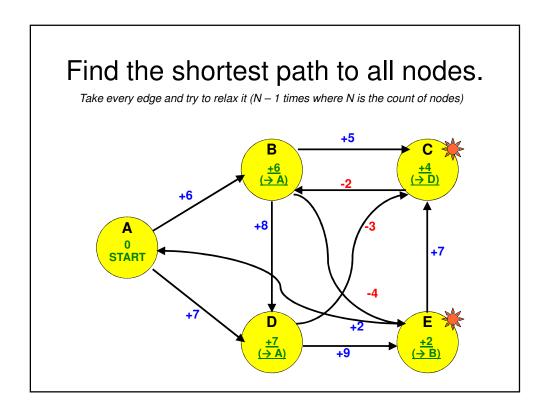
GigAssembler: Build a "raft-ordering" graph

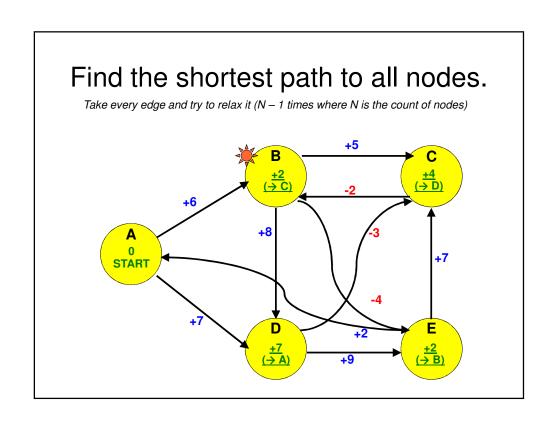

- Add information from mRNAs, ESTs, paired plasmid reads, BAC end pairs: building a "bridge"
 - Different weight to different data type: (mRNA ~ highest)
 - Conflicts with the graph as constructed so far are rejected.
- Build a sequence path through each raft.
- Fill the gap with N's.
 - 100: between rafts
 - 50,000: between bridged barges

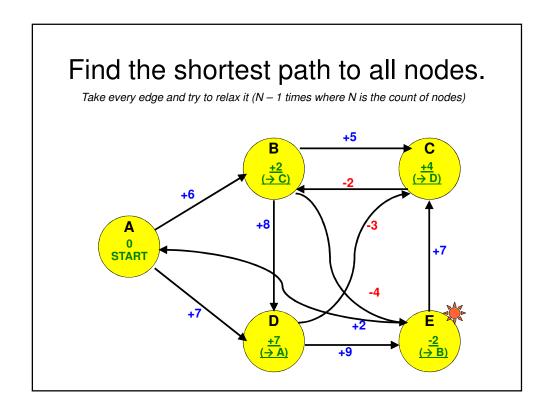


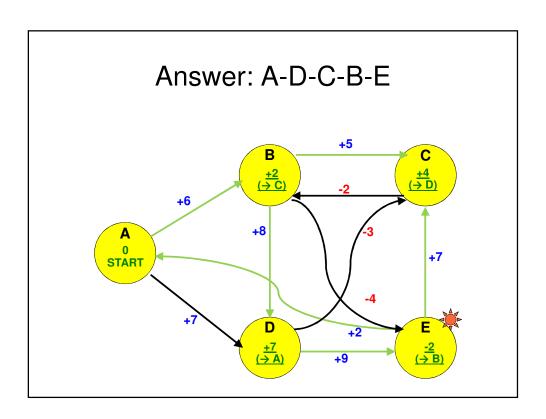

Figure 6 Ordering graph after adding in rafts. The initial sequence contigs shown in Fig. 4 are merged into rafts where they overlap. This forms three rafts: a1b1a2, b2c1, and c2. These rafts are constrained to lie between the relevant clone ends by the addition of additional ordering edges to the graph shown in Fig. 5.

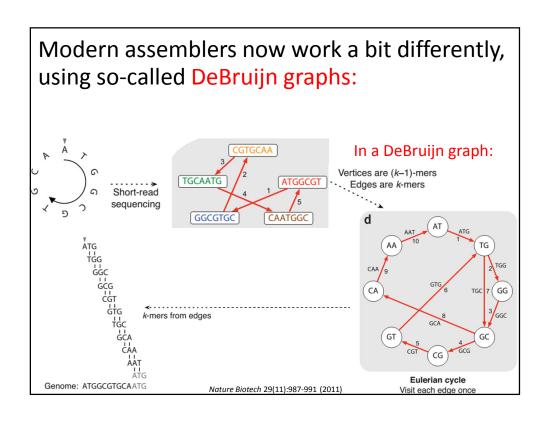

Finding the shortest path across the ordering graph using the Bellman-Ford algorithm

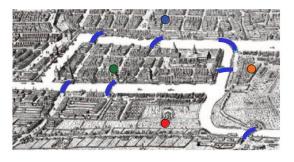

http://compprog.wordpress.com/2007/11/29/one-source-shortest-path-the-bellman-ford-algorithm/











Why Eulerian?

From Leonhard Euler's solution in 1735 to the 'Bridges of Königsberg' problem:

Königsberg (now Kaliningrad, Russia) had 7 bridges connecting 4 parts of the city. Could you visit each part of the city, walking across each bridge only once, & finish back where you started?

(Visiting every edge once = an *Eulerian* path)

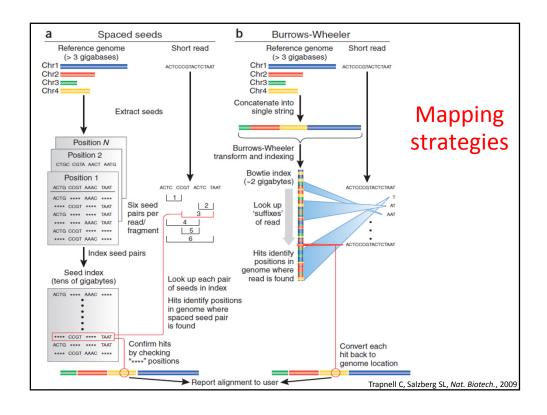
Euler conceptualized it as a graph: Nodes = parts of city Edges = bridges

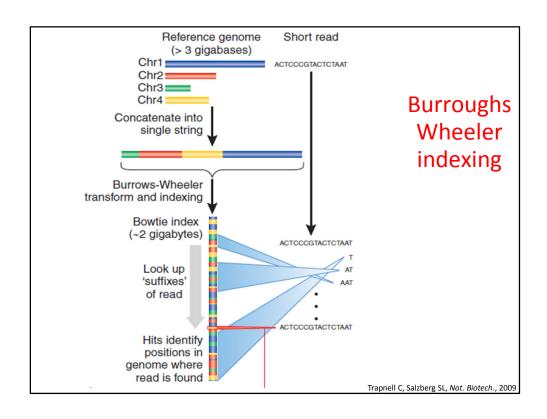
Nature Biotech 29(11):987-991 (2011)

DeBruijn graph assemblers tend to have nice properties, e.g. correcting sequencing errors & handling repeats better

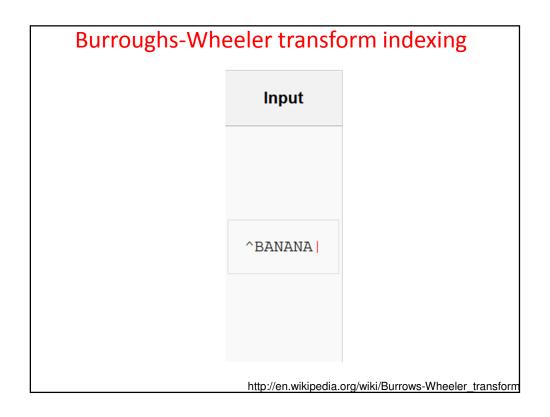
Output (Correction) (Correctio

Once a reference genome is assembled, new sequencing data can 'simply' be mapped to the reference.

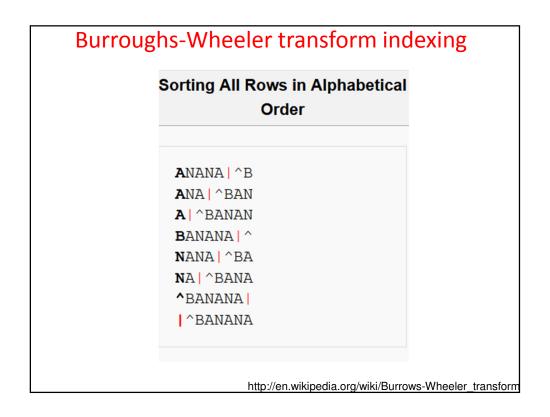

reads ______ Reference genome ______

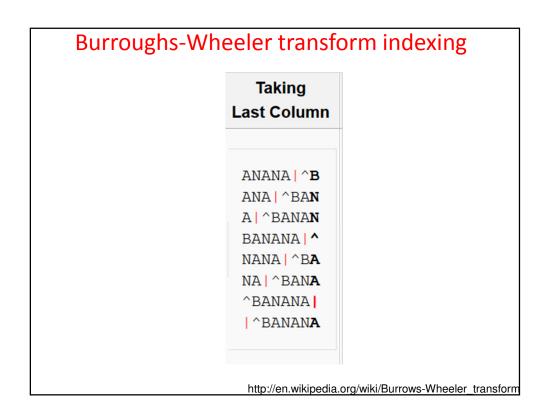

Mapping reads to assembled genomes

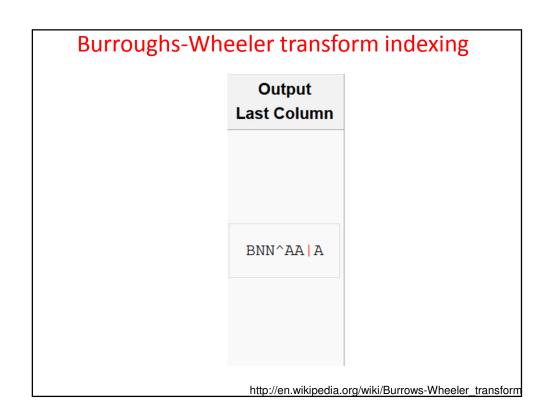
Program	Website	Open source?	Handles ABI color space?	Maximum read length
Bowtie	http://bowtie.cbcb.umd.edu	Yes	No	None
BWA	http://maq.sourceforge.net/bwa-man.shtml	Yes	Yes	None
Maq	http://maq.sourceforge.net	Yes	Yes	127
Mosaik	http://bioinformatics.bc.edu/marthlab/Mosaik	No	Yes	None
Novoalign	http://www.novocraft.com	No	No	None
SOAP2	http://soap.genomics.org.cn	No	No	60
ZOOM	http://www.bioinfor.com	No	Yes	240


The list is a little longer now! e.g. see https://en.wikipedia.org/wiki/List_of_sequence_alignment_software#Short-Read_Sequence_Alignment

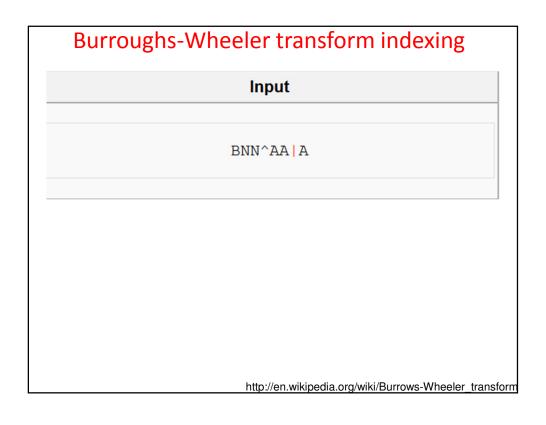
Trapnell C, Salzberg SL, Nat. Biotech., 2009






Burroughs-Wheeler transform indexing BWT is often used for file compression (like bzip2), here used to make a fast 'lookup' index in a genome BWT = 'reversible block-sorting' Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES This sequence is more compressible Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT Reverse BWT Recovered SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES input http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

All Rotations ^BANANA| | ^BANANA A| ^BANA ANA| ^BANA ANA| ^BAN NANA| ^BA ANANA| ^B BANANA| ^B

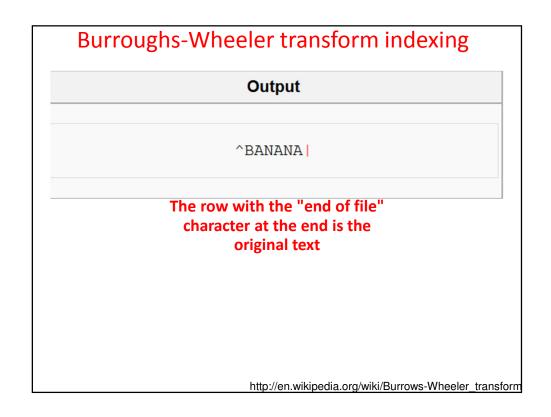

Burroughs-Wheeler transform indexing

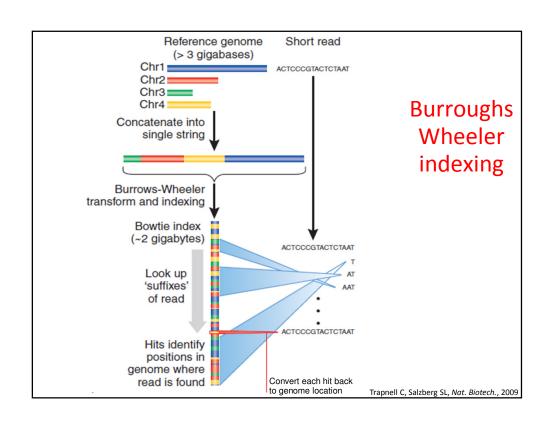
Transformation				
Input	All Rotations	Sorting All Rows in Alphabetical Order	Taking Last Column	Output Last Column
	^BANANA	ANANA ^B	ANANA ^B	
	^BANANA	ANA ^BAN	ANA ^BA N	
	A ^BANAN	A ^BANAN	A ^BANA N	
^D7N7717	NA ^BANA	BANANA ^	BANANA ^	DAINIAAAAA
^BANANA	ANA ^BAN	NANA ^BA	NANA ^B A	BNN^AA A
	NANA ^BA	NA ^BANA	NA ^BAN A	
	ANANA ^B	^BANANA	^BANANA	
	BANANA ^	^BANANA	^BANAN A	

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

BWT is remarkable because it is reversible.

Any ideas as how you might reverse it?




			_
Add 1	Sort 1	Add 2	Sort 2
В	A	BA	AN
N	A	NA	AN
N	A	NA	Al
^	В	^B	BA
A	N	AN	NA
A	N	AN	NA
1	^	^	^B
A	1	A	1^
Write the	Sort it	Add the	Sort those
sequence as he last column		columns	

Sort 4	Add 4	Sort 3	Add 3
ANAN	BANA	ANA	BAN
ANA	NANA	ANA	NAN
A ^B	NA ^	A ^	NA
BANA	^BAN	BAN	^BA
NANA	ANAN	NAN	ANA
NA ^	ANA	NA	ANA
^BAN	^BA	^BA	^B
^BA	A ^B	^B	A ^
Sort those	Add the	Sort those	Add the

Add 5	Sort 5	Add 6	Sort 6
144 0	00.00	7144 0	
BANAN	ANANA	BANANA	ANANA
NANA	ANA ^	NANA ^	ANA ^I
NA ^B	A ^BA	NA ^BA	A ^BAN
^BANA	BANAN	^BANAN	BANANA
ANANA	NANA	ANANA	NANA ′
ANA ^	NA ^B	ANA ^B	NA ^BA
^BAN	^BANA	^BANA	^BANAI
A ^BA	^BAN	A ^BAN	^BANA
Add the	Sort those	Add the	Sort those

7 Add 8	
BANANA ^	
`BA NANA ^BA	The row with
ANA NA ANA	the "end of file
NA ^BANANA	character at the
^B ANANA ^B	
BAN ANA ^BAN	original text
ANA ^BANANA	
IAN A ^BANAN	
	A ^ BANANA ^ NBA NANA ^BANANA NA ^BANANA NA ANANA ^BANANA ANA ANA ^BANANA NAN A ^BANANA

