Network biology
(& predicting gene function
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There are many types of biological networks.
Here’s a small portion of a large metabolic network.
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Let’s look at some of the types of
interaction data in more detail.

Some of these capture physical
interactions, some genetic, some
informational or logical.

Pairwise protein interactions

In general, purifying proteins one at a time, mixing them, and assaying
for interactions is far too slow & laborious. We need something faster!
Hence, high-throughput screens, e.g. yeast two-hybrid assays
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High-throughput yeast two-hybrid assays

Haploid yeast
cells expressing
activation domain-
prey fusion proteins

YLR424W

Rnald

Diploid yeast
probed with
DNA-binding domain-
Pcf11 bait
fusion protein

NIp100

YLR423C » YPR049C «

Uetz, Giot, et al. Nature (2000
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A variant: tandem affinity purification (TAP)
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The current state-of-the-art in animal PPl maps — AP/MS
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Still daunting for the
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Drosophila Protein Interaction Map (DPiM) Mass Speciron'letry

Guruharsha et al. (2011) Cell 147, 690-703

The current state-of-the-art in human PPl maps — Y2H
(<1weekold!)

Human ORFeome (v9.1) 2 now ~90% of the protein-coding genes!
Screened all x all (150M pairs!) in 9 Y2H assays

52,569 PPIs involving 8,275 proteins

https://www.nature.com/articles/s415

94-017-0016-2 https://www.cell.com/cell/fulltext/SO

092-8674(14)01369-5

Y2H captures pairwise PPIs that can form when the cer
proteins are expressed out of biological context o g B i 5
(e.g., as fusion proteins in a yeast cell nucleus). It -~
can reveal directly contacting proteins but often 9 &
misses those that require additional molecular  ccrs
context or higher order assemblies, f £
< the exocyst e.g. the CCT complex>  ccms % cers
jﬁ (‘ ccr7
( +111 additional PPIs +15 additional PPis

Luck et al., A reference map of the human protein interactome, bioRxiv, posted April 10, 2019
https://www.biorxiv.org/content/10.1101/605451v1




The current state-of-the-art in human PPl maps
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Just in the past 3 years, nearly 6K affinity purification
experiments on tagged human proteins expressed in cell lines

The current state-of-the-art in animal PPl maps — co-fractionation/MS
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Now >6,400 CF/MS experiments across animals
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There are still lots of cellular machines left to find

e.g. the “Commander” complex, found in all 3
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Reviewed in Mallam & Marcotte, Cell Systems (2017) &

Genetic interactions

5.4 million gene-gene pairs assayed for synthetic genetic interactions in yeast
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Costanzo et al., Science 327: 425 (2010)
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Genetic interactions, the 2016 version

23 million gene-gene pairs assayed for synthetic genetic interactions in yeast,
identifying ~550,000 negative and ~350,000 positive genetic interactions
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A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction
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closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial

Costanzo et al., Science 353: 1381 (2016
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These sorts of data can be combined into
functional gene networks

Networks
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These networks are hypothesis generators.
Given a gene, what other genes does it function with?
What do they do?

Guilt-by-association
in the gene network

Genes already linked New candidate genes
to a disease or function for that process

Gene networks frequently reflect functions, pathways, & phenotypes,
e.g., lethality in yeast is linked to the molecular machine, not the gene

small
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B — 15001
7 77 complex
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chromatin remodeling
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N
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complex

protein
phosphatase
2A complex

Essential gene

@ Nonessential gene
Hart, Lee, & Marcotte, BMC Bioinformatics 8:236 (2007)
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We can propagate annotations across the graph to infer new
annotations for genes (network “guilt-by-association”, or GBA).

Testing how well this works on hidden, but known, cases let’s us
measure how predictive it will be for new cases.
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True-positive rate

o

0 1
False-positive rate

Query with genes already Assess the network’s Infer new candidate
linked to a disease or predictive ability for that genes for that process
function, e.g. the red or function using cross- (e.g. predicting the green
blue function validated ROC or genes for the red

recall/precision analysis function)

Lee, Ambaru et al. Nature Biotechnology 28:149-156 (2010)

Numerous algorithms exist for network GBA

Similar to Google’s

Naive Bayes assigns scores to personalized PageRank

neighboring nodes based on edges

/ 0.24 o
430 0.80 0.94 0.33 0.45 0.43
024 034
0.62 0.20 0.19 0.37 0.38
(@) Initial network & labels (b) Naive Bayes , (c) lterative Ranking | (d) Gaussian Smoothing

A

Network diffusion algorithms start with initial annotations and the graph topology,
then propagate initial scores across the network,
e.g. Gaussian smoothing tries to find scores:

£ = argmingo S (Fi=f)” + (1-0)SiSywy (fi)?

minimizing the difference between & between a protein's score and
final and initial scores of a protein that of each of its neighbors

Revi ) p )

14



For example, predicting genes linked with worm phenotypes in
genome-wide RNAI screens

—— Lifespan increased (Hansen) ———- Egg osmotic integrity abnormal
———- Body morpholegy defect —— Pace of development abnormal
——— Nonviable Pace of P lineage
9 —==- Dumpy development abnormal
< —— Growth defective —— Severe early pleiotropic defects
2 Clear -——- Long
> Patchy coloration ~~—- Ruptured
2 —— Protruding vulva Blistered
2 ———- Small ——=- Osmotic stress
3 —— Radiation sensitive — Distal tip cell migration
2 —— Molting defect ~==- dsRNA uptake
= —— Polyglutamine toxicity ———- Meitoic maturation
—— Synthetic multivulva ———- Suppressors of par-2 lethality
5 ———- Transposon silencing defective ——-- MAT-3 suppressors
. . ! — i i Lifespan increased (essentials
0 50 100 RNAi defective p ( )
False-positive rate (%)

: ROC curves! Here,
indicating the likely
predictive power of the

network for a system of
me ver o~ ot cotont e . )
Scc:orle o g Sk e interest, independent of
poory z L how big the system is.
predicted 2
(=]
pathways: 3

A poor ROC - no better
than random guessing.

1-Specificity (%)

Lee, Lehner et al., Nat Genet, 40(2):181-8 (2008)

Remarkably, this strategy works quite well
Some examples of network-guided predictions:

In worms:
Genes that can
reverse ‘tumors’
in a nematode
model of

tumorigenesis
Lee, Lehner et al.
Nature Genetics (2008)

% In mice/frogs:
¥ Functions for a

birth defect gene
Gray et al., Nature
Cell Biology (2009)

In Arabidopsis:

New genes

regulating root

formation

Lee, Ambaru et al. In worms:

Nature Biotech (2010) Predicting tissue
) : specific gene

In veast: New wild type yir003wA expression

‘h yeast: N (c) Chikina et al,, PLoS

mitochondrial 3 Comp Biology (2009)

biogenesis genes

Hess et al., PLoS
Genetics (2009)
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We use this approach routinely in the lab, e.g. a recent example
predicting new ciliopathy genes from protein complexes

- --._ DBBSome

P

~
N

~S————

Neural tube defects in X. laevis

upon knockdown Drew et al., Molecular Svstems Biology (2017)

Live demo of
STRING, BioGRID,
GeneMania,
functional networks
and Cytoscape
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