Phenologs
A case study of using bioinformatics to find new genes for genetic traits

BCH394P/364C Systems Biology / Bioinformatics
Edward Marcotte, Univ of Texas at Austin

There was an interesting spat in 2016 over data sharing:

“The aerial view of the concept of data sharing is beautiful.”

[but!]

A ... concern ... is that a new class of research person will emerge...the system will be taken over by...

“research parasites.”

My opinion, FWIW, is that “research parasites” are

1. Independent and often highly rigorous scientists
2. Essential to the scientific process, especially when they
3. Independently test the original authors’ analyses. Often,
4. They approach analyses with different starting biases, so
5. Can contribute entirely new interpretations of the original
studies, and
6. Find entirely unanticipated uses for published data

IMO, the act of publishing data in a peer-reviewed journal
commits you to release that data for public
inspection, reproducibility studies, re-analysis, and many
unanticipated new uses.

Science is improved when this happens.

Plus, you could win big!

http://researchparasite.com/
Extraordinary Relatedness
We share genes with almost every known organism.

All genetic traits and diseases affect molecular structures that are evolutionarily conserved.
We know far more about genes & traits in lower organisms than in us. Can we transfer that knowledge to us?

Can these tell us about us?

Comparative evolution studies rely on finding orthologs

Orthologs = genes from different species that derive from a single gene in the last common ancestor of the species

Paralogs = genes that derive from a single gene that was duplicated within a genome
Comparative evolution studies rely on finding orthologs

Phenologs = significantly overlapping sets of orthologous genes, such that each gene in a given set gives rise to the same phenotype in that organism
E.g., ‘high incidence of male’ *C. elegans* genes predict human breast/ovarian cancer genes

<table>
<thead>
<tr>
<th>Human/Worm Ortholog</th>
<th>Linked to breast cancer in humans</th>
<th>Linked to male in worms</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM/atm-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BRIP1/dog-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>KRAS/let-50</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PHB/phb-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PIK3CA/age-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAD51/rad-51</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAD54L/red-54</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SLC22A18/C53B4.3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TSG101/tsg-1010</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BARD1/brd-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BRCA1/brc-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CHEK2/chk-2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FANCM/F3H2.6</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>GCC2/hcp-1, hcp-2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HMG20A,B/H2BD9.3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HORMAD2.1,him-3,hlp-1,2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>KIF15/hlp-10,18</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MRE11A/mre-11</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PIGA/D2085.6</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAD1/mrt-2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAD21/coh-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SEH1L/ppp-18</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SVIL/viln-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TSPO.B/ZNRPL1/C41G7.3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WDHD1/F17C11.10</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

4649 orthogroups total
Human Worm breast/ovarian high incidence cancer male progeny

\[9 \quad 3 \quad 13 \]

\[p \leq 7.2 \times 10^{-6} \]

In addition to these findings, the study by McGary, Park et al. (PNAS 107:6544-9, 2010) includes BRCA1.

Building & searching a collection of phenotypes

Mining available databases + manual collection from the primary literature

\[\text{# gene-phenotype} \]

<table>
<thead>
<tr>
<th>Organism</th>
<th>associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>1,923</td>
</tr>
<tr>
<td>mouse</td>
<td>74,250</td>
</tr>
<tr>
<td>worm</td>
<td>27,065</td>
</tr>
<tr>
<td>yeast</td>
<td>86,383</td>
</tr>
<tr>
<td>Arabidopsis</td>
<td>22,921</td>
</tr>
</tbody>
</table>

Spanning ~300 human diseases,
>7,000 model organism mutational phenotypes

Computational scan phenotypes for novel models of a disease of interest, identify significant phenologs using permutation tests

Discovering phenologs

Computationally, we find many genes shared between human diseases and mouse, yeast, worm, and even plant traits
Waardenburg syndrome accounts for ~2-5% of cases of deafness

Plants sense and respond to gravity → gravitropism
Plant gravitropism predicts genes for Waardenburg syndrome, a human congenital deafness syndrome

Waardenburg syndrome in humans
Gravitropism defects in plants

The human versions of these plant genes are candidate **Waardenburg genes**

Waardenburg syndrome is a defect of neural crest cells

Neural crest cells migrate during embryonic development

Some WS correlates in other animals:
Deafness in Dalmatian dogs (22% unilaterally deaf)

Variations in the Blenheim spot in Cavalier King Charles Spaniels

Association between white blue-eyed cats and deafness (noted by Darwin in 1859)

White forelock and deafness/bowel blockage in foals & many more...
Sure enough, inactivating one of the genes—predicted from plants—in a tadpole disrupts neural crest cells, consistent with Waardenburg syndrome.

- **BEGIN WITH KNOWN GENES**
- **FIND PLANT ORTHOLOGS** that share mutant phenotypes (gravitropism)
- **PREDICT** novel Waardenburg genes
- **VALIDATE** candidate gene in frog, **CONFIRM** plant model

- **SEARCH FOR MUTATIONS** in humans
- **PREDICT AND VALIDATE** new gravitropism genes

...suggest a relevant plant system. Plant genes...

...suggest new WS genes, confirmed in frogs, validating the plant model.
Phenologs identify evolutionarily conserved systems of proteins relevant to particular traits/diseases.

Genes now used to direct polarized growth in gravitropism

Orthologous genes

Genes now used to direct neural crest cell migration

Last common ancestor

Set of genes in LCA

Plant

Human

Example #3: Yeast genes linked to statin sensitivity predict blood vessel defects

Angiogenesis abnormal in mice

Lovastatin sensitive in yeast

The human versions of these yeast genes are candidate angiogenesis genes

Can these really tell us about these?
Disrupting the SOX13 gene causes strong blood vessel defects.

A yeast model of angiogenesis = example of a deeply conserved, but “repurposed” gene module.

McGary, Park et al. PNAS (2010)
The yeast/angiogenesis gene module

Chemicals that interact genetically with this module are candidate angiogenesis inhibitors
Screening for drugs that interact genetically with this yeast module led us to identify a new angiogenesis inhibitor

TBZ = thiabendazole
FDA-approved antifungal drug with 40 years of safety data

- Approved by U.S. Food and Drug Administration in 1967
- Fungicide and parasiticide
- Not mutagenic or carcinogenic; 2 year dog safety trials
- Off-patent, marketed as a generic

Imaging the blood vessels of a living, transgenic tadpole in a dish of water

kdr:GFP transgenic *Xenopus laevis*
TBZ disrupts vascular integrity, making vascular endothelial cells retract & round up

Control (DMSO carrier) + TBZ

 reversibly...

Begin washout +2h 40min +4h +6h 10min

Cha et al., PLoS Biology (2012)
TBZ slows human fibrosarcoma tumors transplanted into immune-compromised mice

Vasculature in tumor sections

“Road map” to a new vascular disrupting agent, by mapping phenotypes across species

Mouse genes linked to angiogenesis... → ...suggest a yeast system. Yeast genes... → ...suggest angiogenesis genes, confirmed in frogs, validating the method.

...mouse tumor trials, and humans ← ...confirmed in frogs... Drug screens in yeast suggest angiogenesis drugs...
Try it out yourself!
http://www.phenologs.org

You can start by rediscovering the plant model of Waardenburg syndrome:

Search known diseases for "Waardenburg", or enter the human genes linked to Waardenburg (Entrez gene IDs 4286, 5077, 6591, 7299) to start.

Tools for finding orthologs are linked on the class website