Synthetic biology: Engineering new functions, cells, and even life?

BCH394P/364C Systems Biology / Bioinformatics

Edward Marcotte, Univ of Texas at Austin

- Want to understand natural systems. One of the best ways to understand a system is to change it or make new, related ones
- To fully "understand" a system, we should be able to predict the outcome when we change the system
- For molecular biology, this means:
 - designing new gene circuits and networks
 - modeling the designed systems & predicting their properties
 - making & testing the designs
 - updating our understanding from the model/test agreement

Engineers often look at biological systems & think that the systems are equivalent to electronic circuits

e.g,

fluorescent proteins light bulb transcription factors transistor repressors NOT gate activators OR/AND polymerases (transcriptional machinery) batteries

light bulbs or LEDs transistors or logic gates NOT gates OR/AND gates

and so on...

Are they right?

 \rightarrow raises the possibility that biological parts (genes, proteins, etc.) could be combined using the rules established for analog/digital circuits

In parallel, methods were developed to edit genomes at many locations in parallel, e.g. reassigning all amber (TAG) stop codons in *E. coli* to ochre (TAA)

Science April 4, 2014: Vol. 344 no. 6179 pp. 55-58

Total Synthesis of a Functional Designer Eukaryotic Chromosome

Narayana Annaluru, ¹⁺ Héloïse Muller, ^{1,2,3,4}, Leslie A. Mitchell, ^{2,5} Sivaprakash Ramalingam, ¹ Giovanni Stracquadanio, ^{2,6} Sarah M. Richardson, ⁶ Jessica S. Dymond, ^{2,7} Zheng Kuang, ² Lisa Z. Schefele, ^{2,6} Eric M. Cooper, ² Yiahi Cai, ^{2,7} Karen Zeller, ² Neta Agmon, ^{2,5} Jeffrey S. Han, ¹⁰ Michalis Hadjithomas, ¹¹ Jennifer Tullman, ⁶ Katrina Caravelli, ^{2,12} Kimberly Cirelli, ^{1,12} Zheyuan Guo, ^{1,13} Nicolas Agier, ^{1,3,6} Gilles Fischer, ^{1,5,4} Kun Yang, ^{2,6} J. Andrew Martin, ^{2,6} Murat Bilgel, ³¹ Pavlo Bohutskyi, ¹³ Kristin M. Boulier, ¹² Brian J. Capaldo, ¹³ Joy Chang, ¹³ Kristie Charoen, ³³ Jason I. Feinberg, ¹² Christopher Fernandez, ¹² Charlotte E. Floria, ¹² David Gladowski, ¹² Pasha Hadidi, ³¹ Isabel Ishizuka, ¹² Javaneh Jabbari, ¹² Calvin Y. L. Lau, ³³ Pablo A. Lee, ³³ Sean Li, ³³ Denise Lin, ²⁴ Matthias E. Linder, ¹² Jonathan Ling, ³³ Jaime Liu, ³³ Jonathan Liu, ³³ Mariya London, ¹² Henry Ma, ³³ Jessica Kang, ³ Bessica E. McDade, ³⁴ Alexandra McMillan, ¹² Aaron M. Moore, ¹² Won Chan Oh, ¹³ Yu Ouyang, ³⁸ Remus Wong, ³³ Wei Rose Xie, ¹² Yijie Xu, ³⁴ Allen T. Yu, ²⁴ Romain Koszul, ^{3,4} Joel S. Bader, ^{2,6} Je D. Boeke, ^{2,11,5} † Srinivasan Chandrasegaran[†]

"Here, we report the synthesis of a functional 272,871–base pair designer eukaryotic chromosome, synIII, which is based on the 316,617–base pair native *Saccharomyces cerevisiae* chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling."

Table 1. Design challenges and policies nucleolar RNA.	adopted. CDS, gene coding sequence; snoRNA, small
Design challenge or amendment	Policy adopted by design team
Subtelomeric repeats	Delete and monitor for phenotypes
of varying copy number	as chromosomes are combined. Exception:
on multiple chromosomes	vitamin biosynthesis genes retain one copy.
Dispersed repeated genes of high copy number, as well as high-copy COS and seripauperin genes	Delete and monitor for phenotypes as chromosomes are combined.
loxPsym sites <300 bp apart when	loxPsym thinning to
inserted algorithmically (not especially	eliminate the loxPsym site
useful and more difficult to synthesize)	closer to the centromere.
Stop codon overlaps a second CDS; insertion of loxPsym site would disrupt second CDS; also TAG recoding to TAA could disrupt CDS	Favor preservation of "verified ORFs" over "dubious ORFs" and "uncharacterized ORFs"; always add loxPsym site to a verified ORF in this case
	Use GeneDesign's RepeatSmasher
Tandem repeats inside CDSs (34)	module to recode such genes
iundeni repeats inside obos (54)	to minimize DNA level repetitiveness,
	making DNA easier to synthesize and assemble.
	In synthesis phase, permit 10% length
Homopolymer tracts, including frequent	variation for homopolymer
A and T tracts, are difficult to synthesize	tracts >10 bp provided they are
	in a noncoding region.
	Delete pre-mRNA introns precisely, except from genes with evidence of a fitness defect caused by intron
	deletion (35, 36). The HAC1 intron, which uses separate
Introns	splicing machinery and is known to play a critical
	role in regulation of the unfolded protein response,
	was not deleted (9). Delete all tRNA introns precisely.
	These are individually nonessential and
	were deleted with their host introns.
Intronically embedded snoRNAs	They could be "refactored" by
	insertion into the array of snoRNAs on chr II.

	WT size	SYN size	No. of stop codon swaps	No. of loxP sites added	bp of PCRTag recoded	bp of RE sites recoded	No. of tRNA deleted	bp of tRNA deleted	bp of repeats deleted
chr01	230208	181030	19	62	3535	210	4	372	3987
chr02	813184	770035	93	271	13651	1215	13	993	7030
chr03	316617	272195	44	100	5272	250	10	794	7358
chr04	1531933	1454671	183	479	25398	2298	28	2261	11674
chr05	576874	536024	61	174	8760	813	20	1471	11181
chr06	270148	242745	30	69	4553	369	10	835	9297
chr07	1090940	1028952	126	380	17910	1572	36	2887	13284
chr08	562643	506705	61	186	9980	714	11	878	19019
chr09	439885	405513	54	142	7943	436	10	736	11632
chr10	745751	707459	85	249	12582	1102	24	1853	7523
chr11	666816	659617	68	199	11769	1017	15	1243	4214
chr12	1078177	999406	122	291	15129	1539	19	1646	10843
chr13	924431	883749	100	337	15911	0	21	1691	7673
chr14	784333	753096	96	260	13329	1113	14	1152	5115
chr15	1091291	1048343	147	399	18015	2058	20	1612	9542
chr16	948066	902994	127	334	15493	1374	17	1338	10048
Total	12071297	11352534	1416	3932	199230	16080	272	21762	149420

Let's end the lectures on a fun note, with some speculative near-future synthetic biology experiments

Science fiction? or not? You be the judge!

