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Functional genomics

= field that attempts to use the vast data produced by
genomic projects (e.g. genome sequencing projects)
to describe gene (and protein) functions and
interactions.

Focuses on dynamic aspects, e.g. transcription,
translation, and protein—protein interactions, as
opposed to static aspects of the genome such as DNA
sequence or structures.

Adapted from Wikipedig




Functional genomics
+

Data mining

= field that attempts to computationally discover
patterns in large data sets

Adapted from Wikipedig

Functional genomics
+

Data mining
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We’re going to first learn
about clustering algorithms
& classifiers

We’re going to first learn
about clustering algorithms
& classifiers

Clustering = task of grouping a set of objects in such a
way that objects in the same group (a cluster) are more
similar (in some sense) to each other than to those in
other groups (clusters).

Adapted from Wikipedig




We’re going to first learn
about clustering algorithms
& classifiers

Classification = task of categorizing a new observation,
on the basis of a training set of data with observations
(or instances) whose categories are known

Adapted from Wikipedig

Let’s motivate this with an important
historical example:

Distinct types of diffuse large
B-cell lymphoma identified
by gene expression profiling

Ash A. Alizadeh'?, Michael B. Eisen>**, R. Eric Davis®, Chi Ma®, Izidore S. Lossos®, Andreas Rosenwald®, Jennifer C. Boldrick',
Hajeer Sabet®, Truc Tran®, Xin Yu®, John I. Powell’, Liming Yang’, Gerald E. Marti®, Troy Moore®, James Hudson Jr°, Lisheng Lu'’,
David B. Lewis'®, Robert Tibshirani'', Gavin Sherlock®, Wing C. Chan'?, Timothy C. Greiner'?, Dennis D. Weisenburger'?,

James 0. Anniiaqe", Roger Warnke'®, Ronald Levy®, Wyndham Wilson'®, Michael R. Grever'®, John C. Byrd'”, David Botstein®,
Patrick 0. Brown''® & Louis M. Staudt®

Nature 2000




“Diffuse large B-cell lymphoma (DLBCL), the most
common subtype of non-Hodgkin's lymphoma ... is
one disease in which attempts to define subgroups on
the basis of morphology have largely failed...”

“DLBCL ... is clinically heterogeneous:

40% of patients respond well to current therapy and
have prolonged survival, whereas the remainder
succumb to the disease.

We proposed that this variability in natural history
reflects unrecognized molecular heterogeneity in the
tumours.”

Nature 2000

Blast from the past: Profiling mRNA
expression with DNA microarrays

DNA molecules are attached to ...probed with a labeled (usually
a solid substrate, then... fluorescent) DNA sequence

* /

labelled target (sample)
fixed probes *

J

different features
(e.g. bind different genes)

Fully complementary Partially complementary
strands bind strongly strands bind weakly

Wikipedia




Blast from the past: Profiling mRNA
expression with DNA microarrays
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Blast from the past: Profiling mRNA

expression with DNA microarrays
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DNA microarrays are a great example of
the “arc” of a technology over time

DNA microarrays

RNA sequencing

Worldwide Google trends, 2004-present

Back to diffuse large B-cell ymphoma...

96 patient biopsies
(normal and malignant lymphocyte samples)

v

Extract mRNA from each sample

v
Perform DNA microarray experiment on each to
measure mRNA abundances (~1.8 million total gene
expression measurements)

Cluster samples by their expression patterns

Nature 2000
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We can break up the DLBCL’s according the
germinal B-cell specific gene expression:

GC B-like DLBCL Activated B-like DLBCL
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What good is this? These molecular
phenotypes predict clinical survival.
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Kaplan-Meier plot
of patient survival
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What good is this? These molecular
phenotypes predict clinical survival.
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Grouping patients by clinical prognostic index Regrouping low risk patients by gene expression

Nature 2000

Gene expression, and other molecular
measurements, provide far deeper
phenotypes for cells, tissues, and
organisms than traditional measurements

These sorts of observations have now
motivated tons of work using these
approaches to diagnose specific forms of
disease, as well as to discover functions of
genes and many other applications
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So, how does clustering work?

First, let’s think about the data, e.g. as for gene expression.
From one sample, using DNA microarrays or RNA-seq, we get:

N genes

Expression level of gene 1
4 | Expression level of gene 2

Expression level of gene 3 i.e., a vector of

Expression level of gene i

Expression level of gene N

N numbers

For yeast, N~ 6,000
For human, N ~ 22,000

So, how does clustering work?

Every additional sample adds another column, giving us a matrix

N genes

of data:
M samples
Gene 1, sample 1 Gene 1,samplej | .. | Gene 1, sample M
Gene 2, sample 1 Gene 2,samplej | ... | Gene 2, sample M
Gene 3, sample 1 Gene 3,samplej | ... | Gene 3,sample M
Gene i, sample 1 Gene i, sample ... | Genei, sample M
Gene N, sample 1 Gene N, samplej | .. | Gene N, sample M

For yeast, N~ 6,000
For human, N ~ 22,000

i.e., a matrix of N
X M numbers
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So, how does clustering work?

M samples

a2

v

Gene 2,sample 1

l Gene 1,samplel | ... | Gene 1,samplej | .. | Gene 1, sample M ||

Gene 2, samplej

Gene 2, sample M

Every gene has a feature vector
of M numbers associated with it

Gene s, sample 1

Gene N, sample 1

M

—
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Gene N, sample M

N genes

So, how does clustering work?

M samples
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G

Slmllarly, every
sample has a feature
vector of N numbers

associated with it

Gene N, sample 1

Gene N, sample j
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Gene i, sample M

Gene N, sample M
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So, how does clustering work?

M. sanmnlas

The first clustering method we’ll learn
about simply groups the objects
(samples or genes) in a hierarchy by the
similarity of their feature vectors.

Gene N,sample 1| ... | Gene N, sample

Gene N, sample M

A hierarchical clustering algorithm

Start with each object in its own cluster

Until there is only one cluster left, repeat:
Among the current clusters, find the two

most similar clusters

Merge those two clusters into one

We can choose our measure of similarity
and how we merge the clusters

13



Hierarchical clustering

Conceptually
© @ @ @ (= (D
) \
—_— @
® @ o
Da?points o%X-Y plane @@ Dendrogram

(grouped by closeness)

Wikipedia

We'll need to measure the similarity
between feature vectors. Here are a few
(of many) common distance measures
used in clustering.

Names Formula
Euclidean distance |la — b2 = Z(ai — b)?
i
Manhattan distance lla—bll: =) |ai — b
a-b

cosine similarity

llelllo]

Wikipedia
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Back to the
B cell
Iymphoma Samples IPanBceII
example
Hierarchical clustering
Similarity measure = Pearson correlation oo 6 con

coefficient between gene expression vectors

Similarity between clusters = average similarity
between individual elements of each cluster

(also called average linkage clustering) h node

0.250 0.500 1.000 2,000 «oodNature 2000

K-means clustering is a common

alternative clustering approach
*mainly because it’s easy and can be quite fast!*

The basic algorithm:

1. Pick a number (k) of cluster centers

2. Assign each gene to its nearest cluster center

3. Move each cluster center to the mean of its
assigned genes

4. Repeat steps 2 & 3 until convergence

See the K-means example posted on the web site

15



A 2-dimensional example

Experiment 1 Experlr\nent 2

_______

Experiment 2

Experiment 1

Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example: hierarchical

Nature Biotech 23(12):1499-1501 (2005)
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A 2-dimensional example: k-means

Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example: k-means

. i
Decision boundaries|i. « * *I

Nature Biotech 23(12):1499-1501 (2005)
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Some features of K-means clustering

* Depending on how you seed the clusters, it may
be stochastic. You may not get the same answer
every time you run it.

e Every data point ends up in exactly 1 cluster

(so-called hard clustering)
* Not necessarily obvious how to choose k

* Great example of something we’ve seen already:

Expectation-Maximization (E-M) algorithms

EM algorithms alternate between assigning data to
models (here, assigning points to clusters) and
updating the models (calculating new centroids)

Some features of K-means clustering

* Depending on how you seed the clusters, it may
be stochastic. You may not get the same answer
every time you run it.

. Gvery data point ends up in exactly 1 cIusteD

(so-called hard clustering)
* Not necessarily obviols how to choose k
. n:

Let’s think about this aspect for a minute.
Why is this good or bad?

EM How could we change it? A to
ma

up
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k-means

The basic algorithm:

1. Pick a number (k) of cluster centers

2. Assign each gene to its nearest cluster center

3. Move each cluster center to the mean of its
assigned genes

4. Repeat steps 2 & 3 until convergence

Fuzzy k-means

The basic algorithm:
1. Choose k. Randomly assign cluster centers.
2. Fractionally assign each gene to each cluster:
€.8. occupancy (g,m) = gllgrmiP® Note: ||x|| is just shorthand for the
5 g IgrmiP length of the vector x.

i g;=genei
m; = centroid of cluster j

3. For each cluster, calculate weighted mean of
genes to update cluster centroid
4. Repeat steps 2 & 3 until convergence

19



k-means - - ¥ - Fuzzy k-means
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A fun clustering strategy that builds on
these ideas: Self-organizing maps (SOMs)

- Combination of clustering & visualization
- Invented by Teuvo Kohonen, also called
Kohonen maps \ -

Dr. Eng., Emeritus
Professor of the
Academy of Finland;
Academician
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A fun clustering strategy that builds on
these ideas: Self-organizing maps (SOMs)

SOMs have:
your data (points in some high-dimensional space)
a grid of nodes, each node also linked to a point someplace in data space

1. First, SOM nodes are arbitrarily positioned in data space. Then:

2. Choose a training data point. Find the node closest to that point.

3. Move its position closer to the training data point.

4. Move its grid neighbors closer too, to a lesser extent.

Repeat 2-4. After many iterations, the grid approximates the data distribution.

SOM grid
AN
Data points

single
observation Wikipedia

Here’s an example using colors. Each color has an RGB vector. Take a bunch of
random colors and organize them into a map of similar colors:

Each node is Map consisting of 7 x 11 map units or nodes

associated
with a model
vector, mj R AN AN
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Kybernetes 34(1/2): 40-53 (2005)
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Iteratively test new colors, update the map using some rule

weight Node neighborhood
Y Y
my(t + 1) = m;(f) + a(O)[x(t) — m(t)] for each i€ N(b),

VoA f

Updated Starting  Difference

node node from
vector vector data
vector
The weight and
node
neighborhoods

shrink with time
(iterations)

Kybernetes 34(1/2): 40-53 (2005)

Over time, the map self-
organizes to show
clusters of like colors.

http://www.generations.org/content/2004/
kohonenApplications.asp

http://users.ics.aalto fi/tho/thesis/

A SOM of U.S. Congress voting patterns

Red = yes votes
Blue = no votes

BroadcastDecencyEnforce | ClassActionFaimessAct || C

Republicans

Democrats

| - e ]
006 1.00/ 0.00 1.00{ 0.03 1.00 0.00
ProtectionofLawfulComme | ReallDAct i

. -
1.00(0.00
USAPATRIOTandT:

Wikipedia
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SOM of Wikipedia (from Wikipedia, naturally)
(data = wiki article word frequency vectors)
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SOMs can accommodate unusual data distributions

One-dimensional SOM _
Data points

Variance
Method unexplaine
PCA 23.23%
° SOM 6.86%

° ¥y
% o
%
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Wikipedia
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Finally, t-SNE is a nice way to visualize data in 2 or 3D
= t-distributed stochastic neighbor embedding

t-SNE tries to reproduce high-D data neighborhoods in a 2D or 3D picture by:

1. Defining a probability distribution over pairs of high-D objects such that
“similar” objects have a high probability of being picked, whilst “dissimilar”
objects have an extremely small probability of being picked

2. Defining a similar probability distribution over the points in the low- D map

3. Minimizing the Kullback—Leibler divergence between the two distributions
by varying the locations of the points in the low-D map, i.e.

minimize this: Dij probability /i and j are close in high-D space
> pijlog—

it qij < probability j and j are close in low-D space

Sum over all pairs of points

van der Maaten & Hinton, Visualizing High-Dimensional Data Using t-SNE.
Journal of Machine Learning Research 9: 2579-2605 (Nov 2008)

Separating cells into cell types by t-SNE
- healthy human bone marrow, stained with 13 markers and measured by
mass cytometry, visualized with viSNE

CD4 T cells CD8 T cells
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g
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Not manually gated @ CD4 T cells & CD8 T cells
@ CD20" B cells CD20" B cells @ CD11b™ monocytes The colors correspond to how an expert

#CD11b* NK cells « »
menocytes \/ would “gate” the cytometer

Amir et al., Nature Biotechnology 31:545-552 (2013)




You can compute your own t-SNE embeddings
using the online tools at:
http://projector.tensorflow.org/

There are also some great examples at:
http://distill.pub/2016/misread-tsne/

There are only a couple of parameters you can tweak, mainly perplexity,
which effectively captures the number of neighbors (often 5 to 50)

27



