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Abstract

Background: Organisms simplify the orchestration of gene expression by coregulating genes
whose products function together in the cell. Many proteins serve different roles depending on the
demands of the organism, and therefore the corresponding genes are often coexpressed with
different groups of genes under different situations. This poses a challenge in analyzing whole-
genome expression data, because many genes will be similarly expressed to multiple, distinct
groups of genes. Because most commonly used analytical methods cannot appropriately represent
these relationships, the connections between conditionally coregulated genes are often missed. 

Results: We used a heuristically modified version of fuzzy k-means clustering to identify
overlapping clusters of yeast genes based on published gene-expression data following the
response of yeast cells to environmental changes. We have validated the method by identifying
groups of functionally related and coregulated genes, and in the process we have uncovered new
correlations between yeast genes and between the experimental conditions based on similarities
in gene-expression patterns. To investigate the regulation of gene expression, we correlated the
clusters with known transcription factor binding sites present in the genes’ promoters. These
results give insights into the mechanism of the regulation of gene expression in yeast cells
responding to environmental changes.

Conclusions: Fuzzy k-means clustering is a useful analytical tool for extracting biological insights
from gene-expression data. Our analysis presented here suggests that a prevalent theme in the
regulation of yeast gene expression is the condition-specific coregulation of overlapping sets
of genes.
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Background 
All organisms possess an essentially fixed repertoire of pro-

teins determined by their genome sequence. They have

evolved to survive varying internal and external environ-

ments by carefully controlling the abundance and activity of

these proteins to suit their conditions. To simplify this task,

genes whose products function together are often under

common regulatory control such that they are coordinately

expressed under the appropriate conditions. This property

has been frequently exploited in the analysis of genome-wide

expression data, as the experimental observation that a set

of genes is coexpressed frequently implies that the genes

share a biological function and are under common regula-

tory control [1]. Many proteins have multiple roles in the
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cell, however, and act with distinct sets of cooperating pro-

teins to fulfill each role. Their genes are therefore coex-

pressed with different groups of genes, each governed by a

distinct regulatory mechanism, in response to the varying

demands of the cell (Figure 1a). This complicates the analy-

sis of expression data and calls for a more nuanced approach

to data analysis.

The yeast Saccharomyces cerevisiae evolved in a niche in

which the availability of nutrients and the conditions of

growth vary constantly, and it possesses sophisticated mech-

anisms to choreograph the expression of its approximately

6,000 genes in order to thrive - or at least survive - in a wide

range of environmental conditions. These responses are gov-

erned by a complex, condition-specific regulatory system

that transduces information through the cell to the nucleus,

where gene expression is adjusted accordingly. Many of the

individual components of this regulatory system function

under particular conditions and govern the expression of

overlapping sets of gene targets, allowing a given gene to be

coexpressed with different gene groups in response to differ-

ent conditions (Figure 1a). As a consequence, the targets of

each regulatory system often display similar expression pat-

terns in response to one set of conditions but divergent pat-

terns under other situations (Figure 1b). For example, the

known targets of the oxidative stress-responsive transcrip-

tion factor Yap1p are coordinately induced in response to

conditions that inflict oxidative damage, but these genes are

divergently expressed in response to other environmental

changes (Figure 1c) [2]. Similarly, the known targets of other

transcription factors in yeast (including Aft1p, Zap1p, Pho4p,

Hac1p, Hsf1p, and others) are similarly expressed only in

response to certain environments [2-6].

The complexity of the regulatory network that governs yeast

gene expression complicates the analysis of whole-genome

expression data. Because of the connection between gene-

expression regulation and gene product function, computa-

tional analysis of expression data is used extensively to

identify groups of similarly expressed genes. However, the

central limitation of most of the commonly used algorithms is

that they are unable to identify genes whose expression is

similar to multiple, distinct gene groups, thereby masking the

relationships between genes that are coregulated with differ-

ent groups of genes in response to different conditions. Con-

sider, for example, k-means clustering [7,8]. The k-means

algorithm partitions genes into a defined set of discrete clus-

ters, attempting to maximize the expression similarity of the

genes in each cluster (Figure 2a). The algorithm is initiated by

randomly partitioning the genes into k groups. Each group is

then represented by a ‘centroid’ (the mean expression pattern

of genes in the group), and the genes are repartitioned to the

cluster whose centroid is most similar to their expression

pattern. The partitioning process is iterated until the gene

partitions are stable (or some other stopping criterion is met).

The end result of the algorithm is a set of k clusters of

similarly expressed genes. However, a key property of this

algorithm (and many others like it) is that each gene is

assigned to one and only one cluster, obscuring the relation-

ships between conditionally coregulated genes such as those

shown in Figure 1. This limitation is especially problematic

when analyzing large gene-expression datasets that are col-

lected over many experimental conditions, when many of the

genes are likely to be similarly expressed with different groups

in response to different subsets of the experiments. A number

of methods have been developed to deal with complex rela-

tionships between objects [9-11]. Here, we explore the utility

of one such method - fuzzy k-means clustering.

Fuzzy k-means clustering [12] facilitates the identification of

overlapping groups of objects by allowing the objects to

belong to more than one group. The essential difference

between fuzzy k-means clustering and standard k-means

clustering is the partitioning of genes into each group

(Figure 2b). Rather than the hard partitioning of standard

k-means clustering, where genes belong to only a single

cluster, fuzzy k-means clustering considers each gene to be a

member of every cluster, with a variable degree of ‘member-

ship’. Each gene has a total membership of 1.0 that is appor-

tioned to clusters on the basis of the similarity between the

gene’s expression pattern and that of each cluster centroid.

Genes whose expression patterns are very similar to a given

centroid will be assigned a high membership in that cluster,

whereas genes that bear little similarity to the centroid will

have a low membership. Importantly, genes can be assigned

significant memberships to more than one cluster, thus

revealing genes whose expression is similar to multiple, dis-

tinct groups of genes. 

We implemented a heuristic variant of fuzzy k-means clus-

tering that incorporated principal component analysis (PCA)

and hierarchical clustering to analyze published yeast

genomic expression data that followed the response of cells

to different environments. The method successfully identi-

fied clusters of functionally related genes and more compre-

hensive groups of known transcription factor targets in

yeast. In the process of this analysis, we identified previously

unrecognized similarities in the expression of yeast genes

and uncovered correlations between the environmental con-

ditions. We explored the regulation of gene expression by

correlating the identified clusters with known regulatory ele-

ments present in the genes’ promoters. These details impli-

cate mechanisms that yeast cells use to orchestrate genomic

expression programs in response to variable conditions. 

Results 
Fuzzy k-means clustering overview 
We implemented a version of the fuzzy k-means algorithm,

based on a description by Gath and Geva [13], in a C++

program called FuzzyK (available at [14]; see Materials and

Methods for complete details). We altered the algorithm in
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Figure 1
Many yeast genes are conditionally coregulated. (a) A Venn diagram representing hypothetical genes that are coregulated by transcription factor A (TF
A) in response to condition a, transcription factor B (TF B) in response to condition b, or transcription factor C (TF C) in response to condition c. The
regions of overlap in the diagram represent genes that are conditionally coregulated with each respective group of genes (for example, gene 4).
(b) Hypothetical gene-expression patterns for four representative genes in groups from (a) show that the expression pattern for gene 4 has similarities
to the expression patterns of each of the other genes. For this and other diagrams, gene-expression data are represented in a colorized, tabular format
in which each row indicates the relative transcript abundance for a given gene, and each column represents the relative transcript abundance for many
genes as measured in one experiment. A red square indicates that a gene was induced in response to the condition listed, a green square indicates that a
gene was repressed under those conditions, a black square indicates that there was no detectable change in expression, and a gray square represents
missing data. (c) The gene-expression patterns of around 40 of the 70 known Yap1p targets are shown, as the genes appear in the complete,
hierarchically clustered dataset. Because these genes were coordinately induced in response to only subsets of the conditions shown here (labeled in
red), the entire set of Yap1p targets was assigned to multiple hierarchical clusters, the largest of which are shown here. The remaining Yap1p targets
were assigned to other hierarchical clusters and are not shown in this display. The colored triangles above the figure represent the microarray time
courses that measured the changes in transcript abundance in response to zinc or phosphate limitation (Zn Pho), treatment with methylmethane
sulfonate (MMS), ionizing radiation (IR), heat shock (HS), hydrogen peroxide (H2O2), menadione (MD), dithiothreitol (DTT), diamide (DI), sorbitol
(SORB), amino-acid starvation (AA starv), nitrogen starvation (N starv), and progression into stationary phase (STAT). Steady-state gene expression was
also measured for cells growing on alternative carbon sources (C sources), indicated by the purple rectangle. See text for references. 
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two fundamental ways: first, we performed three successive

cycles of fuzzy k-means clustering, with the second and third

rounds of clustering performed on subsets of the data.

Second, because the random initialization commonly used in

k-means clustering can have a profound impact on the

results [15], we instead chose to initialize each clustering

cycle by seeding prototype centroids with the eigen vectors

identified by PCA of the respective dataset (see below). Here

we present an overview of the algorithm, followed by a dis-

cussion of the parameter optimization.

The input of the program is a table of expression values,

where each row represents a given gene’s relative transcript

abundance under the condition indicated in each column

(Figure 3). The first round of clustering is initialized by

defining k/3 prototype centroids (where k is the total

number of clusters and 3 is the number of clustering cycles)

as the most informative k/3 eigen vectors identified by PCA

of the input dataset (see Materials and methods). The proto-

type centroids are refined in the subsequent steps: each gene

is assigned a membership score to each of the prototype cen-

troids, based on the Pearson correlation between the gene’s

expression pattern and the centroid in question. Each of the

centroid patterns is then recalculated as the weighted mean

of all of the gene-expression patterns in the dataset, where

each gene’s weight is proportionate to its membership in the

corresponding cluster (see Materials and methods for details

regarding the calculations). Genes that have a large member-

ship to a given centroid will contribute more to the mean,

and the new centroid will migrate in the direction of those

genes. The process of calculating gene-centroid member-

ships and updating the centroids is iterated until the cen-

troid patterns become fixed (or until the termination

criterion is met, as described in Materials and methods). 

After this initial round of fuzzy clustering, duplicate cen-

troids (pairs whose Pearson correlation is greater than 0.9)

are averaged, and genes with a greater than 0.7 correlation

to any of the identified centroids are removed from the

dataset (see Materials and methods). The fuzzy k-means

clustering steps described above are repeated on this smaller

4 Genome Biology Vol 3 No 11 Gasch and Eisen
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Figure 2
Comparison of k-means and fuzzy k-means clustering. Genes are
represented as points in space, where genes that are similarly expressed
are close together. (a) An overview of standard k-means clustering.
(1) The process is initiated by randomly partitioning the genes (small
circles) into three groups, indicated by the three colors. (2) The average
expression profile of each group of genes is calculated as the centroid
(large circles), and the genes are reassigned to the centroid to which they
are closest. (4-6) Steps 2 and 3 are iterated until the centroids are stable,
at which point the genes are assigned to the cluster to which they are
most similar. (b) An overview of fuzzy k-means clustering. (1) The
process is initiated by seeding each centroid with an eigen vector
identified by PCA, as shown here for one centroid (large circle). (2) For a
given centroid, the membership of each gene is calculated from the
distance (or similarity) between each gene-expression pattern and the
centroid. (3) A new centroid is calculated as the weighted average of all of
the gene-expression patterns in the dataset, where each gene’s weight is
proportionate to its membership in the cluster. Genes that are closer to
the centroid will contribute more to the cluster mean; therefore the
centroid position migrates toward those genes. (4-6) The process is
iterated until convergence, and the membership of each gene in each
cluster is calculated (as shown here for one cluster).



dataset to identify patterns missed in the first clustering

cycle, and the new centroids are added to the set identified

in the first round. The process of averaging replicated cen-

troids and selecting a data subset is repeated, and a third

cycle of clustering is performed on the subset of genes with a

correlation of less than 0.7 to any of the existing centroids.

The newly identified centroids are combined with the previ-

ous sets, and replicate centroids are averaged.

In the final step of the program, the membership of each

gene to each centroid is calculated. Thus, the output of the

algorithm is twofold: the method presents a list of the
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Figure 3
Overview of the FuzzyK method. Genes are represented as points in space, where genes that are similarly expressed are close together. (a) In the first
fuzzy-clustering cycle, k/3 centroids are defined as the most informative k/3 eigen vectors identified by PCA of the input dataset (large colored circles).
(b) The centroids are refined by iteratively calculating the gene-cluster memberships and updating the centroid positions until convergence (see
Figure 2b). (c,d) Genes that are correlated >0.7 to the identified centroids are removed from the dataset, gene and array weights are recalculated, and
the entire fuzzy k-means clustering process is repeated on the data subset for an additional k/3 clusters (see Materials and methods for details).
(e,f) Steps c and d are repeated for a third round of fuzzy clustering. (g) The output of the algorithm is a list of unique centroids and a table of gene-
cluster memberships.
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unique centroids identified in the fuzzy clustering cycles

along with a matrix representing the final membership

scores for each gene to each centroid. In this representation,

each gene can be related to all the identified clusters through

its membership value, allowing genes that belong signifi-

cantly to multiple clusters to be realized. As a consequence,

each cluster consists of a continuous list of all of the genes in

the dataset, ranked according to decreasing membership. 

The continuous clusters identified by fuzzy k-means cluster-

ing present a challenge in visualizing the clustering results.

To this end, we have developed the program FuzzyExplorer, a

PERL viewer based on the program GeneExplorer (developed

by Christian Rees; C. Rees, P.O. Brown and D. Botstein,

unpublished results). Using this software, the genes that

belong significantly to each cluster can be identified and visu-

alized by applying a membership cutoff: all genes whose

membership is greater than the cutoff will be selected as part

of the cluster and their gene-expression patterns will be dis-

played. Rather than define a single cutoff for each cluster, the

visualization software applies a sliding membership cutoff to

select the genes, allowing each cluster to be expanded or col-

lapsed in terms of the number of genes selected. This flexibil-

ity allows the user to define the appropriate membership

cutoff for each cluster. For example, at a very high member-

ship cutoff, most of the genes in each cluster will have highly

correlated expression patterns in all of the experiments and

will be closely related in terms of function and regulation. As

the membership cutoff decreases, additional genes will be

assigned to each cluster group: in many cases, the similarity

in the expression of the selected genes will exist over only a

subset of the microarray experiments, promoting the identifi-

cation of conditionally coregulated genes or genes whose

products are more peripherally associated with the same cel-

lular processes (see below). The appropriate membership

cutoff will vary for each cluster and for the desired results,

and selecting meaningful cutoffs can be guided by additional

information (see Discussion). For many of the clusters dis-

cussed below, the membership cutoffs were empirically

chosen to select genes that had coherent gene expression pat-

terns over a given subset of the experiments.

Optimization of fuzzy clustering parameters 
The parameters used for the fuzzy clustering were empiri-

cally defined for the analysis of yeast genomic expression

data. The parameters were optimized to maximally recover

clusters identified by hierarchical clustering: these were

defined as all hierarchical gene clusters that had a Pearson

correlation greater than 0.7 (see Materials and methods); in

essence, these clusters served as positive controls. We also

assessed the ability of the fuzzy k-means algorithm to iden-

tify groups of genes with coherent expression patterns, sets

of genes whose products are functionally related, and clus-

ters of known transcription factor targets. A summary of the

parameter optimization is discussed below, with additional

information available at [14].

Clustering cycles 
We found that performing three clustering cycles, with the

second and third cycles performed on subsets of the data as

described in Materials and methods, maximized the recovery

of the clusters identified through hierarchical clustering.

Performing three cycles to identify k = 100 centroids recov-

ered 79% of the known clusters in the dataset, compared to

the case when the clustering was carried out in one round

using identical parameters and seed vectors, for which 64%

of the known clusters were identified (see [14]). Performing

more than three rounds of clustering did not identify addi-

tional known clusters in the dataset, nor did it lead to the

increased identification of large clusters of coherently

expressed genes (data not shown). We therefore imple-

mented three cycles of clustering, although more sophisti-

cated methods of determining the optimal number of cycles

can be envisioned. 

Defining k 
A significant challenge in partitioning-clustering techniques

is defining the number of clusters, k [15]. With standard

implementations of the k-means algorithm, underestimating

k will result in large clusters of many genes that display

divergent gene-expression patterns, while overestimating k

will over-fit the data and split groups of similarly expressed

genes into multiple, small clusters. Because of the depen-

dence of k-means clustering on k, a number of methods have

been developed to estimate this parameter [16,17]. In con-

trast, fuzzy k-means clustering appears to be less sensitive to

over-fitting, because the genes are not forced to belong to

only a single cluster. For example, performing the clustering

with k = 300 added only approximately 30 unique centroids

relative to when the clustering was performed with k = 120,

and otherwise-identical parameters (see [14]). The relatively

small number of centroids added when k was increased to

300 was largely due to the fact that the program identified

many more replicates of centroids, which were consequently

removed from the final set. Of the approximately 30 added

centroids, most appeared to represent local minima, as they

were centroids that were poorly reproduced in bootstrapping

experiments (see Materials and methods) and identified few

genes that had coherent patterns of expression (data not

shown). Nonetheless, the addition of these patterns did not

significantly affect the relative memberships of genes to the

other centroids (data not shown), indicating that overesti-

mating k did not appreciably affect the clustering results.

This presents a significant advantage over standard k-means

clustering as it reduces the requirement of accurately esti-

mating k by allowing this parameter to be overestimated. 

Initialization 
We examined a number of different initialization methods

(data not shown) and found that seeding prototype centroids

with the eigen vectors identified by PCA performed opti-

mally. Together, the eigen vectors describe the variation in

the gene-expression dataset, and therefore seeding the

6 Genome Biology Vol 3 No 11 Gasch and Eisen



centroids with these vectors provides a systematic method of

sampling the data space. In addition, this protocol produces

deterministic clustering results, in contrast to the random

initialization method commonly implemented in k-means

clustering. One potential drawback of this method is that the

number of clusters, k, is limited to the number of eigen

vectors (which is determined by the number of microarray

experiments analyzed). This limitation is alleviated by per-

forming successive cycles of fuzzy k-means clustering on

subsets of the data and recalculating the eigen vectors for the

respective dataset used in each cycle. In addition, the clus-

tering protocol can incorporate user-defined vectors to seed

any number of additional centroids.

Many of the eigen vectors identified by PCA seemed to

contain little information about the dataset, as previously

noted for this type of analysis [18,19]. Nonetheless, most of

the eigen vectors diverged to different gene-expression pat-

terns within 10-15 iterations. The final centroids identified

by the fuzzy clustering method showed little dependence on

the eigen vectors used to seed the process, as evidenced by

bootstrapping analysis. More than 50% of the final centroids

were identified in 90% of the bootstrapping trials in which

PCA was performed on a random sample of the data, despite

the fact the most of the eigen vectors were significantly dif-

ferent in each trial (see Materials and methods). Most of the

final centroids bore little similarity to the eigen vectors used

to initialize the process, with less than 5% of final centroids

similar to any of the eigen vectors with a Pearson correlation

greater than 0.7.

Data context 
Similarly to standard k-means clustering, the results of the

fuzzy k-means method were affected by the data context.

This was evident by the fact that the recovery of known clus-

ters was enhanced by performing successive rounds of clus-

tering on data subsets, as described above. In addition, the

algorithm performed slightly better on an input dataset that

consisted of the subset of yeast genes that showed differen-

tial expression patterns, as opposed to the entire gene-

expression dataset. As the input dataset for the clustering

process, we empirically selected genes whose standard devi-

ation of expression was greater than around 1.4 (log20.45)

from each gene’s expression mean, amounting to approxi-

mately 4,400 out of the approximately 6,200 genes. The

algorithm performed equally well on input datasets selected

by other criteria of differential expression (data not shown).

Performing the clustering on data subsets posed no limita-

tion to the method, because at the end of the procedure all

genes in the complete dataset were assigned membership

values to the superset of identified centroids. 

Fuzzy clustering of yeast genomic expression data 
We applied the modified fuzzy k-means algorithm to the analy-

sis of 93 published microarray experiments, each measuring

the changes in transcript abundance of the approximately

6,200 predicted yeast genes as cells responded to zinc star-

vation [4], phosphate limitation [5], DNA-damaging agents

[20], and a variety of other stressful environmental condi-

tions [2]. Because the algorithm was not significantly

affected by overestimating k (described above), we approxi-

mated k to be roughly double the number of expected clus-

ters in the dataset (defined as the number of clusters

identified by hierarchical clustering). Using k = 120 and the

parameters described in Materials and methods, the algo-

rithm identified 91 unique centroids (Figure 4a; the com-

plete results can be viewed at [14]). More than half of these

centroids were correlated more than 0.7 to the cluster means

identified by hierarchical clustering of the data, accounting

for 87% (46/53) of all of the known clusters in the dataset.

Fuzzy clustering identified previously unrecognized gene clusters 
The fuzzy clustering method was also able to identify clus-

ters of genes that were not identified by hierarchical or

standard k-means clustering. For example, one centroid

(cluster 61, Figure 5a and see [14]) represented genes that

were strongly repressed in response to prolonged nitrogen

starvation but induced by treatment with the sulfhydryl-

rearranging drugs dithiothreitol (DTT) and diamide. Six of

the eight characterized genes within the top 20 genes in

this cluster encode proteins that are localized to or func-

tion in relation to the cell wall, including those involved in

bud growth and cell separation (AXL2, CIS3, SIM1), cell-

wall proteins induced by antifungal drugs (SVS1, PRY2,

PRY4, CRH1, TOS6), a putative cell-wall sensor (WSC2),

and a Golgi mannose transporter required for glycosylation

of cell-wall proteins (VRG4) (see [21] for references).

Given the similarity in the expression of these genes, many

of the uncharacterized genes may also be involved in

processes related to the cell wall. In fact, nearly 70% of all

of the genes in this group encode proteins predicted to

contain signal peptides (including nine of the twelve char-

acterized genes and five of the eight uncharacterized genes

in the group; data not shown [22]), supporting the notion

that these proteins are secreted to the cell surface. Extend-

ing this group to the top 100 genes in the cluster identified

many more similarly expressed genes that are functionally

related. In addition to the genes involved in cell wall

biosynthesis, which accounted for 30% of the characterized

genes selected in this group, an additional 30% of the char-

acterized genes encode proteins involved in protein glyco-

sylation and secretion, while the remaining genes are

involved in protein synthesis, cytoskeletal functions, and

sterol and lipid biogenesis, all of which can be related to

cell-wall and membrane synthesis. Most of the genes that

had high memberships in this cluster did not fall into a dis-

crete cluster when the data were analyzed with other clus-

tering algorithms: the top 20 genes associated with this

group were distributed into five different clusters when the

data were organized by hierarchical clustering and four

clusters using k-means clustering (see Materials and

methods). This example demonstrates the utility of our
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Figure 4
Fuzzy clustering of yeast genomic expression data. (a) Each row in this diagram represents one of the 91 centroids identified by fuzzy k-means clustering.
The data representation is the same as described in Figure 1. (b) Genes were assigned to each of the centroids shown in (a) using a membership cutoff
of 0.08, as described in the text. Each cluster of selected genes is separated by a horizontal gray line. Examples of functionally related clusters of genes
are indicated by numbers to the right of (b): cluster 2, amino-acid biosynthesis genes; cluster 7, genes induced as part of the environmental stress
response; cluster 14, mitochondrial protein synthesis genes; cluster 39, genes involved in nitrogen utilization; cluster 45, oxidative phosphorylation and
respiration components; cluster 53, specific amino-acid transporters; cluster 67, glycolysis genes; cluster 68, proteasome components; cluster 72,
secretion, protein synthesis, and membrane synthesis genes; cluster 73, genes repressed as part of the environmental stress response; cluster 80, amino-
acid biosynthesis genes; cluster 82, G2/M cyclins; cluster 86, histone genes. The complete clustering results can be viewed at [14].
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Figure 5
Gene-cluster assignments based on sliding membership cutoffs. Genes that have membership in clusters 61, 2, 58, and 11 greater than the empirically
derived membership cutoffs of 0.1 (left), 0.06 (middle), or 0.035 (right) are shown. The data representation is the same as that described in Figure 1. The
genes selected in each cluster were hierarchically clustered for display in this figure.
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(a) Cluster 61 Cell-wall and secretion factors
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method in identifying previously unrecognized groups of

functionally related genes.

In addition to identifying new groups of similarly expressed

genes, fuzzy k-means clustering also provided more compre-

hensive clusters of previously recognized groups of function-

ally related genes. In many cases, these genes were similarly

expressed in only a subset of the experiments, a feature that

prevented their association when the data were analyzed

with the other clustering methods. An example of this is a

centroid that represents genes that were strongly induced by

amino-acid starvation (cluster 2 in Figure 5b). Essentially all

of the top seven characterized genes associated with this

cluster function in methionine biosynthesis and showed

similar expression patterns in response to all of the experi-

mental conditions (see [14]). However, as the membership

cutoff was decreased to expand the cluster, additional func-

tionally related genes were included, despite the fact that

these genes were divergently expressed in response to condi-

tions other than amino-acid limitation. Of the characterized

genes within the top 100 genes belonging to this cluster, 64%

(42/66) encode proteins that are directly involved in amino-

acid biosynthesis, while more than half of the remaining

characterized genes are involved in aspects of nitrogen and

carbon metabolism that support amino-acid synthesis. Only

half of these genes fell into the same cluster when the data

were analyzed with hierarchical clustering or k-means clus-

tering (see Materials and methods), while the remaining

genes fell into multiple smaller groups in both cases. 

Many genes were assigned to multiple clusters 
One of the most significant advantages of fuzzy k-means

clustering is that genes can belong to more than one group,

revealing distinct aspects of their function and regulation.

An illustration is provided by the gene KAR2, which encodes

an HSP70 protein-folding chaperone localized to the endo-

plasmic reticulum (ER) that is known to respond to defects

in ER secretion and to unfolded proteins in this organelle

(see [23] for review). Consistent with the known functions of

the protein, KAR2 has significant membership in two clus-

ters. The first (cluster 58 in Figure 5c) includes genes that

were induced by the reducing agent DTT, a condition that

prevents proper disulfide-bond formation and secretion in

the ER [24]. More than 75% (23/31) of the characterized

genes within the top 50 genes in this cluster are localized to

the ER and participate in various aspects of secretion,

including protein folding (KAR2, LHS1, FKB2, JEM1),

protein disulfide isomerization (EUG1, PDI1, ERO1), protein

glycosylation (GFA1, PMT3, PMI40, SEC59, WBP1, OST2),

and forward and retrograde trafficking (ERD2, ERP1, ERP2,

SEC24, SEC13, RET2, RET3, and others [21]). Many of the

uncharacterized genes in this group are likely to be function-

ally related to the characterized genes. In addition, KAR2

also has significant membership in a second cluster (cluster

11 in Figure 5d), which is composed of genes that were

induced following heat shock and diamide treatment.

Roughly 40% (14/36) of the top characterized genes associ-

ated with this group encode protein-folding chaperones

localized to different subcellular regions (including those

that encode the cytosolic Hsp90 and Hsp70 factors, the

mitochondrial Hsp10/Hsp60p and Ssc1p, and the ER- and

mitochondrial-associated Ssa1p), and their induction follow-

ing heat shock and diamide treatment is likely to be in

response to widespread protein unfolding inflicted by these

conditions. That KAR2 clusters with both groups of genes

reflects the dual role of Kar2p in the response to ER-specific

challenges and to conditions that generally destabilize pro-

teins throughout the cell, presumably without affecting other

aspects of secretion. 

The clustering of KAR2 with genes in these two clusters not

only reflects the functional role of the encoded protein but

also corroborates the conditional regulation of KAR2 expres-

sion. In response to defects in ER secretion, KAR2 is known

to be induced by the transcription factor Hac1p as part of the

unfolded protein response (UPR) [25-28]. In fact, nearly all

of the top 50 genes in cluster 58 were shown by Travers et al.

[6] to be induced following DTT treatment in a manner

dependent on Hac1p and its upstream regulator, Ire1p

[6,29,30]. However, unlike most of the genes in cluster 58,

KAR2 is also induced in response to heat shock, along with

the other chaperone genes in cluster 11, by the transcription

factor Hsf1p [31]. Consistently, most of the top genes in this

group, including KAR2, contain multiple Hsf1p-binding sites

in their promoters. The clustering of KAR2 with both clus-

ters of genes therefore reflects the known induction of the

gene by Hac1p as part of the UPR but by Hsf1p following

heat shock.

Many additional yeast genes have significant membership in

more than one of the fuzzy clusters. When the genes were

assigned to all clusters with an empirically defined member-

ship cutoff of 0.06, more than a third of the assigned genes

were placed in more than one group (Table 1); at a slightly

lower cutoff of 0.04, almost two-thirds of all of the assigned

genes were placed into multiple clusters. As with KAR2, the

fuzzy assignment of many of these genes was consistent with

the known roles of the encoded proteins. Genes involved in

histidine biosynthesis (for example HIS4 and HIS5) clus-

tered with other genes involved in amino-acid synthesis

(cluster 2 and cluster 80) but also with genes required for

adenine biogenesis (cluster 1), in agreement with the roles of

these gene products in both histidine and purine metabolism

[32,33]. Genes that encode ER vesicle coat proteins (SEC13,

SEC21, SEC24, COP1, RET2, RET3 and others) were induced

with other ER-specific genes in response to the UPR, as dis-

cussed above for cluster 58, but were also strongly repressed

following long-term nitrogen and carbon starvation, along

with hundreds of other genes that function in diverse aspects

of secretion and protein synthesis (cluster 72). The repres-

sion of these genes coincided with the cellular growth arrest

resulting from the starvation conditions and was likely to be

10 Genome Biology Vol 3 No 11 Gasch and Eisen



triggered by the decreased demand for protein and mem-

brane synthesis in nondividing cells. That these genes belong

to multiple, distinct clusters reflects the condition-specific

roles of the encoded proteins and suggests that their condi-

tional expression with these alternative groups of genes is

triggered by different cellular signals. 

Fuzzy clusters represent gene targets of yeast transcription factors 
Many of the genes that clustered together by fuzzy k-means

clustering are likely to be coregulated at the level of tran-

scription in response to certain environmental conditions.

We explored this possibility by characterizing the enrich-

ment of each fuzzy cluster for genes that contained known

transcription factor binding sites within 800 base-pairs (bp)

upstream of their open reading frames (ORFs). Genes were

assigned to each cluster using an empirically chosen mem-

bership cutoff of 0.06 or 0.08, and the probability of observ-

ing the number of genes in each cluster that contained one

or more copies of each transcription factor binding site was

calculated, based on the hypergeometric distribution (see

Materials and methods). Roughly 25% of the identified fuzzy

clusters were statistically enriched (with P <2 x 10-4) for

genes that contain copies of at least one of 43 different pro-

moter elements, and more than half of these clusters were

enriched for multiple sites (the complete results are avail-

able at [14]). In many cases, the presence of the promoter

elements was consistent with the known regulation of the

genes’ expression (Figure 6). For example, cluster 2 was

enriched for genes that contain binding sites for Gcn4p,

Cbf1p, and Met31/32p. Around 75% of these genes are

known to be induced by Gcn4p in response to amino-acid

limitation and contain the Gcn4p promoter element [34,35].

However, those that are specifically involved in methionine

synthesis also contain the recognition sequences for

Met31/32p and/or Cbf1p, factors that cooperatively regulate

gene expression according to the demand for the products of

this pathway [36-39]. 

At a membership cutoff of 0.08, cluster 45 consisted of many

genes involved in the tricarboxylic acid cycle and oxidative

phosphorylation, and this group was enriched for the

binding site of the Hap2/3/4p complex that is known to reg-

ulate the genes’ expression. At a slightly lower cutoff of 0.06,

additional genes involved in respiration and utilization of

alternative carbon sources were assigned to the cluster,

making the enrichment of the promoter element recognized

by the catabolite repressor Mig1p statistically significant

[40-42]. At both of these membership cutoffs, this cluster

was also highly enriched for the sequence recognized by the

stress-responsive factors Msn2p and Msn4p. These factors

recognize a sequence that is very similar to the Mig1p-

binding site, and it is possible that the enriched sequence

actually represents derivative Mig1p elements. However, a

specific role for Msn2p in the response to glucose starvation

has recently been identified [43], raising the possibility that

the factor is directly involved in regulating these genes.

Another cluster (cluster 73) consists largely of genes that

were sharply repressed in response to environmental

stresses [2,44]. The ribosomal protein genes in this group

are regulated by the factor Rap1p and contain multiple

copies of its binding site within their promoters [45,46],

while other genes in this group contain two putative regula-

tory sequences that have been previously identified as

enriched in the promoters of many of these genes [2,47-50].

In each of these cases, the comprehensive clusters identified

by the fuzzy k-means analysis included additional genes that

were not previously known to be targets of these factors.

Some of the binding-site occurrences shown in Figure 6 are

likely to have occurred by chance (especially for sequences

that are common in the genome, such as the Hap2/3/4p-,

Mig1p-, and Msn2/Msn4p-binding sites). However, the sim-

ilarity between the expression patterns of these genes and

those of the known transcription factor targets, along with

the functional correlation of the gene products and the pres-

ence of the respective binding sites in the genes’ promoters,

strongly suggest that many of these genes are legitimate

targets of these regulators. 

The overlapping clusters identified by fuzzy k-means clus-

tering presented more complete groups of transcription

factor targets compared to other clustering methods,

enhancing the identification of promoter elements enriched

in the clusters and implicating details of the conditional

regulation of gene expression. An example can be seen in a

set of around 15 genes that are induced by Yap1p in

response to oxidative stress, but by the general stress

factors Msn2p and/or Msn4p (Msn2/Msn4p) in response to

other stressful conditions [2]. These genes belonged signifi-

cantly to three different clusters (Figure 6). One cluster

(cluster 7) consisted of around 90 known Msn2/Msn4p

targets and was enriched for genes whose promoters contain

the known Msn2/Msn4p-binding site as well as other C-rich

sequences that are similar to, but distinct from, the

Msn2/Msn4p site (see below). The second cluster that these
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Table 1

Fuzzy assignment of genes to clusters

Membership Number of Number of Percent assigned 
cutoff* genes assigned† genes assigned genes in >1 

to >1 cluster‡ cluster§

0.10 1,341 (22%) 230 (4%) 17%

0.08 1,843 (30%) 334 (5%) 18%

0.06 2,631 (43%) 913 (15%) 35%

0.04 4,233 (69%) 2,719 (44%) 64%

*The membership cutoff listed was used to assign genes to all of the
clusters. †Number and fraction of the total number of genes that were
assigned to any of the 91 clusters described in the text. ‡Number and
fraction of the total number of genes that were assigned to more than
one cluster. §Fraction of the placed genes that were assigned to more
than one group.
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Figure 6 (see the legend on the next page)
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genes belonged to (cluster 4) comprised known Yap1p

targets, most of which contain the Yap1p-binding site within

their promoters. The third cluster (cluster 8) specifically rep-

resented the subgroup of genes that are conditionally regu-

lated by Yap1p or Msn2/Msn4p, and this group was enriched

for both the Yap1p element and the Msn2/Msn4p-binding

site (but not other C-rich sequences). At a lower membership

cutoff, additional genes were assigned to cluster 8 that

showed similar expression patterns and contain both the

Yap1p and Msn2/Msn4p promoter elements, suggesting that

these genes may also be conditionally regulated by the

factors. In contrast to these results, when the data were ana-

lyzed by k-means clustering, these genes could only be

assigned to a cluster of Yap1p targets or a cluster of

Msn2/Msn4p targets, and therefore no group of genes that

was statistically enriched for both of these promoter ele-

ments could be identified (data not shown).

The majority of the clusters identified by fuzzy k-means clus-

tering were not statistically enriched for known transcription

factor binding sites. To identify novel enriched promoter

sequences, we calculated the hypergeometric distribution of

all possible 6-mer sequences in the promoters of the genes

clustered by fuzzy k-means clustering. Almost all the statisti-

cally significant 6-mers represented known transcription

factor binding sites, with the exception of a group of C-rich

sequences with high statistical enrichment in the promoters

of the Msn2/Msn4p targets in cluster 7 (Figure 6). We there-

fore focused our attention on the newly identified group of

cell-wall genes, defined as the top 20 genes in cluster 61.

Although none of the 6-mers met the significance cutoff for

this cluster (P = 10-6), the most significant sequence

(CGCGAA, P = 10-5) was identical to the core binding site of

SBF, a transcription factor complex that regulates cell-cycle-

dependent gene expression at the G1 to S transition [51-53].

In fact, more than two-thirds of these genes were identified

by Iyer et al. [54] as part of a larger set of around 180 genes

whose flanking regions were physically bound by the SBF

complex. However, this set of genes was not coordinately

expressed during cell-cycle progression [54,55], suggesting

that these cell-wall genes may be regulated by a distinct

mechanism in response to environmental conditions. 

To try and identify novel sequences conserved in these pro-

moters, we used the motif-finding algorithm MEME [56], ini-

tializing the EM algorithm with the most significantly

enriched 6mer for the cluster. Two sequences were repeatedly

identified using a variety of parameters (Figure 7): one motif

was very similar to, but extended from, the known SBF-

binding site and was present in 80% of the gene promoters,

often in multiple copies. This represents a significant enrich-

ment over the entire set of yeast gene promoters, of which

approximately 30% contain the site. Nearly 90% of the pro-

moter regions that contain this motif were shown to be physi-

cally bound by the SBF complex [54], consistent with the idea

that SBF binds this sequence. These details raise the possibil-

ity that SBF coordinates the expression of this set of cell-wall

genes in response to conditions other than cell-cycle progres-

sion [54], perhaps in a manner that is specifically dependent

on the variant site identified here. MEME also identified

another sequence that has not previously been implicated in

gene-expression regulation (Figure 7b). More than 55% of the

top 20 genes in cluster 61 harbor the motif in their promot-

ers, in contrast to only 16% of all yeast promoters. The precise

roles of these sequences in mediating gene expression will

require further experiments; however our ability to identify

novel sequences conserved in these promoters highlights the

potential for discovering additional regulatory elements by

fuzzy k-means clustering.

Fuzzy clustering uncovered correlations between the environmental
conditions 
As well as understanding the similarities between genes

based on their expression patterns, it is also enlightening to

correlate the experimental conditions in terms of their

effects on gene expression. These correlations can implicate

common features of the environments while pointing to the

regulatory systems that are activated in each situation. A

convenient feature of the fuzzy-clustering output is that the

experiments can be hierarchically clustered, on the basis of

the expression patterns of each selected subset of genes, to

reveal similarities in the effects of the conditions. Perform-

ing the clustering based on subsets of genes presents subtle

correlations between the experiments that cannot be real-

ized when the clustering is based on all the genes in the
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Figure 6 (see the figure on the previous page)
Fuzzy clusters are enriched for genes that contain known transcription factor promoter elements. The enrichment of each cluster for genes that contain
known transcription factor binding sites in their promoters was measured on the basis of the hypergeometric distribution, as described in Materials and
methods. (a) Gene-expression data (as described in Figure 1) for genes that were assigned to cluster 2 (amino-acid biosynthesis genes), cluster 45
(respiration genes), cluster 73 (genes repressed as part of the environmental stress response (ESR)), cluster 7 (genes induced as part of the ESR), cluster
4 (oxidative stress defense genes), and cluster 8 (genes conditionally regulated by Yap1p or Msn2/Msn4p). The genes were assigned to each cluster with a
membership cutoff of 0.08, with the exception of cluster 2 for which a cutoff of 0.06 was used. The hypergeometric distribution was used to measure the
statistical enrichment of promoters containing the binding sites of Cbf1p (TGACGTG), the ESR motif GATGAG, the binding site of Hap2/3/4p (CCAAT),
Met31/32p (AAACTGTG), Msn2/Msn4p (CCCCT), a C-rich element identified in cluster 7 (CCCCCV where V is any nucleotide but T), Rap1p
(ACACCCAYACAY where Y is C or T), the ESR motif AAAAWTTTT (where W is A or T), and Yap1p (TTAGTMA where M is C or A). (b) For each
gene displayed in (a), the copy number of the denoted transcription factor binding sites in the gene’s promoter is indicated by a colored box. The copy
number is indicated with a blue box only if the cluster to which the gene belonged was statistically enriched (P < 2 x 10-4) for the indicated binding site,
whereas the copy number is indicated with a dark-gray box if the cluster to which the gene belonged was not statistically enriched for the site. The
complete results are available at [14].



dataset. For example, when the 93 microarray experiments

analyzed in this study were hierarchically clustered on the

basis of the expression patterns of all the genes in the

dataset, the experiments largely clustered according to the

individual time courses (Figure 8a). This reveals that the

overall genomic expression program triggered by each envi-

ronment was unique to each set of conditions. 

However, when the microarray experiments were clustered

on the basis of subsets of genes identified by fuzzy k-means

clustering, more detailed correlations emerged, indicating

more information about the effects of each environment. An

example is the sulfhydryl-oxidizing drug diamide, which

affects many aspects of cell biochemistry. When the experi-

ment clustering was performed on the basis of genes encod-

ing protein-folding chaperones (the top 10 genes in cluster

11), a striking similarity between the effects of diamide and

heat shock was observed (Figure 8b). In contrast, when the

microarray clustering was performed on the basis of genes

involved in oxidative stress defense, (the top 24 genes

belonging to cluster 4), diamide was most similar to hydro-

gen peroxide and menadione, which inflict oxidative damage

by generating reactive oxygen species (Figure 8c). In terms

of the genes induced in the UPR (identified as the top 30

genes or so in cluster 58), the effects of diamide were most

similar to those triggered by the reducing agent DTT

(Figure 8d). That the effects of diamide were similar to those

of different environmental conditions depending on the

genes analyzed reflects the diverse effects of this drug on the

cell (Figure 8f). By crosslinking protein sulfhydryl groups,

diamide is thought to disrupt protein structure and trigger

oxidative stress [57,58], both of which are likely to perturb

normal ER functions [59]. 

The similarities between other environmental conditions are

less well understood. For example, limitation of the essential

nutrient zinc triggered diverse gene-expression changes in

the cell [4]. Although the overall genomic expression

14 Genome Biology Vol 3 No 11 Gasch and Eisen

Figure 7
Motifs conserved in the promoters of the cell-wall genes. Two motifs were identified in the promoters of the cell-wall genes selected in cluster 61, using
MEME [56]. The position weight matrices are represented by colored boxes, where each box indicates the frequency of the denoted nucleotide at that
position in the matrix, according to the color key shown. The position weight matrices and consensus sites are shown for (a) the SBF-like sequence and
the known SBF consensus site, and (b) the novel sequence identified in these promoters.
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Figure 8 (see the figure on the next page)
Differential hierarchical clustering of the conditions based on different fuzzy gene clusters. (a) The dendrogram generated by hierarchically clustering the
experimental conditions based on all of the genes in the dataset is shown. (b-e) Portions of the dendrograms generated by hierarchically clustering the
experiments based on (b) protein-folding chaperones and other genes assigned to cluster 11 (top 10 genes), (c) oxidative stress genes assigned to cluster
4 (top 24 genes), (d) UPR genes assigned to cluster 58 (top 33 genes), and (e) genes involved in respiration and carbon metabolism assigned to cluster 36
(top 96 genes). (f) A summary of the clustering results (discussed in detail in the text), where each arrow indicates the induced expression of the
respective gene set in response to the conditions indicated. The known regulators of genes represented in each cluster are shown. The complete results
are available at [14]. 
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Figure 8 (see the legend on the previous page)
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program triggered by this condition was distinct, when the

experiment clustering was based on genes involved in the

use of alternative carbon sources and respiration (cluster 36

and cluster 45, respectively), a significant similarity between

the effects of zinc limitation and conditions that involve

glucose starvation emerged (Figure 8e). Like carbon starva-

tion, zinc limitation triggered the increased expression of

these genes, even though the cells were not limited for

glucose (T. Lyons, personal communication). This result

suggests that zinc-limited cells may have a defect in glucose

metabolism, leading to the induced expression of the respi-

ration and carbon-utilization genes. While a link between

zinc limitation and sugar metabolism has been established

in mammals [60], the molecular basis of this correlation

is not known. In contrast to this relationship, when the

experiment clustering was performed on genes encoding ER-

resident proteins, the effects of zinc starvation were most

similar to those inflicted by DTT and diamide (Figure 8d),

suggesting that zinc limitation may initiate the UPR. Zinc

starvation is not known to induce this program in yeast (C.

Patil, personal communication). However, a potential con-

nection between zinc and the UPR is the protein calreticulin,

an ER protein-folding chaperone that acts on glycosylated

proteins [61]. That mammalian calreticulin is a zinc-depen-

dent protein [62] raises the possibility that zinc limitation

prevents the proper activity of this protein in yeast, leading

to unfolded ER proteins and triggering the subtle increase in

expression of genes that participate in the UPR. The correla-

tions between the gene-expression changes triggered by

these conditions suggest hypotheses about the effects of each

condition that warrant future experiments. 

Discussion 
To respond to diverse and frequently changing environmen-

tal conditions, yeast cells must precisely mediate the synthe-

sis and function of the proteins in the cell. This is controlled

in part by the overall genomic expression program that

results from the combined action of different regulatory

factors, each of which responds to specific extra- and intra-

cellular signals. Many of these regulators act under specific

conditions, and together they govern the expression of over-

lapping sets of genes. Individual genes, in turn, are regulated

by multiple, condition-specific systems that result in each

gene being coexpressed with different groups of genes under

different situations. 

Although examples of this type of regulation have been

observed on an individual gene basis, our results suggest

that the condition-specific regulation of overlapping sets of

yeast genes is a prevalent theme in the regulation of yeast

gene expression. A large fraction of yeast genes is expressed

in patterns that are similar to different groups of genes in

response to different subsets of the experiments (Table 1).

Furthermore, a substantial number of these genes contain

multiple transcription factor binding sites in their promoters

(Figure 6, and see [14]), consistent with the idea that they

are conditionally regulated by multiple, independent regula-

tory systems. The condition-specific regulation of gene

expression has also been implicated in higher organisms

[63,64] and probably has a significant role in regulating

genomic expression. This is in contrast to the regulatory

logic of prokaryotes, in which the expression of defined sets

of genes in operons is a predominant feature of regulation.

Thus, the conditional regulation of overlapping groups of

genes may represent a regulatory theme that is particularly

important in eukaryotes. 

The prevalence of conditional gene coexpression poses a

challenge for the analysis of gene-expression data, because

many genes will have expression patterns that are similar to

multiple, distinct gene groups. Fuzzy k-means clustering is

well suited to identifying conditionally coexpressed genes for

a number of reasons. First and foremost, the method can

present overlapping clusters, revealing distinct features of

each gene’s function and regulation. The resulting implica-

tions can be used to assign refined hypothetical functions to

uncharacterized gene products on the basis of the known

functions encoded by the genes in each cluster. In addition,

this information can suggest additional cellular roles of well

studied proteins (see [14]). The overlapping clusters identi-

fied by fuzzy k-means clustering also present more compre-

hensive groups of conditionally coregulated genes. This is

especially important for the successful identification of regu-

latory motifs common to the promoters of similarly

expressed genes, because motif-finding algorithms are often

hindered by small sample sets. More than two-thirds of the

gene clusters we identified are not enriched for known regu-

latory elements, highlighting the potential for discovering

novel sequences involved in gene-expression regulation. We

expect that fuzzy k-means clustering will advance that dis-

covery, as illustrated by our ability to identify new sequences

conserved in the promoters of clustered genes.

Another benefit of the fuzzy k-means algorithm is that it

identifies continuous clusters of genes. This allows each

cluster to be expanded or collapsed to view genes of varying

similarity in expression. While the genes of highest member-

ship in a given cluster are often tightly correlated in terms of

biochemical function and regulation, expanding the cluster

can identify genes that are similarly expressed in only

subsets of the experimental conditions. The resulting gene

relationships can suggest details about the cellular roles

served by the encoded gene products and the regulatory

systems that govern the genes’ expression in response to the

relevant conditions. Thus, the results of fuzzy k-means clus-

tering are naturally suited for biologists to use in an intuitive

and physiologically meaningful way.

The unique features of fuzzy k-means clustering have

allowed us to uncover complex similarities in yeast gene-

expression patterns, identify putative transcription factor

16 Genome Biology Vol 3 No 11 Gasch and Eisen



binding sites present in the genes’ promoters, and elucidate

the environmental conditions that trigger changes in gene

expression. Integrating these details can indicate the cellular

signals and regulatory systems that govern the expression of

specific sets of genes in yeast (Figure 9). For example, the

fuzzy clustering of genes involved in methionine biosynthe-

sis with other amino-acid biosynthetic genes and with genes

involved in nitrogen utilization lead to the identification of

multiple transcription factor binding sites in the genes’ pro-

moters. Together, these details reflect the alternative regula-

tory systems that are known to govern the expression of the

methionine biosynthesis genes. Although they are induced

by one regulatory system (Cbf1p-Met31/32p) according to

the demand for the pathway’s products, they are induced by

an alternative system (Gcn4p) in response to a general signal

of amino-acid starvation [34,35,65], and they are probably

also regulated by a third mechanism (GATA factors) in

response to the available nitrogen source. Combining this

information with similar indications for other sets of genes

gives a summary of the details discussed in this study and

suggests a model for the organization of the regulatory

system that controls gene expression in yeast (Figure 9). The

overlapping nature of the sets of coregulated genes supports

the ability of the cell to customize the emergent genomic

expression program to the particular needs of the cell, while

minimizing the number of regulators required to produce

each genomic expression program. 

The fuzzy k-means algorithm used here was chosen for its

conceptual and algorithmic simplicity. There are many alter-

native algorithms that might accomplish the same ends. For

example, Ihmels et al. [11] have applied a heuristic algorithm

to the analysis of yeast gene-expression data to identify over-

lapping sets of genes whose expression is similar to known

gene-expression patterns. This method produced interesting

results and identified genes that were similarly expressed to

known transcription factor targets. A key difference between

these algorithms is that fuzzy k-means clustering requires no

a priori information about the dataset. Thus, each method

may be suitable for a different biological question, namely

identifying genes whose expression is similar to known or

expected gene expression patterns versus an unbiased, de

novo exploration of the gene-expression dataset.

Despite the advantages of fuzzy k-means clustering discussed

above, the method also has a number of limitations. Most

notably, the assignment of genes to the clusters requires a

user-defined membership cutoff. While this allows complete

flexibility in data exploration, selecting meaningful cutoffs is

a challenge. Choice of cutoff can be guided by a number of

criteria, including the coherence of the selected gene-expres-

sion patterns, the functional relationships of the character-

ized genes selected, or the statistical enrichment of sequences

in the selected genes’ promoters. We have attempted to alle-

viate the challenge of selecting cutoffs by providing visualiza-

tion software specifically designed for the fuzzy clustering

results, allowing the gene expression data to be inspected

directly and dynamically.

Although the fuzzy k-means clustering method successfully

identified nearly 90% of the known clusters in the dataset, it

routinely failed to identify a small number of groups that

were identified by hierarchical clustering. The inability of

the method to find the expression patterns representing

these groups seemed to be dependent on the overall proper-

ties of the dataset, rather than the absence of an appropriate

eigen vector used to initiate the process, as the program was

unable to identify these patterns even when the process was

initiated by seeding the centroids with the unidentified pat-

terns (data not shown). We have accounted for this limita-

tion by allowing any number of expression patterns to be

added to the final list of identified cluster centroids, thereby

revealing genes that are similarly expressed to the pattern

in question. 

Despite these limitations, the unique advantages of fuzzy

k-means clustering make the technique a valuable tool for

gene-expression analysis. We believe that fuzzy k-means

clustering will be a useful complement to other computa-

tional methods commonly used to analyze gene-expression

data. Whereas algorithms that present discrete gene clusters

provide a straightforward method of initial data exploration,

the flexibility of fuzzy k-means clustering can be used to

reveal more complex correlations between gene-expression

patterns, promoting refined hypotheses of the role and regu-

lation of gene-expression changes.

Materials and methods 
Software and supplementary information 
The clustering software FuzzyK and the visualization

program FuzzyExplorer are available from [14], along with

the complete clustering results and additional information. 

Dataset
Published genomic expression data of wild-type S. cerevisiae

responding to zinc starvation [4], phosphate limitation [5],

DNA-damaging agents [20], and a variety of stressful envi-

ronmental changes [2] were combined into a dataset of 6,153

genes and 93 microarray experiments (dataset A). These

data were chosen because the experiments were performed

using the same experimental and microarray methods [55].

The data were downloaded from the Stanford Microarray

Database and were otherwise unprocessed before clustering,

with the exception of the heat shock, DTT, and carbon-

source experiments, which were transformed as previously

described [2]. The complete dataset organized by hierarchi-

cal clustering can be downloaded from [14]. A subset of this

data was used in the fuzzy k-means clustering and consisted

of 4,373 genes whose standard deviation in expression

was log2(0.45) from each vector mean (dataset B), identified

using the program Cluster [66].
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Figure 9
Integration of gene expression, regulatory sequences, and environmental responsiveness. Schematics illustrating the hypotheses presented in this paper
regarding the regulation of expression of genes that respond to (a) amino-acid and nitrogen source limitation and (b) different environmental stresses.
Each circle in the Venn diagram represents a cluster of genes that is enriched for the known binding site of the indicated transcription factor or is known
to be regulated by the indicated factor in response to the denoted conditions.
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Similarity metric 
For all methods discussed, the weighted, uncentered

Pearson correlation was used as the similarity metric

(referred to simply as the Pearson correlation) [1]. Where

noted, the Pearson distance was used, equal to 1 – correla-

tion. The array weights used in the calculation were gener-

ated as previously described, using a Pearson correlation

cutoff of 0.8 and an exponent of 1 (see [67] for details).

Hierarchical clustering 
Average linkage hierarchical clustering of the data was

carried out using the program Cluster as previously

described, using the weighted, uncentered Pearson correla-

tion as the similarity metric [1]. Dataset A and dataset B were

hierarchically clustered with identical parameters, using

array weights calculated based on a correlation cutoff of 0.8

and an exponent of 1 [67]. Clustering of the microarray exper-

iments was carried out similarly, using gene weights calcu-

lated with a correlation cutoff of 0.7 and an exponent of 1.

To represent all the significant gene clusters identified by

hierarchical clustering, the dendrogram generated for

dataset B by the Cluster program was parsed, and the

average expression patterns of clusters of more than three

genes with an average Pearson correlation >0.7 were calcu-

lated. Through this method, 38 hierarchical cluster means

were identified. The parsing process was repeated to calcu-

late the average expression patterns of clusters of more than

three genes with average correlations >0.8 and >0.9. Cluster

means not already represented in the initial group of 38

clusters were added to the group, resulting in a total of 53

hierarchical cluster means identified for the dataset. The

centroids identified through fuzzy k-means clustering were

considered similar to the hierarchical cluster means if the

Pearson correlation between the vectors was >0.7. 

Fuzzy k-means clustering 
We implemented the modified fuzzy k-means method in the

C++ program FuzzyK, available at [14].

The fuzzy k-means algorithm [12] is based on the minimiza-

tion of the objective function shown below, for a given fuzzy

partition of the data, F, and a set of K cluster centroids, V

N K

J(F,V) =  �� m
2

XiVj
d

2

XiVj
i=1 j=1

where Xi is the expression pattern of the ith gene in the

dataset, Vj is the centroid of the jth cluster, d is the Pearson

distance between Xi and Vj, mXiVj is the membership of Xi in

cluster Vj, N is the number of genes in the dataset, and K is

the total number of clusters. 

We implemented the algorithm to perform three successive

cycles of fuzzy k-means clustering. The first cycle of clustering

was initialized by performing PCA on dataset B using the

GNU Scientific Library SVD function. Of the top k/3 eigen

vectors, those to which no gene had a maximal Pearson cor-

relation were eliminated (for k = 120, only one eigen vector

was eliminated in each cycle). The remaining eigen vectors

were used as prototype centroids for that clustering cycle.

Subsequent cycles of clustering were initialized similarly,

except that PCA was performed on the respective data subset

used in that clustering cycle. 

During the centroid refinement in each clustering cycle, new

centroids were calculated on the basis of the weighted mean

of all the gene-expression patterns in the dataset according to 

i=1
�

N

m2
XiVj

WXi Xi

Vj� = ——————————

i=1
�

N

m2
XiVj

WXi

where each gene’s membership m (a continuous variable

from 0 to 1) was defined as

———
1

d2
XiVj

mXiVj = —————————

j=1
�

K

d2
XiVj

———
1

and w was the gene weight: in the first clustering cycle, the

gene weights used were those defined by the program

Cluster, using a Pearson correlation cutoff of 0.7 and an

exponent of 1 [67] and in subsequent cycles the gene weight

was empirically defined as 

cXi,Xn - x
WXi= �

n=1
�

N

———————�
2

1 - x

where dXi, Vj is the Pearson distance between gene Xi and

vector Vj, cXi, Xn is the Pearson correlation between genes Xi

and Xn, and x is the correlation cutoff, in this case 0.6. This

weighting scheme served to overweight genes that were cor-

related to other genes in the dataset.

In each clustering cycle, the centroids were iteratively refined

until the average change in gene memberships between itera-

tions was <0.001 (approximately 40-60 total iterations in

each clustering cycle). While around 85% of the centroids sta-

bilized within approximately 15 iterations, some of the cen-

troids required more than 40 iterations before stabilizing. 

After each clustering cycle, the centroids were combined

with those identified in previous cycles, and replicate cen-

troids were averaged: each centroid was compared to all

other centroids in the set, and centroid pairs correlated >0.9

were replaced by the average of the two vectors. The new
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vector was compared to the remaining centroids in the set

and averaged with those to which it was correlated >0.9.

This process continued until each centroid (or the vector

that replaced it) was compared to all other existing centroids

in the set.

Following the first and second clustering cycles, data subsets

were selected to apply to subsequent rounds of clustering.

Genes that were correlated to any existing centroid with a

Pearson correlation >0.7 were removed from the dataset, and

array and gene weights were recalculated on the data subset

as described above. The new data subset was applied to a sub-

sequent cycle of clustering, performed as described above.

Final gene-cluster assignments 
The centroids identified through three rounds of fuzzy cluster-

ing were combined into one set and replicate centroids were

averaged, as described above. Each gene in dataset A was

assigned a membership score to each of the unique centroids.

For display in the figures, the final list of centroids was ordered

by hierarchical clustering. Genes were selected in each cluster

if their membership score was greater than the empirically

determined membership cutoff applied to each cluster. For

display in Figure 5, the genes selected in each cluster were

subsequently organized by hierarchical clustering. 

k-means clustering
For an optimal comparison of the results of k-means and

fuzzy k-means clustering, we performed the k-means cluster-

ing identically to the fuzzy k-means protocol, except that

during the clustering iterations each gene contributed only to

the cluster to which it was most similar (with a membership

of 1.0). Three rounds of hard k-means clustering were per-

formed with k = 120, and each cycle was initiated by seeding

k/3 centroids with the most informative k/3 eigen vectors

identified by PCA, as described above. The process for

merging centroids, selecting the data subsets for subsequent

clustering rounds, and gene and array weighting were carried

out identically as described for fuzzy k-means clustering.

After identification of the final set of centroids, each gene was

assigned only to the centroid to which it was most similar. 

Bootstrapping 
To estimate the dependence of the procedure on the initial

dataset, a bootstrapping method was applied in which the

fuzzy k-means protocol was repeated 100 times, each time

on 4,373 genes chosen randomly from dataset B, with k =

102. The occurrence of each centroid in the bootstrap trials

was determined by summing the number of trials that con-

tained a centroid that was correlated >0.7 to the centroid in

question. By this criterion, roughly 50% of the centroids

were identified in 90% of the trials, while approximately

25% of the centroids were identified in all of the trials. 

To estimate the dependence of the procedure on the eigen

vectors used to seed the clusters, a similar bootstrapping

procedure was carried out in which PCA was performed on

4,373 genes chosen randomly from dataset B but the cluster

refinement was done using all genes in dataset B. The fre-

quency of each centroid was scored as described above. The

results were similar to the previous bootstrapping experi-

ment, with around 50% of the centroids present in 90% of

the bootstrapping trials, and around 25% of the centroids

identified in all the trials. 

Promoter analysis
Genes were assigned to all the 91 identified centroids on the

basis of a membership cutoff of 0.06 or 0.08. The statistical

enrichment of each cluster for genes that contained known

transcription factor binding sites or different 6-mer

sequences within 800 bp upstream of the ORF was assessed,

according to the hypergeometric distribution. The probabil-

ity of observing at least q genes that contained one or more

copies of a given sequence out of l genes in a fuzzy cluster

was calculated as

�M

i ��
N - M

l - i �
i=q
�

l        

————————————

�N

l �

where M is the number of genes in the genome that contain

the motif and N is the total number of genes in the genome.

Forty-three transcription factor binding sites were compiled

from the literature (see [14] for a complete list of sequences).

The enrichment of each sequence was considered significant

if the P value was <0.01 divided by the number of elements

searched, or 2 x 10-4 for the 43 transcription factor binding

sites and 2 x 10-6 for the 4,096 different 6-mers.

The program MEME [56] was seeded with the most signifi-

cant 6-mer (CGCGAA) enriched in the promoters of the

genes selected for cluster 61, and the program was run with a

variety of parameters (the parameters and MEME output

can be found at [14]). Genes whose promoters contained sig-

nificant matches to the identified matrices were identified

using Patser on the RSA tools website [68,69].
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