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ABSTRACT 

The number of completely sequenced bacterial
genomes has been growing fast. There are computer
methods available for finding genes but yet there is a
need for more accurate algorithms. The GeneMark.hmm
algorithm presented here was designed to improve the
gene prediction quality in terms of finding exact gene
boundaries. The idea was to embed the GeneMark
models into naturally derived hidden Markov model
framework with gene boundaries modeled as transitions
between hidden states. We also used the specially
derived ribosome binding site pattern to refine
predictions of translation initiation codons. The
algorithm was evaluated on several test sets including
10 complete bacterial genomes. It was shown that the
new algorithm is significantly more accurate than
GeneMark in exact gene prediction. Interestingly, the
high gene finding accuracy was observed even in the
case when Markov models of order zero, one and two
were used. We present the analysis of false positive
and false negative predictions with the caution that
these categories are not precisely defined if the public
database annotation is used as a control.

INTRODUCTION 

For the ‘post-genomic’ molecular biology, a computer became
the major tool for interpreting DNA and protein sequence
information. By the end of 1997, 10 complete bacterial genomes
were available from the GenBank database: Haemophilus
influenzae (1), Mycoplasma genitalium (2), Methanococcus
jannaschii (3), Mycoplasma pneumoniae (4), Synechocystis
PCC6803 (5), Escherichia coli (6), Helicobacter pylori (7),
Methanobacterium thermoauthotrophicum (8), Bacillus subtilis
(9), Archeoglobus fulgidus (10). The majority of genes in these
genomes were annotated using theoretical (computer derived) rather
than experimental evidence. With many more genomes to come in
the near future, the methods of highly accurate DNA sequence
interpretation, particularly gene finding, become increasingly
important. Here we present a new method, GeneMark.hmm, for
gene finding in bacterial genomes. The previously developed
GeneMark program (11), that has been used in practice (1–6,9–10),
identified a gene mainly as the ORF (open reading frame) where the
gene is residing. However, the 5′ boundary of the gene (the

translation initiation codon associated with the protein N-terminus)
might not be precisely predicted. The range of uncertainty for the
initiation codon position is of the size of GeneMark sliding window,
i.e. ∼100 nucleotides (nt). As a palliative, GeneMark indicates
several possible start codons and scores them (http://intron.
biology.gatech.edu/GeneMark ). However, the exact prediction of
the N-terminus is important for further functional analysis of a
putative protein, and, eventually, for correct annotation of
thousands of genes in growing databases. Therefore we see our
goal as developing an algorithm with a high accuracy of exact
gene prediction.

Gene annotation in bacterial DNA defines a functional role of
each nucleotide in the sequence. For a DNA sequence designated
as S = {b1, b2, ..., bL}, where the bi  stands for the nucleotide
symbol, T, C, A or G, and L is the sequence length, the functional
role of each nucleotide could be indicated by a ‘functional’
sequence A = {a1, a2, ..., aL}. Here each ai  may take integer value
‘0’ if nucleotide bi  is a part of non-coding region; value ‘1’ if bi
is a part of a gene residing in the direct DNA strand; and a value
of ‘2’ if bi  is involved in encoding a protein in the complementary
DNA strand. The aim of gene finding is to determine the ‘true’
functional sequence A for the anonymous DNA sequence S.
Statistical patterns of nucleotide ordering specific for DNA
sequences that carry (or do not carry) the genetic code have been
used in gene finding algorithms since the 1980s (see ref. 12 for
review). In GeneMark, for instance, these patterns were quantified
and converted into parameters of Markov chain models (11). A
general pattern recognition algorithm should be able to compute
the probability that a particular functional sequence A underlies
a given sequence S, P(AS) = P(a1, a2, ..., aL  b1, b2, ..., bL). The
core GeneMark.hmm procedure computes the P(A S) value and,
eventually, defines the functional sequence A*  having the largest
value  P(A*  S) among all possible A. The functional sequence A*,
the output of the algorithm, describes the most likely annotation
of the DNA sequence S.

The problem of the P(A S) computation and maximization is
considered in terms of hidden Markov models (HMM), the
technique that was successfully applied in speech recognition (see
ref. 13 for review). Applications of HHM theory to DNA and
protein sequence analysis have also been described by several
groups (14–21). The algorithm ECOPARSE developed by Krogh
et al. (17) was the first HMM based gene-finding algorithm
intended specifically for the E.coli genome. The GeneMark and
GeneMark.hmm have been compared with the performance of
ECOPARSE (see below).

*To whom correspondence should be addressed. Tel: +1 404 894 8432; Fax: +1 404 894 0519; Email: mark@amber.biology.gatech.edu



 

Nucleic Acids Research, 1998, Vol. 26, No. 41108

Figure 1. Hidden Markov model of a prokaryotic nucleotide sequence used in the
GeneMark.hmm algorithm. The hidden states of the model are represented as ovals
in the figure, and arrows correspond to allowed transitions between the states.

The HMM framework of GeneMark.hmm, the logic of
transitions between hidden Markov states, followed the logic of
the genetic structure of the bacterial genome (Fig. 1). The Markov
models of coding and non-coding regions were incorporated into
the HMM framework to generate stretches of DNA sequence
with coding or non-coding statistical patterns. This type of HMM
architecture is known as ‘HMM with duration’ (13). The
sequence of hidden states associated with a given DNA sequence
S, carries information on positions where coding function is
switching into non-coding and vice versa. Thus, the previously
introduced functional sequence A becomes equivalent to the
sequence of hidden states, called the HMM trajectory. Since the
nucleotide sequence S is given, every possible sequence A could
be assessed by the value of P(A S), the conditional probability of
A given S. This evaluation made use of the whole set of statistical
models (see Materials and Methods). The core GeneMark.hmm
procedure is the Viterbi algorithm (13) that finds the sequence A*.
However, this core procedure did not take into account the
possibility of gene overlaps since the observed overlaps, though
frequent, were not extensive enough to provide sufficient data for
deriving statistical models of overlapping genes in several
possible orientations. To further improve the prediction of the
translation start position the model of the ribosome binding site
(RBS) was derived. This model was used to refine translation
initiation codon prediction at the post-processing step. 

The GeneMark.hmm program was evaluated on several test
sets including sequences of the 10 complete bacterial genomes
mentioned above. The GeneMark.hmm predictions were compared
with GeneBank annotations. It was shown that the frequency of
exact gene predictions is much higher than that of GeneMark (the
version which also used the RBS model). We understand that the
evaluation of the algorithm performance by comparison with the
database annotation may not be enough conclusive evidence,
since only in a few cases is the precise position of the translation
initiation codon known from an experiment. However, the
database annotation of the initiation codon represents the expert
decision summarizing much indirect evidence and is thought to
be close to the real one. The GeneMark program, actually, was

able to correctly identify ORFs where 98% of all genes predicted
by GeneMark.hmm resided. Also there were genes missed by
GeneMark.hmm, mainly due to overlaps, that were recovered by
GeneMark. However, the GeneMark.hmm program made several
new predictions and some of them were confirmed by similarity
search. It seems that the GeneMark.hmm development brought us
closer to the goal of accurate prediction of bacterial genes and
further arguments in favor of this statement are presented below.

MATERIALS AND METHODS

Materials

We have used DNA sequences of the complete genomes of
H.influenzae (GenBank accession no. L42023), M.genitalium
(L43967), M.jannaschii (L77117), M.pneumoniae (U00089),
Synechocystis PCC6803 (synecho), E.coli (U00096), H.pylori
(AE000511), M.thermoauthotrophicum (AE000666), B.subtilis
(AL009126), Archeoglobus fulgidus (AE000782). The data on
annotated E.coli RBS were provided by W. Hayes (22). The data
on experimentally verified N-terminal protein sequences were
kindly provided by A. Link (23). The Markov models parameters
were obtained from the GeneMark library (http://exon.biology.
gatech.edu/ ∼genmark/matrices/ ).

Model of prokaryotic sequence structure

The architecture of the hidden Markov model used in the
GeneMark.hmm algorithm is shown in Figure 1. To deal
simultaneously with direct and reverse DNA strands, as was done
in the initial GeneMark algorithm (11), nine hidden states were
defined. These states correspond to the functional units of
bacterial genomes, namely: (i) a Typical gene in the direct strand,
(ii) a Typical gene in the reverse strand, (iii) an Atypical gene in
the direct strand, (iv) an Atypical gene in the reverse strand, (v) a
non-coding (intergenic) region, (vi/vii) start/stop codons in the
direct strand, and (viii/ix) start/stop codons in the reverse strand.
It should be mentioned that this HMM does not account for gene
overlap (see below). The models of Typical and Atypical genes
were derived from the sets of protein-coding DNA sequence
obtained by clusterization of the whole set of genes from the
genome of a given species (22). The names ‘Typical’ and
‘Atypical’ were used for the following reason. For the E.coli
genome it was shown that the majority of the E.coli genes mainly
belong to the cluster of Typical genes, while many genes that are
believed to have been horizontally transferred into the E.coli genome
fall into the cluster of Atypical genes. Note, that the comprehensive
accounts on the E.coli genes evolutionary classification have been
presented earlier (24,25).

An important feature of the proposed HMM architecture is that
any coding as well as non-coding hidden state is allowed to
generate a nucleotide sequence, observed sequence, of the length
of hidden state duration (13). Such an explicit state duration
HMM was used previously in algorithms Genie and GENSCAN
(18,20). The crucial point, however, is that an observed DNA
sequence S = {b1, b2, ..., bL} is thought to be generated by an
HMM such as depicted in Figure 1, in parallel with the HMM
transitions from one hidden state to another. The hidden state
trajectory A, one of a variety of allowed paths, can be concisely
represented as a sequence of M hidden states ai  having duration
di : A = {(a1d1)(a2d2) ... (aMdM)}, Σdi  = L. For a given sequence
of observed states (nucleotides) S = {b1, b2, ..., bL} the optimal
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trajectory of hidden (functional) states A*  is defined as the trajectory
(functional sequence) A with the maximal value of conditional
probability P(A S). Therefore, a computer optimization procedure
is supposed to find the maximum likelihood sequence A*  that,
according to its physical meaning, defines the predicted locations
of protein coding regions in the nucleotide sequence S.

Viterbi algorithm for variable duration HMM

The problem formulated above is equivalent to a problem of
finding the trajectory A*  = {(a1

*d1
*)(a2

*d2
*) ... (aM

*dM
*)} that

has the largest probability of occurring simultaneously with the
sequence S in comparison with all other possible trajectories:

Pmax� P(A *, S) � max
(a1d1)���(aMdM)

�
M

s�1

ds� L

Prob�(a1d1)(a2d2)���(aMdM), b1b2���bL
� 1

To describe the optimization algorithm we introduce the quantity
(13):

z1(am,dm) � max
(a1d1)���(am–1dm–1)

�
m–1

s�1

ds� l–dm

[Prob{( a1d1)���(am–1dm–1), b1���bl–dm
} qam–1 am]

pam(dm)Pam(bl–dm�1 ���bl)

2

where m is the number of hidden states visited during generation
of the first l nucleotides, qam�1 am is the probability of transition
from hidden state am–1 to state am, pam(dm) is the probability of
duration dm for state am, and  Pam (bl–dm+1 ... bl ) is the probability
of observing (generating) the nucleotide sequence, bl–dm+1, ..., bl ,
given the state am. By induction (m ≥ 2) we have

zl(am,dm) � max
(am–1dm–1)

[zl–dm
(am–1,dm–1)qam–1 am]pam(dm)Pam(bl–dm�1 ���bl) 3

{ a * l (a), d * l (a)} � arg max
(amdm )

[zl(am, dm)qam a ] 2 � l � L–1 4

Pmax� max
(aMdM)

zL(aM,dM) 5

{ a * L, d * L } � arg max
(aMdM

)
[zL(aM, dM)] 6

Equations 3–6 present the Viterbi algorithm which finds for the
given (observed) nucleotide sequence S the maximum likely
trajectory A*. This algorithm is an extension of the Viterbi algorithm,
described by Rabiner (13), for the case of HMM with variable
duration of hidden states. The equations for straightforward
initialization and backtracking procedures are not shown.

Parameters of the model

The described above mechanism of generating nucleotide
sequence S by variable duration HMM could naturally use the
Markov models of coding and non-coding DNA sequences. These
models have been already defined the GeneMark algorithm (11).
Therefore, the time-consuming and cumbersome procedure of
HMM training was largely avoided. For instance, given a hidden

state ‘1’ corresponding to a coding region, the probability, P1(b1, b2,
..., bd), of observing a particular DNA sequence {b1, b2, ..., bd} as
a part of a coding region was calculated using the three-periodic
inhomogeneous Markov chain model (11). For non-coding state ‘0’
the probability of observing sequence {b1, b2, ..., bd} as a part of a
non-coding region, P0(b1, b2, ..., bd), was calculated using the
homogeneous Markov model (11). The probability pa(d) that a state
a has duration d was defined by analytical approximation of the
frequency distribution of the lengths of coding (non-coding) regions
in the E.coli genome (Fig. 2). As is seen in Figure 1, the only allowed
transitions between hidden states were ‘non-coding’→‘direct
start’→‘direct coding’→‘direct stop’→‘non-coding’, as well as
‘non-coding’→‘reverse stop’→‘reverse coding’→‘reverse
start’→‘non-coding’. Therefore, just a few additional parameters,
such as the probabilities of possible start codons, initial and
transition probabilities for hidden states had to be specified. Initial
probabilities for four coding and one non-coding states were set
to 0.2. Initial probabilities for start/stop states were set to zero.
The probabilities of the start codons were defined in agreement with
the E.coli genome statistics: P(ATG) = 0.905, P(GTG) = 0.090,
P(TTG) = 0.005. The probability of transition from a non-coding
state to a Typical (Atypical) coding state was set to 0.85 (0.15).
These values are the estimates of frequencies of ‘native’
(‘foreign’) genes in the E.coli genome suggested by Medigue et
al. (24) and Lawrence (25). 

Post-processing: finding RBS

As follows from the described HMM architecture (Fig. 1) the
optimal sequence A*  found by the Viterbi algorithm should have
predicted genes separated from one another by at least a 1 nt long
intergenic region. Therefore, the actual overlap of two genes will
prevent finding the exact location of at least one gene. Initially, we
considered an overlap of bacterial genes as an unlikely event.
However, when the larger body of complete genomic sequences
became available we found that at least short overlaps are quite
common in bacterial genomes (see below). Obviously, the Viterbi
algorithm tends to predict genes involved in overlaps shorter than
they really are. Therefore, we used a post-processing procedure,
searching for ribosome binding site (RBS), to refine initial Viterbi
predictions. For a predicted gene, the RBS was searched in the
interval from –19 to –4 nt upstream to each alternative start
codons located between the position of start codon suggested by
the Viterbi algorithm and the position of start codon producing the
longest open reading frame (ORF) for the predicted gene. The
initially predicted translation intiation position was redefined if
the score of one of the RBS candidates associated with an admitted
alternative start exceeded a certain threshold (see below). Otherwise,
the position suggested by the Viterbi algorithm was accepted.

The probabilistic model for the RBS was derived as follows.
First, the E.coli records in GenBank with annotated RBSs were
analyzed, and 325 genes with known RBSs were selected from
the complete E.coli genome (6). Second, from each of these 325
sequences, the 16 nt sequence preceding the annotated start (from
–4 to –19) was collected. Third, these 325 short sequences were
subjected to the multiple alignment procedure performed by the
simulated annealing algorithm (26). Specifically, we have chosen
a fixed size window, w, and searched for the best alignment by
maximizing a matching score
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Figure 2. Length distribution probability densities of protein-coding and non-coding
regions derived from the annotated E.coli genomic DNA (histograms). (a) Coding
regions; the solid curve is the approximation by γ distribution g(d) = Nc(d/Dc)2

exp(–d/Dc), where d is the length in nt, Dc = 300 nt, Nc is the coefficient chosen to
normalize the distribution function on the interval from 30 nt (the minimal length of
coding region) to 7155 nt (the maximal length). (b) Non-coding regions; the solid
curve is the approximation by exponential distribution f(d) = Nnexp(–d/Dn), where Dn
= 150 nt. The coefficient Nn normalizes the distribution function on the interval from
1 to 1000 nt.

R� �
w

k�1

n2
b(k) 7

Here nb(k) is the number of symbols b (b = T, C, A, G) in the
position (column) k of the window alignment. In each step of the
simulated annealing algorithm iterative procedure, one of the 325
sequences chosen at random was shifted to the right or to the left,
relative to the fixed window, for a randomly chosen number of
positions (with no gaps, deletions or insertions). The matching
score R*  for the resulting alignment was calculated (equation 7).
If R*  was larger than R, the new alignment was unconditionally
accepted and used as the starting point for the next iterative step.
Otherwise, the new alignment was accepted with the probability
exp[–R –R*)/T], where the parameter T can be interpreted as the
‘temperature’ in the annealing procedure. We used the standard
exponential cooling schedule Tn+1 = cTn, where c = 0.999999.
The window size was chosen to be equal to w = 5.

Table 1. Nucleotide frequencies for the RBS model

Nucleotide Position
1 2 3 4 5

T 0.161 0.050 0.012 0.071 0.115

C 0.077 0.037 0.012 0.025 0.046

A 0.681 0.105 0.015 0.861 0.164

G 0.077 0.808 0.960 0.043 0.659 

The model was derived using the multiple sequence alignment of 325 annotated
ribosomal binding sites (see text). Given the set of aligned sequences, the frequency
of a given nucleotide was calculated as the number of occurrences of this nucleotide
in a given position divided by the total number of sequences.

The finally obtained alignment of the 325 sequences has
revealed the RBS sequence pattern in the form of a matrix of
positional nucleotide frequencies (Table 1). It is seen that the
matrix defines the strong consensus sequence: AGGAG, which
is complementary to a pentamer located in the E.coli 16S rRNA
near its 3′-end. This observation is in a good agreement with the
generally accepted mechanism of ribosome-mRNA binding.
Note that a similar result was obtained previously (27). To
evaluate a putative RBS we calculated its probabilistic score as
the product of corresponding elements of the matrix given in
Table 1. The threshold value for RBS score was chosen as
0.00025. It can be shown that the log of this score is proportional
to ribosome binding energy (with appropriate sign) under the
assumption of independent formation of ribonucleotide pairs.

Algorithm modifications for genomes other than E.coli

The GeneMark.hmm predictions were obtained for nine other
bacterial genomes. In these computations we used the species
specific Markov models of coding and non-coding regions. All
other parameters of the GeneMark.hmm algorithm stayed the
same as defined for the E.coli genome. It is worth mentioning that
for the gram-positive bacterium, B.subtilis, we have slightly
modified the RBS prediction procedure. In species, such as
B.subtilis, that do not have the ribosomal protein S1 involved in
initiation of the ribosome–mRNA complex, the elevated strength
of ribosome binding sites is thought to be a compensatory
mechanism to facilitate ribosome binding. For the B.subtilis case
the described above alignment procedure produced a highly
biased frequency pattern with the strong RBS consensus. To
obtain reasonable agreement between predicted initiation codons
of B.subtilis genes and annotated ones we had to admit to
competition the alternative start codons located not only upstream
to the Viterbi prediction of translation start, but also those located
downstream up the 66 nt distance. We think that this rule could
be applicable to all other genomes, but presently, there is a
tendency in genome annotation process to prefer longer ORFs to
shorter ones provided there is no convincing evidence in favor of
the shorter one. Statistically, this tendency is well justified since
it is expected that in about 75% of cases actual genes occupy the
longest ORFs. This figure can be obtained as follows. Consider
the set of four codons: ATG, TAA, TAG, TGA and an intergenic
region situated upstream to the true initiation codon of a gene X.
Read codons in 5′ direction in the same reading frame as the
initiation codon until the first codon from the above set is met. If
this codon is ATG, then the gene X does not occupy the longest
ORF. Otherwise gene X does occupy the longest ORF, which
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happens in 75% of cases assuming that the four codons specified
above occur with equal frequencies and ATG is the only possible
initiation codon. In B.subtilis the presence of a strong RBS site
provided a good reason to override the ‘longest ORF’ annotation
rule and shorter ORFs in B.subtilis were annotated more
frequently than in other bacterial genomes.

RESULTS AND DISCUSSION

Gene prediction accuracy 

The performance of the GeneMark.hmm program was tested
using several control sets including 10 complete bacterial
genomes. Our focus was on the E.coli genome. The complete
genomic sequence of E.coli consists of 4 639 221 nt with 4288
genes annotated (6). When the GeneMark.hmm program was
applied to the E.coli genomic sequence, as many as 4440 genes
were identified. Each predicted gene was also characterized as
Typical or Atypical (22) depending on the type of the underlying
coding (hidden) state. Twenty percent of the predicted genes were
identified as Atypical ones. The gene finding accuracy was
evaluated using four control sets of genes annotated in the E.coli
genome (Table 2). Control set #1 contained all annotated E.coli
genes. Set #2 was compiled from non-overlapping E.coli genes. The
E.coli genes whose RBS were annotated in GenBank constituted set
#3. The genes coding for proteins with experimentally verified
N-termini (23) were included in set #4.

Table 2. The GeneMark.hmm performance

Set # Number Prediction Exact Only 3′-end Missing
of genes method prediction prediction genes

1 4288 VA 2483 (58%) 1592 (37%) 213 (5%)

1 4288 PP 3233 (75%) 842 (20%) 213 (5%)

2 2821 VA 2017 (71%) 750 (27%) 54 (2%)

2 2821 PP 2268 (80%) 499 (18%) 54 (2%)

3 325 VA 255 (78%) 64 (20%) 6 (2%)

3 325 PP 289 (89%) 30 ( 9%) 6 (2%)

4 204 VA 156 (76.5%) 47 (23%) 1 (0.5%)

4 204 PP 177 (87.5%) 26 (12%) 1 (0.5%)

The four control sets of annotated genes selected for the comparison are described
in the text. The numbers in the rows designated as VA correspond to predictions made
by the GeneMark.hmm program with the Viterbi algorithm only. The rows
designated as PP show the results of prediction with post-processing (the RBS
identification procedure). The ‘Exact prediction’ column contains the numbers of
genes with both 3′-end and 5′-end predicted exactly. The numbers of genes predicted
with the 5′-end misplaced are shown in the column ‘Only 3′-end prediction’. The
genes annotated but not correctly predicted either at 5′- or at 3′-end fall into the
category ‘Missing genes’. The percentage shown in parentheses is the fraction
relative to the total number of annotated genes.

The evaluation results (Table 2) show that the Viterbi algorithm
alone (VA) was able to exactly predict 58% of the E.coli genes in
Set #1. The gene overlap seems to be an important factor indeed,
since the percentage of exact gene predictions jumped up to 71%
when the overlapping genes were eliminated (Set #2). It is worth
mentioning that both the 58% and the 71% figures may not be
consistent estimates of the algorithm real performance since the
majority of annotated translation initiation codons in control sets #1

and #2 were not verified in experiments. In control sets, #3 and #4,
the Viterbi algorithm exactly predicted 78 and 76.5% of the genes
respectively. These two close figures give a more realistic estimation
of the Viterbi algorithm predictive power for genes with no overlaps.

The percentage of the E.coli genes predicted either exactly or
with misplaced translation starts was 95, 98, 98 and 99.5% for the
sets #1, #2, #3 and #4 respectively. These figures did not change
when the RBS prediction was combined with the Viterbi
prediction at the post-processing step (PP in Table 2). However,
for many genes initially partially predicted by the Viterbi
algorithm the correct position of the translation start was found.
The fraction of exact predictions increased from 58 up to 75% for
set #1, from 71 up to 80% for set #2, from 78 up to 89% for set
#3, and from 76.5 up to 87.5% for set #4. One may conclude that
RBS correction produces 10% increase in the percentage of
exactly predicted genes under non-overlap conditions. Also, it
appears from the results of program testing on set #1, that gene
overlaps were responsible for ∼10% of non-exact predictions.

‘Missing’ genes (false negatives)

A gene annotated in GenBank was counted as ‘missing’ in
predictions if neither its 5′ nor 3′ boundary was precisely found by
the algorithm (even if there was some overlap between annotated
and predicted genes). The GeneMark.hmm algorithm missed 213
out of the 4288 annotated E.coli genes (set #1 in Table 2). Some of
these genes, 113 out of 213, had a length exceeding 300 nt. In fact,
the majority of these 113 genes overlapped with genes located in the
opposite strand (the ‘stop near stop’ overlap). This fact, along with
the observation that the percentage of missing genes in sets #2, #3
and #4 is lower than in test set #1, explains why these relatively long
genes were missing. If an overlap occurs, the stop codons of the two
genes fall into the region of overlap, and, consequently, at least one
stop codon is overlooked by the algorithm. This means that a local
‘mishap’ such as just the four nucleotide overlap between two genes
(i.e. TTAA, TTAG, CTAA, CTAG) makes the Viterbi algorithm lose
the whole gene. Note that many overlapping genes are not likely to
be missed by the GeneMark program. Its ‘voting’ mechanism
accounts for detection of the coding potential within a number of
windows covering a given ORF, thus suppressing the fluctuations
that might affect just a few windows.

‘Wrong’ gene predictions (false positives) 

Among 4440 genes predicted by the GeneMark.hmm program in
the E.coli genome, there were 363 genes with neither the 5′-end
nor the 3′-end matched to any annotated gene. Some of these
predictions, 231 out of 363, were located in the regions annotated
as non-coding and these 231 predictions might be classified as
‘wrong’ or ‘new’. Thirteen of these predictions had a length larger
than 300 nt. The protein products of these putative genes were
searched for similarity against the non-redundant protein sequence
database using the gapped BLAST (28). Four putative proteins
were found to have significant similarity with hypothetical
proteins previously identified in other species (Table 3). This
analysis indicates once again that genome annotations in public
databases are not perfect. Some real genes still may go unnoticed
while some already annotated may not be functional. At any rate,
‘false positive’ gene predictions need much further analysis
before they are sorted out as wrong ones. Therefore, the exact
fractions of wrong predictions as well as the fractions of predicted
new genes remain to be determined.
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Table 3. The results of similarity search for four putative E.coli proteins

Gene # Strand 5′-end 3′-end Score E-value Subject

1 comp. 238736 238257 270 4e-72 gi|1552787; hypothetical protein

2 comp. 279586 279248 229 4e-60 pir||I41306; hypothetical protein
(argF-lacZ region)

3 direct 1286288 1286854 122 1e-27 gi|1787481; 35 pct identical
<3 gaps> to 54 residues of approx.
1040 aa protein BGAL_KLEPH

4 direct 2201992 2202309 217 2e-56 sp|P33347|YEHK; hypothetical
12.6 kDa protein

Locations of the genes are specified. The similarities were found by the gapped BLAST algorithm (28).

Comparison with the earlier programs 

We have compared the performance of the GeneMark.hmm
program with the GeneMark program (11) and with the
ECOPARSE program (17). The ECOPARSE algorithm differs
from GeneMark and GeneMark.hmm, particularly, in analyzing
DNA strands in turn, one after another, while GeneMark and
GeneMark.hmm deal with both strands simultaneously. The test
set for this comparison included five E.coli DNA contigs of
30 000 nt length each (the maximum possible length for the
ECOPARSE e-mail server input sequence as of June, 1997). The
predictions for each DNA contig were obtained by each of the three
algorithms (including post-processing cycles) and compared with
the GenBank annotation (6). The results (Table 4) indicate that the
GeneMark.hmm program was more accurate in exact predictions:
71 versus 62% by GeneMark and 53% by ECOPARSE. It is worth
mentioning that the current versions of GeneMark and ECO-
PARSE use RBS models as well. The GeneMark.hmm program
also had the least number of missing genes and the highest
percentage of annotated genes found exactly or partially
(Table 4). Particularly, the genes thrL, yacG, cspE and ydiE
missed by GeneMark were detected by GeneMark.hmm.

Table 4. A comparison of the GeneMark.hmm program with the GeneMark
program and with the ECOPARSE program

Number Prediction Exact Only 3′-end Missing
of genes method prediction prediction genes

148 GeneMark.hmm 105 (71%) 28 (19%) 15 (10%)

148 GeneMark 92 (62%) 37 (25%) 19 (13%)

148 ECOPARSE 79 (53%) 33 (23%) 36 (24%)

All designations are the same as in Table 2. The data shown are the average results
obtained by using five sequences of 30 000 nt in length each from the entire E.coli
record (5). The left ends of the sequences have been chosen as (i – 1) × 106 + 1, where
i = 1,…, 5. Only those annotated genes have been taken for the comparison with
predicted parses whose 5′- and 3′-ends are both inside the chosen sequences
(148 genes).

Robustness of the algorithm

The GeneMark.hmm performance may depend on the choice of
the algorithm parameters. The robustness of the algorithm was
tested with regard to the values of the Markov models’ transition

probabilities. The GeneMark.hmm predictions for E.coli were
recalculated using the transition probability matrices obtained by
training on an alternative set of E.coli genes (22). The prediction
versus annotation comparisons were close to those shown in
Table 2. For example, the number of set #1 genes exactly
predicted (with post-processing) was equal to 3088 compared to
3233 shown in Table 2. A 20% variation of other algorithm
parameters had changed the overall performance even less
noticeably (data not shown).

Other bacterial genomes 

The GeneMark.hmm predictions obtained for nine other bacterial
genomes were compared with the GenBank annotations and the
results are shown Table 5. It is seen that the program, on average,
found exact locations of 78.1% of annotated genes. For 94.6% of
annotated genes the reading frames were predicted correctly but
the initiation codons did not coincide with the annotated one. The
average percentage of missing genes was 5.4%. For a particular
genome the frequency of missed genes was strongly correlated
with the frequency of gene overlaps. The largest frequencies of
overlap were observed in A.fulgidus (61% of all annotated genes
had overlaps), M.genitalium (59%) and M.pneumonia (51%),
while the smallest were found in B.subtilis (24%), H.influenzae
(27%) and M.jannaschii (29%). The average percentage of false
positive predictions, 10%, is relatively high, but how many of
these predictions are actually correct remains to be found by
further analysis. We did not use any filters for false positives.
Even the restriction on the minimum length of the gene prediction
was not applied since the genomic sequence still may contain
small pieces of frameshifted genes. Actually, from 382 gene
predictions that did not find annotated analogs in A.fulgidus
genome, 42 have already been confirmed as real genes and their
protein products were included in protein sequence database prior
to our study. By using the gapped BLAST significant similarities
of predicted protein products to known proteins from species
other than A.fulgidus were found for 18 more predictions. In total,
291 of the GeneMark.hmm ‘false positive’ predictions for the
10 species were already confirmed to some extent by other
researches and were included in protein databases. Another
71 predictions, as the current study shows, have good additional
evidence (from the gapped BLAST) to be real genes. Many from
the remaining 2068 predictions could be genes encoding so called
‘pioneer proteins’ (29).
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Table 5. Results of GeneMark.hmm predictions for 10 complete bacterial genomes

Genome Genes Genes Exact Missing Wrong
annotated predicted prediction (%) genes (%) genes (%)

A.fulgidus 2407 2530 73.1 10.8 (2.0) 15.1

B.subtilis 4101 4384 77.5 3.6 (2.8) 9.8

E.coli 4288 4440 75.4 5.0 (2.7) 8.2

H.influenzae 1718 1840 86.7 3.8 (3.2) 10.2

H.pylori 1566 1612 79.7 6.0 (4.4) 8.7

M.genitalium 467 509 78.4 9.9 (1.7) 17.3

M.jannaschii 1680 1841 72.7 4.6 (0.8) 12.9

M.pneumoniae 678 734 70.1 7.8 (4.1) 13.6

M.thermoauthotrophicum 1869 1944 70.9 5.0 (3.5) 8.6

Synechocystis 3169 3360 89.6 4.0 (1.5) 9.4

Averaged 21 943 23 194 78.1 5.4 (2.7) 10.4

The second and third columns show the number of genes annotated in GenBank and the corresponding number of genes predicted, respectively.
‘Exact prediction’ is a fraction of annotated genes for which both the 5′-end and the 3′-end were predicted exactly. ‘Missing genes’ is a fraction
of annotated genes for which neither the 5′-end nor the 3′-end was predicted exactly; in this column the numbers in brackets show the
missing genes after using the combined program (GeneMark.hmm + GeneMark). ‘Wrong genes’ is a fraction of predicted genes for which
no annotated analog was found. All measures are expressed as percentages. The data shown are the results obtained after post-processing
procedure (RBS recognition).

Higher order models and models of Typical and Atypical
genes

The results presented in Table 2 were obtained by GeneMark.hmm
employing second order Markov models of coding and non-coding
regions. The graphs in Figure 3a show the percentage of exact
predictions as a function of the model order. Surprisingly, even
the zero order models yield high enough accuracy. The reason for
this is that GeneMark.hmm accumulates detectable signal within
the rather long bacterial gene even if the relatively weak zero
order model is used. This does not happen with the GeneMark
algorithm where the length of an analyzed DNA sequence is
restricted by the short window, and, as a consequence, the higher
order models are known to be more accurate in coding potential
detection (29). The later corresponds, however, to the observation
(Fig. 3b) that the number of missing genes, presumably short
genes, decreases as the model’s order increases. Note that the
slight accuracy improvement observed for higher order models
was achieved at the price of a non-linear increase in computer
memory requirements. For analysis of eukaryotic DNA with
coding regions (exons) being, in average, much shorter than
bacterial coding regions this is a well justified price.

The role of Atypical gene model is illustrated in Figure 3.
Switching off the Atypical model produced a decrease in the
number of exact predictions (Fig. 3a) and an increase in the
number of missing genes (Fig. 3b).

Gene overlaps

In spite of casual opinion that gene overlaps are likely to happen
only in phage and virus genomes where requirements for tight
gene packing are ‘vitally’ important, the complete bacterial
genomes demonstrate quite a few gene overlaps. The overlap
regions are of special interest because of their double genetic code
load. The distributions of length of gene overlaps observed in
E.coli genome are shown in Figure 4. These length distributions

are different for overlapping genes residing in the same strand
(Fig. 4a) and for genes residing in opposite strands (Fig. 4b). The
overlaps in the same strand are more common, with the trivial
overlaps of the length 1 (TGA/ATG) or 4 (ATGA) constituting the
majority (406 out of 695 same strand overlaps). An overlap length
larger than 48 nt was observed in 45 cases. As expected, there
were no observed overlaps in the same strand with a length equal
to a multiple of three.

Note that at least one verified example, the E.coli gene infB,
presents a special case that defies the normal rules. The infB gene
was shown to have two translation initiation codons situated at a
significant distance from each other. Two different proteins are
encoded within one and the same ORF (30) that can be considered
as the exceptional case of same strand overlap.

More than one third of the number of overlaps between genes
residing in opposite strands (39 out of 113 overlaps) are the trivial
overlaps of length 4 (TTAA, TTAG, CTAA, CTAG). In 23
instances, the overlap length was larger than 48 nt. We observed
similar distributions of overlaps in other complete genomes (data
not shown). The gene overlaps cause several difficulties for a high
accuracy prediction. First, some overlapping genes could be
missed (see above). Second, it might be hard to exactly predict the
5′-end of the gene whose translation initiation codon and
ribosome binding site fall into the overlap region where
oligonucleotide statistics may not fit to regularly used models.

In the extreme case, the overlap may contain a whole gene. For
example, in the E.coli genome the 714 nt long coding region
located near the origin of replication (10 643…11 356) overlaps
the 591 nt gene residing in the opposite strand (10 725…11 315).
The 714 nt gene was exactly predicted by GeneMark and by
GeneMark.hmm (and predicted by ECOPARSE in the region
10 643…11 293). However, all three methods missed the 591 nt
gene completely. The existence of the 591 nt gene was
experimentally confirmed (31). ‘It is the direct strand 603 nt ORF
from which the E.coli heat shock protein HtpY is expressed’ (this
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Figure 3. GeneMark.hmm performance as a function of the Markov chain order
used to calculate the probability of observed nucleotide sequence. The results of
comparison between the annotated and predicted parses are shown for the sequence
of the first 500 000 nt taken from the entire E.coli genomic sequence. This contig
contains 468 annotated genes. (a) Exact prediction: the fraction of annotated genes
for which both the 5′ -and 3′-ends have been predicted exactly; diamonds: the
predicted parse was generated by the Viterbi algorithm using the Markov models
for Typical genes only; open circles: the Markov model for Atypical genes were
included into the GeneMark.hmm algorithm; filled circles: the parse was corrected
by the post-processing with the use of the RBS model. (b) Missing genes: the
fraction of annotated genes for which neither their 5′- nor 3′-ends were predicted
exactly (the post-processing procedure does not change the number of missing
genes (see Table 2). The data legend is the same as in (a).

603 nt ORF contains the 591 nt gene mentioned above). With
regard to the longer 714 nt ORF in the complementary strand,
predicted by the computer methods, all attempts to demonstrate
the expression of this ORF remained unsuccessful (31). This led
to the conclusion that this ORF ‘may be transcribed in vivo, albeit
at very low levels’. Note that among 197 residues of HtpY protein
there is an unusually high abundance of serines (42 residues) and
cysteines (17 residues). This highly biased amino acid composition
makes the HtpY gene a difficult target for any statistical gene
finding method.

GeneMark.hmm and GeneMark combination

The results presented above demonstrate that GeneMark.hmm
provides an improved tool for exact prediction of bacterial genes.

Figure 4. The distribution of the E.coli genes overlaps over their length.
(a) Same strand overlap; (b) opposite strands overlap.

One drawback is the tendency to underpredict genes with overlaps.
Nevertheless, it is worth mentioning that GeneMark.hmm and
GeneMark have complementary properties in the sense that the
genes missed by GeneMark.hmm may be recovered by GeneMark
and the partial gene predictions made by GeneMark may be
corrected by GeneMark.hmm. A combination of the two
programs could be, therefore, an even better tool for gene
prediction. Note, though, that we do not mean such a combination
that would decrease the number of false negative predictions at
the mere price of an increase of the number of false positive ones.
By selecting those GeneMark predictions that are clear patches to
the GeneMark.hmm prediction list we indeed avoided an increase
in the number of false positives. The evaluation of the combined
program for the 10 genomes has shown that the fraction of
missing genes significantly decreased (Table 5). As is seen, one
of the largest figures of missing genes, 4.4%, was observed for
H.pylori. It is worth mentioning that of 956 genes of H.pylori that
have verified protein database matches, the combined program
missed only seven genes. The combined GeneMark.hmm and
GeneMark program with about a 1 min run time for a sequence of
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100 kb, is available through Internet: http://genemark.biology.
gatech.edu/GeneMark
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