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ABSTRACT

The number of completely sequenced bacterial
genomes has been growing fast. There are computer
methods available for finding genes but yet there is a
need for more accurate algorithms. The GeneMark.hmm
algorithm presented here was designed to improve the
gene prediction quality in terms of finding exact gene
boundaries. The idea was to embed the GeneMark
models into naturally derived hidden Markov model
framework with gene boundaries modeled as transitions
between hidden states. We also used the specially
derived ribosome binding site pattern to refine
predictions of translation initiation codons. The
algorithm was evaluated on several test sets including
10 complete bacterial genomes. It was shown that the
new algorithm is significantly more accurate than
GeneMark in exact gene prediction. Interestingly, the
high gene finding accuracy was observed even in the
case when Markov models of order zero, one and two
were used. We present the analysis of false positive
and false negative predictions with the caution that
these categories are not precisely defined if the public
database annotation is used as a control.

INTRODUCTION

translation initiation codon associated with the protein N-terminus)
might not be precisely predicted. The range of uncertainty for the
initiation codon position is of the size of GeneMark sliding window,
i.e. (100 nucleotides (nt). As a palliative, GeneMark indicates
several possible start codons and scores them (http://intron.
biology.gatech.edu/GeneMark ). However, the exact prediction of
the N-terminus is important for further fuianal analysis of a
putative protein, and, eventually, for correct annotation of
thousands of genes in growing databases. Therefore we see our
goal as developing an algorithm with a high accuracy of exact
gene prediction.

Gene annotation in bacterial DNA defines a functional role of
each nucleotide in the sequence. For a DNA sequence designatec
asS = {by, by, ..., b }, where thely stands for the nucleotide
symbol, T, C, A or G, and is the sequence length, the functional
role of each nucleotide could be indicated by a ‘functional’
sequencé ={ay, a, ...,a_}. Here eactg; may take integer value
‘0’ if nucleotidely is a part of non-coding region; value ‘11jf
is a part of a gene residing in the direct DNA strand; and a value
of ‘2’ if by isinvolved in encoding a protein in the complementary
DNA strand. The aim of gene finding is to determine the ‘true’
functional sequencé for the anonymous DNA sequen&e
Statistical patterns of nucleotide ordering specific for DNA
sequences that carry (or do not carry) the genetic code have been
used in gene finding algorithms since the 1980s (se&Zébr
review). In GeneMark, for instance, these patterns were quantified
and converted into parameters of Markov chain models A

For the ‘post-genomic’ molecular biology, a computer becamgeneral pattern recognition algorithm should be able to compute

the major tool for interpreting DNA and protein sequencéhe probability that a particular functional sequeAasderlies
information. By the end of 1997, 10 complete bacterial genomesgiven sequencg P(ALS) =P(ay, a, ...,a by, by, ...,k ). The

were available from the GenBank datababemophilus core GeneMark.hmm procedure compute$AelS) value and,
influenzae (1), Mycoplasma genitaliun(2), Methanococcus eventually, defines the functional sequeAtéaving the largest
jannaschii (3), Mycoplasma pneumoniagt), Synechocystis value P(A'0S) among all possibla. The functional sequengé,
PCC6803 %), Escherichia coli(6), Helicobacter pylori(7), the output of the algorithm, describes the most likely annotation
Methanobacterium thermoauthotrophici§f), Bacillus subtilis  of the DNA sequencg&

(9), Archeoglobus fulgidugL0). The majority of genes in these The problem of th&(ADS computation and maximization is
genomes were annotated using theoretical (computer derived) ratbensidered in terms of hidden Markov models (HMM), the
than experimental evidence. With many more genomes to comet@chnique that was successfully applied in speech recognition (see
the near future, the methods of highly accurate DNA sequencef. 13 for review). Applications of HHM theory to DNA and
interpretation, particularly gene finding, become increasinglprotein sequence analysis have also been described by severa
important. Here we present a new method, GeneMark.hmm, fgroups (4-21). The algorithm ECOPARSE developed by Krogh
gene finding in bacterial genomes. The previously developest al (17) was the first HMM based gene-finding algorithm
GeneMark prograni(), that has been used in practiceq,9-10),  intended specifically for thE.coli genome. The GeneMark and
identified a gene mainly as the ORF (open reading frame) where iBeneMark.hmm have been compared with the performance of
gene is residing. However, thé Boundary of the gene (the ECOPARSE (see below).
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GeneMark.hmm able to correctly identify ORFs where 98% of all genes predicted
by GeneMark.nmm resided. Also there were genes missed by
- GeneMark.hmm, mainly due to overlaps, that were recovered by

GeneMark. However, the GeneMark.hmm program made several
Direct strand coding state:
Typical gene of length i nt
Direct stop
&
Direct strand coding state:

new predictions and some of them were confirmed by similarity
search. It seems that the GeneMark.hmm development brought us
closer to the goal of accurate prediction of bacterial genes and
; t further arguments in favor of this statement are presented below.
Atypical gene of length j nt
Reverse strand coding state:
Typical gene of length k nt
Atypical gene of length m n
(AE000511),M.thermoauthotrophicunfAE000666),B.subtilis
(AL009126), Archeoglobus fulgidu¢AEO00782). The data on
Figure 1.Hidden Markov model of a prokaryotic nucleotide sequence used in thea-”nOta-te(_E-COII RBS were prowded_ by W. quezaj. The data
GeneMark.hmm algorithm. The hidden states of the model are represented as ovalf) experimentally verified N-terminal protein sequences were
in the figure, and arrows correspond to allowed transitions between the states. kindly provided by A. Link 23). The Markov models parameters

were obtained from the GeneMark library (http://exon.biology.

gatech.edulgenmark/matrices/ ).
The HMM framework of GeneMark.hmm, the logic of

transitions between hidden Markov states, followed the logic
the genetic structure of the bacterial genome {ffig-he Markov
models of coding and non-coding regions were incorporated infiche architecture of the hidden Markov model used in the
the HMM framework to generate stretches of DNA sequenc&eneMark.hmm algorithm is shown in Figule To deal

with coding or non-coding statistical patterns. This type of HMMsimultaneously with direct and reverse DNA strands, as was done
architecture is known as ‘HMM with duration’l). The in the initial GeneMark algorithml(), nine hidden states were
sequence of hidden states associated with a given DNA sequedeéned. These states correspond to the functional units of
S carries information on positions where coding function idacterial genomes, namely: (i) a Typical gene in the direct strand,
switching into non-coding and vice versa. Thus, the previouski) a Typical gene in the reverse strand, (iii) an Atypical gene in
introduced functional sequende becomes equivalent to the the direct strand, (iv) an Atypical gene in the reverse strand, (v) a
sequence of hidden states, called the HMM trajectory. Since then-coding (intergenic) region, (vi/vii) start/stop codons in the
nucleotide sequen&is given, every possible sequerceould  direct strand, and (viii/ix) start/stop codons in the reverse strand.
be assessed by the valu€@ioS), the conditional probability of It should be mentioned that this HMM does not account for gene
A givenS This evaluation made use of the whole set of statisticalverlap (see below). The models of Typical and Atypical genes
models (see Materials and Methods). The core GeneMark.hmmere derived from the sets of protein-coding DNA sequence
procedure is the Viterbi algorithrhd) that finds the sequen#é.  obtained by clusterization of the whole set of genes from the
However, this core procedure did not take into account thgenome of a given specie82. The names ‘Typical’ and
possibility of gene overlaps since the observed overlaps, thoutfktypical’ were used for the following reason. For tBecoli
frequent, were not extensive enough to provide sufficient data fgenome it was shown that the majority oftheoligenes mainly
deriving statistical models of overlapping genes in severdlelong to the cluster of Typical genes, while many genes that are
possible orientations. To further improve the prediction of théelieved to have been horizontally transferred int&tbeligenome
translation start position the model of the ribosome binding sitall into the cluster of Atypical genes. Note, that the comprehensive
(RBS) was derived. This model was used to refine translaticccounts on thg.coli genes evolutionary classification have been
initiation codon prediction at the post-processing step. presented earlieR{,25).

The GeneMark.hmm program was evaluated on several testAn important feature of the proposed HMM architecture is that
sets including sequences of the 10 complete bacterial genonsgg/ coding as well as non-coding hidden state is allowed to
mentioned above. The GeneMark.hmm predictions were compargdnerate a nucleotide sequence, observed sequence, of the lengtl
with GeneBank annotations. It was shown that the frequency of hidden state duratioril®). Such an explicit state duration
exact gene predictions is much higher than that of GeneMark (thBMIM was used previously in algorithms Genie and GENSCAN
version which also used the RBS model). We understand that t{13,20). The crucial point, however, is that an observed DNA
evaluation of the algorithm performance by comparison with theequenceés = {by, by, ..., } is thought to be generated by an
database annotation may not be enough conclusive evidene®JIM such as depicted in Figufe in parallel with the HMM
since only in a few cases is the precise position of the translatitmansitions from one hidden state to another. The hidden state
initiation codon known from an experiment. However, therajectoryA, one of a variety of allowed paths, can be concisely
database annotation of the initiation codon represents the expeapresented as a sequenc®ldiidden stateg having duration
decision summarizing much indirect evidence and is thought th: A = {(a1d1)(axdy) ... @)}, Z& = L. For a given sequence
be close to the real one. The GeneMark program, actually, wakobserved states (nucleotid&s¥ {by, by, ...,1n } the optimal

Direct start
codon
Non-coding state
of length n nt
[

Reverse stop
codon

MATERIALS AND METHODS

Materials

We have used DNA sequences of the complete genomes of
H.influenzae(GenBank accession no. L42028},genitalium
(L43967), M.jannaschii (L77117), M.pneumoniag(U00089),

Synechocysti®CC6803 (synechol.coli (U00096), H.pylori

Hrodel of prokaryotic sequence structure
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trajectory of hidden (functional) stai&sis defined as the trajectory state ‘1’ corresponding to a coding region, the probalbifia;, by,
(functional sequencel with the maximal value of conditional ...,ky), of observing a particular DNA sequendg, {oy, ..., ky} as
probability P(ACIS). Therefore, a computer optimization procedurea part of a coding region was calculated using the three-periodic
is supposed to find the maximum likelihood sequeficgéhat,  inhomogeneous Markov chain modgl), For non-coding state ‘0’
according to its physical meaning, defines the predicted locatioti®e probability of observing sequends,{o, ...,by} as a part of a

of protein coding regions in the nucleotide sequéhce non-coding regionPo(by, by, ..., by), was calculated using the
homogeneous Markov modéllj. The probabilityp,(d) that a state
Viterbi algorithm for variable duration HMM a has duratiord was defined by analytical approximation of the

. ) frequency distribution of the lengths of coding (hon-coding) regions
The problem formulated above is equivalent to a problem Gf iheE coligenome (FigR). As is seen in Figutk the only allowed
finding the trajectonA = {(a; d1 )(a2 d2’) ... @v dv )} that  yansitions between hidden states were ‘non-codifajrect

has the largest probability of occurring simultaneously with thggar'_, ‘direct coding’ ‘direct stop’— ‘non-coding’, as well as
sequenc&in comparison with all other possible trajectories:  «on_coding'— ‘reverse  stops ‘reverse  coding ‘reverse

start’'— ‘non-coding’. Therefore, just a few additional aaeters,
such as the probabilities of possible start codons, initial and

Pmax = P(A*, § = max  Probf(a;d;)(a,d;).(aydy). bib-b ) 1 transition probabilities for hidden states had to be specified. Initial
(al‘:ﬂl)“'(a“"d“") probabilities for four coding and one non-coding states were set

Sds=L to 0.2. Initial probabilities for start/stop states were set to zero.
s=1 The probabilities of the start codons were defined in agreement with

) o ) ) _the E.coli genome statistic®?(ATG) = 0.905,P(GTG) = 0.090,
To describe the optimization algorithm we introduce the quantifiy TTG) = 0.005. The probability of transition from a naeing
(13): state to a Typical (Atypical) coding state was set to 0.85 (0.15).
These values are the estimates of frequencies of ‘native’
(‘foreign’) genes in thé.coli genome suggested by Medigete

zy(am, dm) = max [Prob{(a,dy)...(ay 4dm_q). b1--by_g }0a 4 am] 2 al. (24) and LawrenceXs).
(a]r_:}z...(am—ldm—l) Par(dmPar(by_g, +1-b))
Z ds = -dm
s=1

wheremis the number of hidden states visited during generatioRost-processing: finding RBS
of the firstl nucleotidesqam_ L am is the probability of transition

from hidden stat@y,; to statean, p,(dy) is the probability of ~As follows from the described HMM architecture (Fig.the

durationd, for statean, and Pam (O_gm+1 ... ) is the probability  optimal sequenca” found by the Viterbi algorithm should have

of observing (generating) the nucleotide sequdngg:+1, ...,Ln,  predicted genes separated from one another by at least a 1 nt long

given the statey. By induction (m= 2) we have intergenic region. Therefore, the actual overlap of two genes will
prevent finding the exact location of at least one gene. Initially, we

H@amdm) =  max [z (A 1.4m)da;, 5 amlPam(@mPan(b_g, +1-b) 3 considered an overlap of bacterial genes as an unlikely event.

(@m-29m-1. However, when the larger body of complete genomic sequences
became available we found that at least short overlaps are quite
{a*(@),d*| (@} = argmax[z(@m dmdamal 2 =1 = L-1 4 common in bacterial genomes (see below). Obviously, the Viterbi
(amdm) algorithm tends to predict genes involved in overlaps shorter than
they really are. Therefore, we used a post-processing procedure,
Pmax = max 2z (ay, dy) 5  searching for ribosome binding site (RBS), to refine initial Viterbi
(amdm predictions. For a predicted gene, the RBS was searched in the
interval from —19 to —4 nt upstream to each alternative start
{a*,d* } = argmax(z, (ay, dy)] 6  codons located between the position of start codon suggested by
(amdm the Viterbi algorithm and the position of start codon producing the

Equations3-6 present the Viterbi algorithm which finds for the ongest open reading frame (ORF) for the predicted gene. The
given (observed) nucleotide sequerethe maximum likely initially predicted translation intiation position was redefined if
trajectoryA”. This algorithm is an extension of the Viterbi algorithm, the score of one of the RBS candidates associated with an admitted
described by Rabiner®), for the case of HMM with variable alternative start exceeded a certain threshold (see below). Otherwise,
duration of hidden states. The equations for straightforwardl® Position suggested by the Viterbi algorithm was accepted.

initialization and backtracking procedures are not shown. ‘The probabilistic model for the RBS was derived as follows.
First, theE.coli records in GenBank with annotated RBSs were
Parameters of the model analyzed, and 325 genes with known RBSs were selected from

the completé=.coli genome §). Second, from each of these 325
The described above mechanism of generating nucleotidequences, the 16 nt sequence preceding the annotated start (fron
sequence by variable duration HMM could naturally use the —4 to —19) was collected. Third, these 325 short sequences were
Markov models of coding and non-coding DNA sequences. Thesebjected to the multiple alignment procedure performed by the
models have been already defined the GeneMarkitiigo(11).  simulated annealing algorithiag). Specifically, we have chosen
Therefore, the time-consuming and cumbersome procedure &ffixed size windoww, and searched for the best alignment by
HMM training was largely avoided. For instance, given a hiddemaximizing a matching score
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a Table 1.Nucleotide frequencies for the RBS model
0.003

) Nucleotide Position
Histogram
m— Gamma distribution 1 2 3 4 5

0.161 0.050 0.012 0.071 0.115
0.077 0.037 0.012 0.025 0.046
0.681 0.105 0.015 0.861 0.164
0.077 0.808 0.960 0.043 0.659

o
o
13
[

® >» 0o -

0.001 |

Probability density

The model was derived using the multiple sequence alignment of 325 annotated

ribosomal binding sites (see text). Given the set of aligned sequences, the frequency
of a given nucleotide was calculated as the number of occurrences of this nucleotide
in a given position divided by the total number of sequences.

0 500 1000 1500 2000 2500 3000

Length (nt) The finally obtained alignment of the 325 sequences has

revealed the RBS sequence pattern in the form of a matrix of

positional nucleotide frequencies (Talle It is seen that the

matrix defines the strong consensus sequence: AGGAG, which
b is complementary to a pentamer located irBlosli 16S rRNA
near its 3end. This observation is in a good agreement with the
Histogram generally accepted mechanism of ribosome-mRNA binding.
= Exponential distribution Note that a similar result was obtained previously).( To
evaluate a putative RBS we calculated its probabilistic score as
the product of corresponding elements of the matrix given in
Table 1. The threshold value for RBS score was chosen as
0.00025. It can be shown that the log of this score is proportional
to ribosome binding energy (with appropriate sign) under the
assumption of independent formation of ribonucleotide pairs.

0.012

0.008 !

0.004 |

Probability density

Algorithm modifications for genomes other thanE.coli

0 00 200 00 w00 w0 The GeneMark.nmm predictions were obtained for nine other

Length (nt) bacterial genomes. In these computations we used the species
specific Markov models of coding and non-coding regions. All

_ - N N _ _ ~ other parameters of the GeneMark.hmm algorithm stayed the

Figure 2. Length distribution probability densities of protein-coding and non-codmg})ame as defined for tEecoIigenome It is worth mentioning that

regions derived _from the ‘annotatEd:OIi geno_mic DNA (hi_stograms)aXCoding for the gram-positive bacteriuni éubtili we have slightl

regions; the solid curve is the approximation ybgistribution g(d) = No(d/Dg)? . g p At : S i gntly

exp(-e/Dg), whered is the length in nDe = 300 ntN; is the coefficient chosen to Modified the RBS prediction procedure. In species, such as

normalize the distribution function on the interval from 30 nt (the minimal length dB.subtilis that do not have the ribosomal protein S1 involved in

coding rehg'on) fo 7155 nt k()the maximal I'Zhgt?l;tf(@d%“'iid'”g(zg‘;”sirfhfg:“d initiation of the ribosome-mRNA complex, the elevated strength

curve is tl eapproxmatlon yexponentla istril = N\LWeXp h), Wher . H H H H

=150 nt. The coefficieritl, normalizes the distribution function on the interval from of ”bos.ome blnd_l_ng Slt.es IS thOl_Jgh_t to be a co_mpensatory

1 to 1000 nt. mechanism to facilitate ribosome binding. ForBtsubtiliscase

the described above alignment procedure produced a highly

biased frequency pattern with the strong RBS consensus. To

w obtain reasonable agreement between predicted initiation codons
R= > nik 7 of B.subtilis genes and annotated ones we had to admit to
k=1 competition the alternative start codons located not only upstream

Heremny(K) is the number of symbols(b =T, C, A, G) in the to the Viterbi prediction of translation start, but also those located
position (columnk of the window alignment. In each step of thedownstream up the 66 nt distance. We think that this rule could
simulated annealing algorithm iterative procedure, one of the 32& applicable to all other genomes, but presently, there is a
sequences chosen at random was shifted to the right or to the leftydency in genome annotation process to prefer longer ORFs to
relative to the fixed window, for a randomly chosen number afhorter ones provided there is no convincing evidence in favor of
positions (with no gaps, deletions or insertions). The matchirthe shorter one. Statistically, this tendency is well justified since
scoreR’ for the resulting alignment was calculated (equafjon it is expected that in about 75% of cases actual genes occupy the
If R was larger thaR, the new alignment was unconditionally longest ORFs. This figure can be obtained as follows. Consider
accepted and used as the starting point for the next iterative st set of four codons: ATG, TAA, TAG, TGA and an intergenic
Otherwise, the new alignment was accepted with the probabilitggion situated upstream to the true initiation codon of aXene
exp[-R -R’)/T], where the paramet@rcan be interpreted as the Read codons in'Hirection in the same reading frame as the
‘temperature’ in the annealing procedure. We used the standandtiation codon until the first codon from the above set is met. If
exponential cooling schedulg+1 = cT,, where ¢ = 0.999999. this codon is ATG, then the geXedoes not occupy the longest
The window size was chosen to be equal to5. ORF. Otherwise gen¥ does occupy the longest ORF, which
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happens in 75% of cases assuming that the four codons specifedl #2 were not verified in experiments. In control sets, #3 and #4,
above occur with equal frequencies and ATG is the only possitliee Viterbi algorithm exactly predicted 78 and 76.5% of the genes
initiation codon. InB.subtilisthe presence of a strong RBS siterespectively. These two close figures give a more realistic estimation
provided a good reason to override the ‘longest ORF’ annotatiaf the Viterbi algorithm predictive power for genes with no overlaps.
rule and shorter ORFs iB.subtilis were annotated more The percentage of tHecoli genes predicted either exactly or

frequently than in other bacterial genomes. with misplaced translation starts was 95, 98, 98 and 99.5% for the
sets #1, #2, #3 and #4 respectively. These figures did not change

RESULTS AND DISCUSSION when the RBS prediction was combined with the Viterbi
prediction at the post-processing step (PP in T3bldowever,

Gene prediction accuracy for many genes initially partially predicted by the Viterbi

Th of f the GeneMark h test %Iﬁorithm the correct position of the translation start was found.
€ performance of the eneMark.nmm program was teStetha 4 ction of exact predictions increased from 58 up to 75% for
using several control sets including 10 complete bacterlgle

genomes. Our focus was on tBeoli genome. The complete t #1, from 71 up to 80% for set #2, from 78 up to 89% for set
. . o
genomic sequence &fcoli consists of 4 639 221 nt with 4288 #3, and from 76.5 up to 87.5% for set #4. One may conclude that

RBS correction produces 10% increase in the percentage of
genlgs dann%gew?.( When the GeneMark.hmm pro%ﬁﬁg WaSeyactly predicted genes under non-overlap conditions. Also, it
wero dentiied. Each precicted gone was also characterized JEPEarS flom the results of program testing on set #1, that gene

. ; . ) e
Typical or Atypical £2) depending on the type of the underlying rlaps were responsible fat0% of non-exact predictions.
coding (hidden) state. Twenty percent of the predicted genes wi
identified as Atypical ones. The gene finding accuracy wa:
evaluated using four control sets of genes annotated B.¢bé A gene annotated in GenBank was counted as ‘missing’ in
genome (Table?). Control set #1 contained all annotaiédoli  predictions if neither its'Sor 3 boundary was precisely found by
genes. Set#2 was compiled from non-overlappingligenes. The  the algorithm (even if there was some overlap between annotated
E.coligenes whose RBS were annotated in GenBank constituted §atl predicted genes). The GeneMark.hmm algorithm missed 213
#3. The genes coding for proteins with experimentally verifiedut of the 4288 annotaté&icoli genes (set #1 in Tab®. Some of

issing’ genes (false negatives)

N-termini (23) were included in set #4. these genes, 113 out of 213, had a length exceeding 300 nt. In fact,
the majority of these 113 genes overlapped with genes located in the
Table 2. The GeneMark.hmm performance opposite strand (the ‘stop near stop’ overlap). This fact, along with
the observation that the percentage of missing genes in sets #2, #2
Set# Number Prediction Exact Only 3-end  Missing and #4 is lower than in test set #1, explains why these relatively long
of genes method  prediction prediction genes genes were missing. If an overlap occurs, the stop codons of the two
1 4288 VA 2483 (58%) 1592 (37%) 213 (5%) genes fall into the region of overlap, and, consequently, at least one
1 4288 bp 4233 (75%) 842 (20%) 213 (5%) stop codon is ovgrlooked by the algquthm. This means that a local
‘mishap’ such as just the four nucleotide overlap between two genes
2 2821 VA 2017 (71%) 750 (27%) 54 (2%) (i.e. TTAA, TTAG, CTAA, CTAG) makes the Viterbi algorithm lose
2 2821 PP 2268 (80%) 499 (18%) 54 (2%) tbhe wholedgebne. rl:lot% that maEy overlapping genes are noth likely to
e misse the GeneMark program. Its ‘voting’ mechanism
3 325 VA 255 (78%)  64(20%) 6 (2%) accounts for é/etection of the coFo)Iing potential withig a number of
3 325 PP 289 (89%) 30 (9%) 6 (2%) windows covering a given ORF, thus suppressing the fluctuations
4 204 VA 156 (76.5%) 47 (23%) 1 (0.5%) that might affect just a few windows.
4 204 PP 177 (87.5%) 26 (12%) 1 (0.5%)

‘Wrong’ gene predictions (false positives)

e T e s e s s EFong 4440 genes predicte by the GeneMark i program
by the GeneMark.hmm program with the Viterbi algorithm only. The rows SE.collgenome, there were 363 genes with neither ‘e
designated as PP show the results of prediction with post-processing (the rBQN the 3end matched to any annOtate(_j gene. Some of these
identification procedure). The ‘Exact prediction’ column contains the numbers dPredictions, 231 out of 363, were located in the regions annotated
genes with both'@nd and Send predicted exactly. The numbers of genes predicte®S Non-coding and these 231 predictions might be classified as
with the 5-end misplaced are shown in the column ‘Oriterdd prediction’. The ~ ‘wrong’ or ‘new’. Thirteen of these predictions had a length larger
genes annotated but not correctly predicted eithet- ar &t 3-end fall into the  than 300 nt. The protein products of these putative genes were
category ‘Missing genes'. The percentage shown in parentheses is the fractiwarched for similarity against the non-redundant protein sequence
relative to the total number of annotated genes. database using the gapped BLASB)( Four putative proteins
were found to have significant similarity with hypothetical
The evaluation results (Talily show that the Viterbi algorithm proteins previously identified in other species (Teb)leThis
alone (VA) was able to exactly predict 58% of Eheoli genes in  analysis indicates once again that genome annotations in public
Set #1. The gene overlap seems to be an important factor indegtabases are not perfect. Some real genes still may go unnoticec
since the percentage of exact gene predictions jumped up to 7t¥ile some already annotated may not be functional. At any rate,
when the overlapping genes were eliminated (Set #2). It is wortfalse positive’ gene predictions need much further analysis
mentioning that both the 58% and the 71% figures may not tefore they are sorted out as wrong ones. Therefore, the exact
consistent estimates of the algorithm real performance since tinactions of wrong predictions as well as the fractions of predicted
majority of annotated translation initiation codons in control sets #iew genes remain to be determined.
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Table 3.The results of similarity search for four putatizeoli proteins

Gene # Strand 5'-end 3'-end Score E-value Subject

1 comp. 238736 238257 270 4e-72 gi|1552787; hypothetical protein

2 comp. 279586 279248 229 4e-60 |Ib#1306; hypothetical protein
(argF-lacZ region)

3 direct 1286288 1286854 122 le-27 |[1gB7481; 35 pct identical

<3 gaps> to 54 residues of approx.
1040 aa protein BGAL_KLEPH

4 direct 2201992 2202309 217 2e-56 |P3834TYEHK; hypothetical
12.6 kDa protein

Locations of the genes are specified. The similarities were found by the gapped BLAST algorithm (28).

Comparison with the earlier programs probabilities. The GeneMark.hmm predictions Ecoli were
recalculated using the transition probability matrices obtained by
We have compared the performance of the GeneMark.-hmining on an alternative setBfcoligenes £2). The prediction
program with the GeneMark programil) and with the yersys annotation comparisons were close to those shown in
ECOPARSE programl()). The ECOPARSE algorithm differs apie 2. For example, the number of set #1 genes exactly

from GeneMark and GeneMark.hmm, particularly, in analyzingyregicted (with post-processing) was equal to 3088 compared to
DNA strands in turn, one after another, while GeneMark angs33 shown in Table. A 20% variation of other algorithm

GeneMark.hmm deal with both strands simultaneously. The teshrameters had changed the overall performance even less
set for this comparison included fiecoli DNA contigs of noticeably (data not shown).

30000 nt length each (the maximum possible length for the

ECOPARSE e-mail server input sequence as of June, 1997). The

predictions for each DNA contig were obtained by each of the thre&her bacterial genomes

algorithms (including post-processing cycles) and compared with

the GenBank annotatiod)( The results (Tablé) indicate that the The GeneMark.hmm predictions obtained for nine other bacterial
GeneMark.hmm program was more accurate in exact poeic  genomes were compared with the GenBank annotations and the
71 versus 62% by GeneMark and 53% by ECOPARSE. It is wortlesults are shown Taliielt is seen that the program, on average,
mentioning that the current versions of GeneMark and ECQeund exact locations of 78.1% of annotated genes. For 94.6% of
PARSE use RBS models as well. The GeneMark.hmm prograamnotated genes the reading frames were predicted correctly but
also had the least number of missing genes and the hightrst initiation codons did not coincide with the annotated one. The
percentage of annotated genes found exactly or partialpverage percentage of missing genes was 5.4%. For a particular
(Table4). Particularly, the genes thrL, yacG, cspE and ydigenome the frequency of missed genes was strongly correlated
missed by GeneMark were detected by GeneMark.hmm. with the frequency of gene overlaps. The largest frequencies of
overlap were observed Afulgidus(61% of all annotated genes
had overlaps)M.genitalium (59%) andM.pneumonia(51%),

Table 4.A comparison of the GeneMark.hmm program with the GeneMark

program and with the ECOPARSE program while the smallest were found Bisubtilis(24%), H.influenzae
(27%) andM.jannaschii(29%). The average percentage of false

Number _ Prediction Exact Only 3-end  Missing positive predictions, 10%, is relatively high, but how many of

of genes  method prediction prediction  genes these predictions are actually correct remains to be found by

further analysis. We did not use any filters for false positives.

0, 0, 0, . . .. . .
148 GeneMarkchmm 105 (71%) 28 (19%) 15 (10%) Even the restriction on the minimum length of the gene prediction
148 GeneMark 92 (62%) 37 (25%) 19 (13%)  was not applied since the genomic sequence still may contain
148 ECOPARSE 79 (53%) 33 (23%) 36 (24%) small pieces of frameshifted genes. Actually, from 382 gene

predictions that did not find annotated analogsAifulgidus

All designations are the same as in Table 2. The data shown are the average re@@80me, 42 have already been confirmed as real genes and their
obtained by using five sequences of 30 000 nt in length each from theeerdire ~ protein products were included in protein sequence database prior
record (5). The left ends of the sequences have been chasef)asli(®+ 1, where  to our study. By using the gapped BLAST significant similarities

i =1..., 5. Only those annotated genes have been taken for the comparison wih predicted protein products to known proteins from species
predicted parses whosé &nd 3-ends are both inside the chosen sequencegther tham.fulgiduswere found for 18 more predictions. In total,

(148 genes). 291 of the GeneMark.hmm ‘false positive’ predictions for the
10 species were already confirmed to some extent by other
Robustness of the algorithm researches and were included in protein databases. Another

71 predictions, as the current study shows, have good additional
The GeneMark.hmm performance may depend on the choice®fidence (from the gapped BLAST) to be real genes. Many from
the algorithm parameters. The robustness of the algorithm wtee remaining 2068 predictions could be genes encoding so called
tested with regard to the values of the Markov models’ transitiopioneer proteins’ Z9).
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Table 5.Results of GeneMark.hmm predictions for 10 complete bacterial genomes

Genome Genes Genes Exact Missing Wrong
annotated predicted prediction (%) genes (%) genes (%)

A fulgidus 2407 2530 73.1 10.8 (2.0) 15.1
B.subtilis 4101 4384 775 3.6 (2.8) 9.8
E.coli 4288 4440 75.4 5.0 (2.7) 8.2
H.influenzae 1718 1840 86.7 38(3.2) 10.2
H.pylori 1566 1612 79.7 6.0 (4.4) 8.7
M.genitalium 467 509 78.4 9.9 (1.7) 17.3
M.jannaschii 1680 1841 72.7 4.6 (0.8) 12.9
M.pneumoniae 678 734 70.1 7.8 (4.1) 13.6
M.thermoauthotrophicum 1869 1944 70.9 5.0 (3.5) 8.6
Synechocystis 3169 3360 89.6 4.0 (1.5) 9.4
Averaged 21943 23194 78.1 5.4 (2.7) 104

The second and third columns show the number of genes annotated in GenBank and the corresponding number of genepectdalted, res
‘Exact prediction’ is a fraction of annotated genes for which botH-thecsand the'3end were predicted exactly. ‘Missing genes’ is a fraction

of annotated genes for which neither thesd nor the '3end was predicted exactly; in this column the numbers in brackets show the
missing genes after using the combined program (GeneMark.hmm + GeneMark). ‘Wrong genes' is a fraction of predicted gehes for wh
no annotated analog was found. All measures are expressed as percentages. The data shown are the results obtainedesfsamgost-pr
procedure (RBS recognition).

Higher order models and models of Typical and Atypical are different for overlapping genes residing in the same strand
genes (Fig.4a) and for genes residing in opposite strands 4big.The

. _ . overlaps in the same strand are more common, with the trivial
The results presented in TaBlevere obtained by GeneMark.hmm overlaps of the length 1 (TGA/ATG) or 4 (ATGA) constituting the

employing second order Markov models of coding and non'COd"majority (406 out of 695 same strand overlaps). An overlap length

regions. The graphs in FiguBa show the percentage of e)(""Ctl<':1rgjer than 48 nt was observed in 45 cases. As expected, there
predictions as a function of the model order. Surprisingly, EV&liere no observed overlaps in the same strand with a length equal
the zero ordemodels yield high enough accuracy. The reason f% 2 multible of three

this is that GeneMark.hmm accumulates detectable signal WithinNote thzt at least (.)ne verified example, Eheoli geneinfB

the rather long bacterial gene even if the relatively weak zero il hat defies th | rulemfB
order model is used. This does not happen with the GeneMefFf(esems aspecial case that defies the normal rulesifibigene

algorithm where the length of an analyzed DNA sequence as shown to have two translation initiation codons situated at a
restricted by the short window, and, as a consequence, the higﬁ'&?ét;%%n\fvgﬁ;aong: ;LO drr;hza;;moérg&};(vxgt%Igﬁfgégégitgleﬁ;re
order models are known to be more accurate in coding potentﬁ‘a{l1

detection 29). The later corresponds, however, to the observatioﬂslvtlh? etﬁcenpn?]na}(lhci:r%sefct);‘]se:}mre;]ts)tr?n? ovver:Iap. between gen
(Fig. 3b) that the number of missing genes, presumably short ore than one of the number of overlaps between genes

genes, decreases as the model's order increases. Note thatr?l%ding in opposite strands (39 out of 113 overlaps) are the trivial

slight accuracy improvement observed for higher order mode. e:l-rlaps otfhlengthl 4 fTTAf[ﬁ" TTAlG’ C-[ﬁA 4CSTAtG\3\.I Inb23 q
was achieved at the price of a non-linear increase in compuf@ ances, the overiap iength was larger than 46 nt. We observe

memory requirements. For analysis of eukaryotic DNA With'5|milardistributions of overlapsiin othercomple.te. genomes (da_lta
coding regions (exons) being, in average, much shorter thQHtShown)-Th‘? gene Oyerlaps cause severa_lld|ff|cu|t|es for a high
bacterial coding regions this is a well justified price. accuracy prediction. First, some overlapping genes could be
The role of Atypical gene model is illustrated in Figgre Missed (seeabove). Second, it might be hard to exactly predict the
Switching off the Atypical model produced a decrease in th;;:{-end of the gene whose translation initiation codon and

number of exact predictions (Figa) and an increase in the Posome binding site fall into the overlap region where
number of missing genes (Figh). oligonucleotide statistics may not fit to regularly used models.

In the extreme case, the overlap may contain a whole gene. For
example, in theE.coli genome the 714 nt long coding region
located near the origin of replication (10 6481 356) overlaps
In spite of casual opinion that gene overlaps are likely to happdme 591 nt gene residing in the opposite strand (10.225315).
only in phage and virus genomes where requirements for tigiihe 714 nt gene was exactly predicted by GeneMark and by
gene packing are ‘vitally’ important, the complete bacterialGeneMark.hmm (and predicted by ECOPARSE in the region
genomes demonstrate quite a few gene overlaps. The overlHp643..11 293). However, all three methods missed the 591 nt
regions are of special interest because of their double genetic caggme completely. The existence of the 591 nt gene was
load. The distributions of length of gene overlaps observed iexperimentally confirmed(). ‘It is the direct strand 603 nt ORF
E.coligenome are shown in FiguteThese length distributions from which thekE.coliheat shock protein HtpY is expressed’ (this

Gene overlaps
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Figure 3. GeneMark.hmm performance as a function of the Markov chain order

used to calculate the probability of observed nucleotide sequence. The results of

comparison between the annotated and predicted parses are shown for the sequence o ) .

of the first 500 000 nt taken from the enEeoli genomic sequence. This contig Figure 4. The distribution of theE.coli genes overlaps over their length.
contains 468 annotated geneg. Hxact prediction: the fraction of annotated genes (8) Same strand overlagh)(opposite strands overlap.

for which both the 5-and 3-ends have been predicted exactly; diamonds: the

predicted parse was generated by the Viterbi algorithm using the Markov models

for Typical genes only; open circles: the Markov model for Atypical genes were

included into the GeneMark.hmm algorithm; filled circles: the parse was corrected . . .

by the post-processing with the use of the RBS mobpMissing genes: the One drawback is the tendency to underpredict genes with overlaps.

fraction of annotated genes for which neither theinér 3-ends were predicted Nevertheless, it is worth mentioning that GeneMark.hmm and

exactly (theTp%Tt'gro?rehSSigg p{oce‘jgr.e dhoes not change the number of misgiigneMark have complementary properties in the sense that the

genes (see Table 2). The data legend is the same as in (a). genes missed by GeneMark.hmm may be recovered by GeneMark
and the partial gene predictions made by GeneMark may be

603 nt ORF contains the 591 nt gene mentioned above). wig9rrected by GeneMark.hmm. A combination of the two
regard to the longer 714 nt ORF in the complementary stranBfograms could be, therefore, an even better tool for gene
predicted by the computer methods, all attempts to demonstrateediction. Note, though, that we do not mean such a combination
the expression of this ORF remained unsuccesfil This led that would decrease the number of false negative predictions at
to the conclusion that this ORF ‘may be transcribetl/o, albeit the mere price of an increase of the number of false positive ones.
at very low levels’. Note that among 197 residues of HtpY proteiRY Selecting those GeneMark predictions that are clear patches to
there is an unusually high abundance of serines (42 residues) &tGeneMark.hmm prediction list we indeed avoided an increase
cysteines (17 residues). This highly biased amino acid compositi#hthe number of false positives. The evaluation of the combined

makes the HtpY gene a difficult target for any statistical gengrogram for the 10 genomes has shown that the fraction of
finding method. missing genes significantly decreased (Tallé\s is seen, one

of the largest figures of missing genes, 4.4%, was observed for
H.pylori. It is worth mentioning that of 956 gened-bpylori that

have verified protein database matches, the combined program
The results presented above demonstrate that GeneMark.hmissed only seven genes. The combined GeneMark.hmm and
provides an improved tool for exact prediction of bacterial gene&eneMark program with about a 1 min run time for a sequence of

GeneMark.hmm and GeneMark combination



100 kb, is available through Internet: http://genemark.biology.9
gatech.edu/GeneMark
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