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Markov Chains

and

Hidden Markov Models

= stochastic, generative models

Systems Biology / Bioinformatics

Edward Marcotte, Univ of Texas at Austin

(Drawing heavily from Durbin et al., Biological Sequence Analysis)

Markov Chains and Hidden Markov Models are important 

probabilistic models in computational biology

Some of their applications include:

• Finding genes in genomes

• Mapping introns, exons, and splice sites

• Identifying protein domains & families

• Detecting distant sequence homology

• Identifying secondary structures in proteins

• Identifying transmembrane segments in proteins

• Aligning sequences

& outside biology, they have many uses, including:

• Speech, handwriting, and gesture recognition

• Tagging parts-of-speech

• Language translation

• Cryptanalysis and so on….
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The key idea of both of these types of models is that:

Biological sequences can be modeled as series 

of stochastic (i.e., random) events.  

It’s easy to see how a random process might model stretches of 

DNA between genes and other important regions.  

BUT, the idea of modeling something as structured and 

meaningful as a gene or protein sequence by a similar process 

might seem odd. 

It’s important to realize exactly what we’re modeling.  

The idea behind hidden Markov models is not that the sequence is 

random, but that the sequence we observe is one of many possible 

instances of some underlying process or object.  

E.g., actin differs slightly from organism to organism.  

Imagine an “ideal”, but unobservable, actin, defined by specific underlying physico-

chemical properties important for its function.  What we see in nature is not this 

ideal gene, but many variants, all just a bit different.  

In the hidden Markov model, the underlying process or structure is represented as 

hidden, unobservable states and the observed sequences represent possible

sequences compatible with these states.  

We say that the observed sequence is emitted from the hidden states.
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Let’s start with a easier case:  Markov chains

We’ll explore a simple non-biological model:    a coin-toss  

Flip a coin a bunch of times and observe the results, e.g.

TTTHTTTHHTTHTTHTTHHTHTHHHHTTTTTTTTHTTHHTTTHTHHHTHH

We could model this process as two states:

H for heads,

T for tails, 

and the probability of switching between them:

Let’s start with a easier case:  Markov chains

We’ll explore a simple non-biological model:    a coin-toss  

Flip a coin a bunch of times and observe the results, e.g.

TTTHTTTHHTTHTTHTTHHTHTHHHHTTTTTTTTHTTHHTTTHTHHHTHH

We could model this process as two states:

H for heads,

T for tails, 

and the probability of switching between them:

A sequence is a walk along this graph:

H T H   …HHH TH

5

6



4

With a fair coin:

The chance of seeing heads or tails is equal, and

the chance of seeing heads following tails and vice versa is equal.

Therefore,  the transition probabilities

(corresponding to the arrows above) are:

0.5

0.5

0.5 0.5

Important:  All 

probabilities leading out 

of a state add up to 1!

With a biased coin (e.g. tails comes up 90% of the time):

The chance of seeing heads or tails is not equal, nor is

the chance of seeing heads following tails and vice versa.

We might have the same model,

but with skewed transition probabilities :

0.1

0.9

0.1 0.9

Important:  All 

probabilities leading out 

of a state add up to 1!
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Now, imagine a sequence of coin flips generated by these 2 coins, 

one fair and one biased.  

To decide if a sequence of coin flips comes from the biased or fair 

coin, we could evaluate the ratio of the probabilities of observing 

the sequence by each model:

P( X | fair coin ) 

P( X | biased coin )

Does this remind you of something we’ve seen before?

How might we test where the fair & biased coins were swapped 

along a long stretch of coin flips?

How might we test where the fair & biased coins were swapped 

along a long stretch of coin flips?

One way using our current Markov chain model is to calculate the 

ratio of probabilities (e.g. log odds ratio) in a sliding window along 

the sequence:

HTHTHTHTTTTTTTTTTTTTTTTTTTHTHTHTHTHT

FFFFFFFFFFFFBBBBBBBBBBBBBBBBFFFFFFFFFF

Fair

Biased
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How about a biological application?  A classic example is CpG islands

In animal genomes, the dinucleotide CG is strongly underrepresented

(note:  NOT the base pair C:G, but rather 5’-CG-3’)

Why?    C’s are often methylated, and methylated C’s mutate at 

higher rates into T’s.  So, over time, CG’s convert to TG’s

EXCEPT around promoters, which tend not to be methylated.

Thus, CpG ‘islands’ often indicate nearby genes.  Finding them was a 

classic method for annotating genes.

How could we make a CpG island finding model analogous to the 

fair/biased coin model?

A CpG island model might look like:

p(CG) is

higher

A      C

T      G

A      C

T      G

p(CG) is

lower

P( X | CpG island) 

P( X | not CpG island)

CpG island

model

Not CpG island

model

Could calculate                                                                (or log ratio) along a sliding window,

just like the fair/biased coin test

( of course, need the parameters, but maybe 

these are the most important….)
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In these simple models, called Markov chains, 

we don’t have hidden states.  

BUT, we could have used a hidden Markov model:

Now, the underlying state (the choice of coin) is hidden.

Each state emits H or T with different probabilities.

The transition probabilities might be something like:

These are the

emission

probabilities

for each state

0.8

0.1

0.9 0.2

13

14



8

Important questions we might like to ask:

1. Given an observed sequence and a model, what is the most 

likely sequence of hidden states? 

i.e., what is the path through the HMM that maximizes P(p,X|l), 

where p is the sequence of states)?  

In our coin example, we might be given an observed sequence:

HTHTHTHTTTTTTTTTTTTTTTTTTTHTHTHTHTHT

and want to identify when the biased coin was used:

FFFFFFFFFFFFBBBBBBBBBBBBBBBBFFFFFFFFFF

Answer:    Use the Viterbi algorithm.

We’ll see this shortly.

Important questions we might like to ask:

2. Given a sequence of observations, can we calculate the 

probability that the sequence was derived from our model ?

i.e., can we calculate P(X|l), 

where X is our observed sequence, and l represents our HMM ?  

For example, we might want to know if a given protein sequence is a 

member of a certain protein family.

e.g. as we saw 

before

(although 

calculated a bit

differently)
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Important questions we might like to ask:

2. Given a sequence of observations, can we calculate the 

probability that the sequence was derived from our model ?

i.e., can we calculate P(X|l), 

where X is our observed sequence, and l represents our HMM ? 

For example, we might want to know if a given protein sequence is a 

member of a certain protein family.

Answer:    Yes.  Use the forward algorithm.

We’ll see this shortly.

Important questions we might like to ask:

3. Given a model, what is the most likely sequence of 

observations?  

For example, after having trained an HMM to recognize a type of 

protein domain, what amino acid sequence best embodies that 

domain? 

Answer:    Follow the maximum transition and emission 

probability at each state in the model. This will give the 

most likely state sequence and observed sequence.
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Important questions we might like to ask:

4. How do we train our HMM?

i.e., given some training observations, how do we set the 

emission and transition probabilities to maximize P(X|l)?

Answer:    If the state sequence is known for your training set, just 

directly calculate the transition and emission frequencies.  With 

sufficient data, these can be used as the probabilities.  

This is what you will do in Problem Set #2.

With insufficient data, probabilities can be estimated from these 

(e.g., by adding pseudo-counts).  

If the state path is unknown, use the forward-backward algorithm

(also known as the Baum-Welch algorithm).

Important questions we might like to ask:

5. How do we choose the best HMM topology from the many 

possible choices?

Answer:    Good question.  No great answer.  

Often trial-and-error, and understanding the essential features 

of the system that you are modeling.
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Each of these algorithms (the Viterbi, 

forward, and forward-backward) uses 

dynamic programming to find an optimal 

solution.

(just like aligning sequences)

Let’s revisit the CpG islands using an HMM:

• 8 states:       one per nucleotide inside CpG islands (+) and 

one per nucleotide outside CpG islands (-)

• All possible transition probabilities are represented as arrows

• This is a particularly simple model: each state emits the 

nucleotide indicated with probability of 1 and has zero 

probability of emitting a different nucleotide. 
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Given a DNA sequence X (e.g., CGATCGCG), 

how do we find the most probable sequence of states 

(e.g., ----++++)? 

 The Viterbi algorithm

We want to find the state path that maximizes the probability of 

observing that sequence from that HMM model.   

Viterbi does this recursively using dynamic programming.

As with sequence alignment, we’ll construct a path matrix that captures the best 

score (i.e., highest probability) along a single path through the HMM up to each 

position. We’ll “grow” this matrix using a few simple recursion rule. 

Initialization (i=0): v0(0) = 1, vk(0)=0 for k>0

Recursion (i=1 to L): vl(i) = el(xi) maxk (vk(i-1)akl)

pointeri(l) = argmaxk (vk(i-1)akl)

Termination: P(X,p*) = maxk (vk(L)ak0)            

pL* = argmaxk (vk(L)ak0)

The rules (stated formally):
v is an entry in the Viterbi path matrix

e indicates an emission probability
a gives the transition 

probability between 

previous state k and 

current state l

i.e., draw the pointer back to the entry 

that gave rise to the current best score

Find the best score among the 

alternatives at this position

For each Viterbi matrix entry:

We try to maximize the product of prior score and transition from that state to this one.

We then multiply that score times the emission probability for the current character.

x indicates an observed character

i indicates our position in 

the sequence
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Step 1:  Initialize the path matrix.
Observed DNA sequence

Possible

states

For simplicity, let’s assume the 

transition probability from U to 

each nucleotide is 1/8.  We’ll also 

ignore all transition probabilities 

except these for now:

Step 2:  Calculate the elements of the vk matrix for i = 1.

Then keep going for i = 2, etc..

For example, the score vC+(i=1)  =  1 * maxk{1*1/8, 0*aA+,C+, 0*aC+,C+, ..., 0*aT-,C+} = 1/8

For simplicity, let’s assume the 

transition probability from U to 

each nucleotide is 1/8.  We’ll also 

ignore all transition probabilities 

except these for now:
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Step 3:  Keep going for i = 2, etc..

The maximum scoring path scores 0.0032.

The most likely state path is found by traceback from the 0.0032 to give C+G+C+G+.  

In a longer sequence, the model would switch back & forth between CpG and non-

CpG states appropriately. 
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Can this really work?    Here’s a real example. 

An HMM model of

fair and loaded dice:

from 

Durbin 

et al.

Reconstructing which was used when, using the Viterbi algorithm:

1:  1/6

2: 1/6

3:  1/6

4:  1/6

5:  1/6

6:  1/6

Fair

1:  1/10

2: 1/10

3:  1/10

4:  1/10

5:  1/10

6:    1/2

Loaded

0.1

0.05

0.95 0.9

How do we calculate the probability of a sequence given 

our HMM model?

 The forward algorithm

Subtle difference from Viterbi:

Viterbi gives the probability of the sequence being derived from the model given 

the optimal state path.

The forward algorithm takes into account all possible state paths.

Again, it does this recursively using dynamic programming.
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Initialization (i=0): f0(0) = 1, fk(0) = 0 for k>0

Recursion (i=1 to L):

Termination:

The rules (stated formally):
f is an entry in the forward algorithm path matrix

Same idea as Viterbi, but ADD 

the scores leading to the 

current position (not MAX)

For each Viterbi matrix entry:

We try to maximize the product of prior score and transition from that state to this one.

We then multiply that score times the emission probability for the current character.

Note: No pointer!  Just to calculate 

the probability of seeing this 

sequence from this model.

Gap Gap

Match

A toy HMM for sequence alignment

Curr Genomics (2009) 10(6): 402–415

Is this global or local alignment?

How could you change the model to perform the other kind of 

alignment?
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A toy HMM for 5′ splice site recognition (from Sean Eddy’s NBT primer

linked on the course web page)

Could 

we do 

better?

How might you design an 

HMM to recognize a given 

type of protein domain? 
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How might we design 

HMMs to recognize 

sequences of a given 

length? 

p p p p

1-p 1-p 1-p 1-p 1-p

p(Ala)=…

p(Cys)=…

p(Asp)=…

p(Glu)=…

p(Phe)=…

p(Gly)=…

…

p(Ala)=…

p(Cys)=…

p(Asp)=…

p(Glu)=…

p(Phe)=…

p(Gly)=…

…

p(Ala)=…

p(Cys)=…

p(Asp)=…

p(Glu)=…

p(Phe)=…

p(Gly)=…

…

p(Ala)=…

p(Cys)=…

p(Asp)=…

p(Glu)=…

p(Phe)=…

p(Gly)=…

…

p(Ala)=…

p(Cys)=…

p(Asp)=…

p(Glu)=…

p(Phe)=…

p(Gly)=…

…

Amino

acid

Amino

acid

Amino

acid

Amino

acid

Amino

acid

What would this HMM produce?
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