
1

A Python programming primer for biochemists

Systems Biology/Bioinformatics

Edward Marcotte, Univ of Texas at Austin

(Named after Monty Python’s Flying Circus &

designed to be fun to use)

Science news of the day (2015 edition):

1

2

2

Science news of the day (2017 update):

Science news of the day (2018 update):

3

4

3

Science news of the day (2020 update):

In bioinformatics, you often want to do completely new analyses.

Having the ability to program a computer opens up all sorts of

research opportunities. Plus, it’s fun.

Most bioinformatics researchers use a scripting language, such as

Python or Perl, or a programming language such as R.

These languages are not the fastest, not the slowest, nor best, nor

worst languages, but they’re easy to learn and write, and for

many reasons, are well-suited to bioinformatics.

We’ll spend the next 2 lectures giving an introduction to Python.

This will give you a sense for the language and help us introduce

the basics of algorithms

5

6

4

Python documentation: http://www.python.org/doc/

& tips: http://www.tutorialspoint.com/python

Good introductory Python books:

Learning Python, Mark Lutz & David Ascher, O’Reilly Media

Bioinformatics Programming Using Python: Practical Programming

for Biological Data, Mitchell L. Model, O'Reilly Media

Good intro videos on Python:

CodeAcademy: https://www.codecademy.com/learn/learn-python

& an online Python tutor:

http://www.pythontutor.com/

A bit more advanced: Programming Python

Mark Lutz, O’Reilly Media

By now, you should have installed Python on your computer,

following the instructions in Rosalind Homework problem #1.

Launch IDLE:

You can test out commands here

to make sure they work…

…but to actually write your programs,

open a new window.

Type in your program, save the file, and

run it….

This window will serve as a command line

interface & display your program output.

This window will serve as a text editor for

programming.

7

8

5

Let’s start with some simple programs in Python:

A very simple example is:

print("Hello, future bioinformatician!") # print out the greeting

Let’s call it hello.py

Save & run the program. The output looks like this:

Hello, future bioinformatician!

FYI: This is version agnostic. Python 3 takes print(“X”). Python 2 also takes print “X” as in Rosalind

A slightly more sophisticated version:

name = raw_input("What is your name? ") # asks a question and saves the answer

in the variable "name"

print("Hello, future bioinformatician " + name + "!") # print out the greeting

When you run it this time, the output looks like:

What is your name?

If you type in your name, followed by the enter key, the program will

print:

Hello, future bioinformatician Alice!

FYI: Python 3 uses input() instead of raw_input()

9

10

6

GENERAL CONCEPTS

Names, numbers, words, etc. are stored as variables.

Variables in Python can be named essentially anything except

words Python uses as command.

For example:

BobsSocialSecurityNumber = 456249685

mole = 6.022e-23

password = "7 infinite fields of blue"

Note that strings of letters and/or numbers

are in quotes, unlike numerical values.

LISTS

Groups of variables can be stored as lists.

A list is a numbered series of values,

like a vector, an array, or a matrix.

Lists are variables, so you can name them just as you would name

any other variable.

Individual elements of the list can be referred to using [] notation:

The list nucleotides might contain the elements

nucleotides[0] = "A"

nucleotides[1] = "C"

nucleotides[2] = "G"

nucleotides[3] = "T"

(Notice the numbering starts from zero. This is standard in Python.)

11

12

7

DICTIONARIES

A VERY useful variation on lists is called a dictionary or dict

(sometimes also called a hash).

Groups of values indexed not with numbers (although they could

be) but with other values.

Individual hash elements are accessed like array elements:

For example, we could store the genetic code in a hash named

codons, which might contain 64 entries, one for each codon, e.g.

codons["ATG"] = "Methionine"

codons["TAG"] = "Stop codon"

etc…

Now, for some control over what happens in programs.

There are two very important ways to control the logical flow of

your programs:

if statements

and

for loops

There are some other ways too, but this will get you going for now.

13

14

8

if statements

if dnaTriplet == "ATG":

Start translating here. We’re not going to write this part

since we’re really just learning about IF statements

else:

Read another codon

Python cares about the white space (tabs & spaces) you use!

This is how it knows where the conditional actions that follow

begin and end. These conditional steps must always be

indented by the same number of spaces (e.g., 4).

I recommend using a tab (rather than spaces) so you’re always

consistent.

== equals

!= is not equal to

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

Can nest these using parentheses and Boolean operations, such as

and, not, or or, e.g.:

if dnaTriplet == "TAA" or dnaTriplet == "TAG" or dnaTriplet == "TGA":

print("Reached stop codon")

Note: in the sense of performing a

comparison, not as in setting a value.

15

16

9

for loops

Often, we’d like to perform the same command repeatedly or with

slight variations.

For example, to calculate the mean value of the number in an array,

we might try:

Take each value in the array in turn.

Add each value to a running sum.

Divide the total by the number of values.

In Python, you could write this as:

grades = [93, 95, 87, 63, 75] # create a list of grades

sum = 0.0 # variable to store the sum

for grade in grades: # iterate over the list called grades

sum = sum + grade # indented commands are executed on

each cycle of the loop.

mean = sum / 5 # now calculate the average grade

print ("The average grade is "),mean # print the results

Python cares whether numbers are integers or

floating point (also long integers and complex

numbers).

Tell Python you want floating point by

defining your variables accordingly

(e.g., X = 1.0 versus X = 1)

Python 2 Python 3

>>> 2 / 3 >>> 2 / 3

0 0.666666
Python 3: print ("The average grade is ",mean)

17

18

10

In general, Python will perform most mathematical operations, e.g.

multiplication (A * B)

division (A / B)

exponentiation (A ** B)

etc.

There are lots of advanced mathematical capabilities you can explore

later on.

READING FILES

You can use a for loop to read text files line by line:

count = 0 # Declare a variable to count lines

file = open("mygenomefile", "r") # Open a file for reading (r)

for raw_line in file: # Loop through each line in the file

line = raw_line.rstrip("\r\n") # Remove newline

words = line.split(" ") # split the line into a list of words

Print the appropriate word:

print ("The first word of line {0} of the file is {1}".format(count, words[0]))

count += 1 # shorthand for count = count + 1

file.close() # Last, close the file.

print ("Read in {0} lines\n".format(count))

Stands for “read”

\r = carriage return

\n = newline

Placeholders (e.g., {0}) in the print

statement indicate variables listed

at the end of the line after the

format command

Increment counter by 1

19

20

11

WRITING FILES

Same as reading files, but use "w" for ‘write’:

file = open("test_file", "w")

file.write("Hello!\n")

file.write("Goodbye!\n")

file.close() # close the file as you did before

Unless you specify otherwise, you can find the new text file you created (test_file) in the

default Python directory on your computer.

PUTTING IT ALL TOGETHER

seq_filename = "Ecoli_genome.txt"

total_length = 0

nucleotide = {} # create an empty dictionary

seq_file = open(seq_filename, "r")

for raw_line in seq_file:

line = raw_line.rstrip("\r\n")

length = len(line) # Python function to calculate the length of a string

for nuc in line:

if nucleotide.has_key(nuc):

nucleotide[nuc] += 1

else:

nucleotide[nuc] = 1

total_length += length

seq_file.close()

for n in nucleotide.keys():

fraction = 100.0 * nucleotide[n] / total_length

print ("The nucleotide {0} occurs {1} times, or {2} %".format(n, nucleotide[n], fraction))

21

22

12

Let’s choose the input DNA sequence in the file to be the genome of

E. coli, available from the Entrez genomes web site or the class web

site.

The format of the file is ~77,000 lines of A’s, C’s, G’s and T’s:
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTC

TGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGG

TCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTAC

ACAACATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGT

etc…

Running the program produces the output:

The nucleotide A occurs 1142136 times, or 24.6191332553 %

The nucleotide C occurs 1179433 times, or 25.423082884 %

The nucleotide T occurs 1140877 times, or 24.5919950785 %

The nucleotide G occurs 1176775 times, or 25.3657887822 %

So, now we know that the four nucleotides are present in roughly

equal numbers in the E. coli genome.

23

