A Python programming primer for biochemists

(Named after Monty Python’s Flying Circus &
designed to be fun to use)

Systems Biology/Bioinformatics
Edward Marcotte, Univ of Texas at Austin

Science news of the day (2015 edition):

BGl Plans to Launch Two NGS Systems Based on
Complete Genomics Technology this Year
Jan 14, 2015 | Monica Hege
& Premium
SAN FRANCISCO (GenomeWeb) — BGI is planning to launch two next-generation sequencing systems this year

based on Complete Genomics' technology, BGI CEO Jun Wang said during a presentation today at the JP Morgan
conference.

In addition, he said that two BGI spinoff companies — BGI Tech and BGI Dx (formerly called BGI Health) — have
now merged into one company that plans to go public in 2016. BGI Tech and BGI Dx raised ¥1.4 billion ($226
million) and ¥2 billion $323 million), respectively, in private equity financing rounds, and following the merger raised
an additional ¥2 billion in private equity financing. Wang first said in 2013 that BGI Tech had plans to go public, but
did not have a timeline for doing so. The company had sold shares in order to purchase Complete Genomics, and
the timing depended in part on its shareholders, Wang said at the time.

During his presentation today, Wang also discussed several of BGI's clinical
seguencing projects, including work in reproductive health, cancer, and
complex diseases.

Finally, one of BGl's signature projects, the Million Genomes Project, which
aims to sequence one million human, one million plant and animal, and one
million bacterial genomes, seems to have expanded in scope. Today, Wang
described the Million Omics Database project, which he said would include all
‘'omics data from one million people, including genomic, transcriptomic,
epigenomic, metabolomic, and microbiome data.




Science news of the day (2017 update):

New Machines Can Sequence Human
Genome in One Day

By Bradley J Fikes o \._J @ %

PUBLISHED NA sequencing giant lllumina on Monday introduced a
JANUARY powerful new line of its instruments, bringing down the

1 0 average time of sequencing a human genome to one hour
-- from more than one day just a couple of years ago.
2 01 7

Science news of the day (2018 update):

NANOPORE PRODUCTS SERVICES  APPLICATI

Latest News Twitter

World first: continuous DNA sequence of more than a million
bases achieved with nanopore sequencing.
Wed 27th December 2017

The first =1Mb DNA sequence (more than a million DNA bases in one continuous sequence) has been
achieved using Oxford Nanopore sequencing technology, a landmark in the history of DNA sequencing.

Martin Smith, a researcher at the Kinghom Centre for Clinical Genomics (at the Garvan Institute,
Australia), has sequenced the first single fragment of DNA greater than 1Mb. The analogy used today
by researchers is: if a nanopore was the size of a fist, a 1MB strand of DNA passing through that
nanopore would be 3.2km long (credit Adam Philippy).

The read, from Chromosome 19, is 1.015 Mb in length and the alignment co-ordinates are: chr19




Science news of the day (2020 update):

The San Diego Union-Tribune

[llumina bails from $1.2B PacBio acquisition, as
regulators fear DNA monopoly

Global Genomics Market: Industry Analysis
and Forecast (2018-2026)

Global Genomics Market was valued US$ 16.5 Bn in 2018 and is expected to reach US$ 41.01 Bn by 2026, at
a CAGR of 12.05% during a forecast period

Oxford Nanopore Technologies Raises
£109.5M

Jan 02, 2020 | staff reporter

In bioinformatics, you often want to do completely new analyses.
Having the ability to program a computer opens up all sorts of
research opportunities. Plus, it’s fun.

Most bioinformatics researchers use a scripting language, such as
Python or Perl, or a programming language such as R.

These languages are not the fastest, not the slowest, nor best, nor
worst languages, but they’re easy to learn and write, and for
many reasons, are well-suited to bioinformatics.

We’'ll spend the next 2 lectures giving an introduction to Python.
This will give you a sense for the language and help us introduce
the basics of algorithms




Python documentation: http://www.python.org/doc/
& tips: http://www.tutorialspoint.com/python

Good introductory Python books:
Learning Python, Mark Lutz & David Ascher, O’Reilly Media

Bioinformatics Programming Using Python: Practical Programming
for Biological Data, Mitchell L. Model, O'Reilly Media

Good intro videos on Python:

CodeAcademy: https://www.codecademy.com/learn/learn-python
& an online Python tutor:

http://www.pythontutor.com/

A bit more advanced: Programming Python
Mark Lutz, O’Reilly Media

By now, you should have installed Python on your computer,
following the instructions in Rosalind Homework problem #1.

Launch IDLE:
e e B R B o ] . i
[Ele Edit Shell Debug Options Windows Hep | [[ee gar Windows Help ——
n 23:31:26) [MSC v.1500 32 bit (Intel)] on win 4l [I[] -l
cccccccccccccccccccccccccccc ) tszsnoresinzamaaii
You can test out commands here ' Type in your program, save the file, and ||
to make sure they work... run it....

...but to actually write your programs,
open a new window.

This window will serve as a command line This window will serve as a text editor for
interface & display your program output. programming.




Let’s start with some simple programs in Python:

A very simple example is:
print("Hello, future bioinformatician!") # print out the greeting

Let’s call it hello.py
Save & run the program. The output looks like this:

Hello, future bioinformatician!

FYI: This is version agnostic. Python 3 takes print(“X”). Python 2 also takes print “X” as in Rosalind

9

A slightly more sophisticated version:

name = raw_input("What is your name? ") # asks a question and saves the answer
#in the variable "name"
print("Hello, future bioinformatician " + name + "1") # print out the greeting

When you run it this time, the output looks like:

What is your name?

If you type in your name, followed by the enter key, the program will
print:

Hello, future bioinformatician Alice!

FYI: Python 3 uses input() instead of raw_input()
10




GENERAL CONCEPTS

Names, numbers, words, etc. are stored as variables.

Variables in Python can be named essentially anything except
words Python uses as command.

For example:

BobsSocialSecurityNumber = 456249685
mole = 6.022e-23
password = "7 infinite fields of blue"

N\

Note that strings of letters and/or numbers
are in quotes, unlike numerical values.

11

LISTS

Groups of variables can be stored as lists.
A list is a numbered series of values,
like a vector, an array, or a matrix.

Lists are variables, so you can name them just as you would name
any other variable.

Individual elements of the list can be referred to using [] notation:

The list nucleotides might contain the elements
nucleotides[0] = "A"
nucleotides[1] ="C"
nucleotides[2] = "G"
nucleotides[3] ="T"

(Notice the numbering starts from zero. This is standard in Python.)

12




DICTIONARIES

A VERY useful variation on lists is called a dictionary or dict
(sometimes also called a hash).

- Groups of values indexed not with numbers (although they could
be) but with other values.

Individual hash elements are accessed like array elements:

For example, we could store the genetic code in a hash named
codons, which might contain 64 entries, one for each codon, e.g.

codons["ATG"] = "Methionine"
codons["TAG"] = "Stop codon"
etc...

13

Now, for some control over what happens in programs.

There are two very important ways to control the logical flow of
your programs:

if statements
and
for loops

There are some other ways too, but this will get you going for now.

14



if statements

if dnaTriplet == "ATG":
# Start translating here. We're not going to write this part
# since we’re really just learning about IF statements

else:
# Read another codon

Python cares about the white space (tabs & spaces) you use!
This is how it knows where the conditional actions that follow
begin and end. These conditional steps must always be
indented by the same number of spaces (e.g., 4).

| recommend using a tab (rather than spaces) so you’re always
consistent.

15

Note: in the sense of performing a
comparison, not as in setting a value.

== equals

1= is not equal to

< is less than

> is greater than

<= is less than or equal to
>= is greater than or equal to

Can nest these using parentheses and Boolean operations, such as
and, not, or or, e.g.:

if dnaTriplet == "TAA" or dnaTriplet == "TAG" or dnaTriplet == "TGA":
print("Reached stop codon")

16




for loops

Often, we’d like to perform the same command repeatedly or with
slight variations.

For example, to calculate the mean value of the number in an array,
we might try:

Take each value in the array in turn.
Add each value to a running sum.
Divide the total by the number of values.

17

In Python, you could write this as:

grades =[93, 95, 87, 63, 75] # create a list of grades
sum=0.0 # variable to store the sum

Python cares whether numbers are integers or
floating point (also long integers and complex
numbers).

Tell Python you want floating point by
# ¢ defining your variables accordingly

(e.g., X=1.0 versus X = 1)

for grade in grades:
sum =sum + grade

mean =sum /5 # now calculate the average grade

print ("The average grade is "),mean # print the results

Python 2 | Python 3

>>>2/3|>>>2/3
0 0.666666

Python 3: print ("The average grade is ",mean)

18



In general, Python will perform most mathematical operations, e.g.

multiplication (A *B)

division (A/B)

exponentiation (A ** B)
etc.

There are lots of advanced mathematical capabilities you can explore
later on.

19

READING FILES
You can use a for loop to read text files line by line:
I Stands for “read” |

count=0 / # Declare a variable to count lines
file = open("mygenomefile", "r") # Open a file for reading (r)
for raw_line in file: # 1 oop through each line in the file
line = raw_line.rstrip("\r\n") <] \r = carriage return [\ i, o
. e \n = newline . .
words = line.split(" ") mspreoremrre into a list of words

# Print the appropriate word:
print ("The first word of line {0} of the file is {1}".format(count, words[0]))
count+=1 # shorthahd for count = count + 1

fiIe.cIose(l Increment counter by 1 |

# Lasts.cloge the file.

print ("Read in {0} lines\n".format(count)) Placeholders (e.g., {0}) in the print

statement indicate variables listed
at the end of the line after the
format command

20

10



WRITING FILES
Same as reading files, but use "w" for ‘write’:

file = open("test_file", "w"

file.write("Hello!\n")

file.write("Goodbye!\n")

file.close() # close the file as you did before

Unless you specify otherwise, you can find the new text file you created (test_file) in the
default Python directory on your computer.

21

PUTTING IT ALL TOGETHER

seq_filename = "Ecoli_genome.txt"
total_length =0
nucleotide = {} # create an empty dictionary

seq_file = open(seq_filename, "r")
for raw_line in seq_file:
line = raw_line.rstrip("\r\n")
length = len(line) # Python function to calculate the length of a string
for nuc in line:
if nucleotide.has_key(nuc):
nucleotide[nuc] += 1
else:
nucleotide[nuc] = 1
total_length +=length

seq_file.close()
for n in nucleotide.keys():

fraction = 100.0 * nucleotide[n] / total_length
print ("The nucleotide {0} occurs {1} times, or {2} %".format(n, nucleotide[n], fraction))

22

11



Let’s choose the input DNA sequence in the file to be the genome of
E. coli, available from the Entrez genomes web site or the class web
site.

The format of the file is ~77,000 lines of A’s, C’s, G’s and T’s:
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTC
TGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGG
TCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTAC
ACAACATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGT

etc...

Running the program produces the output:

The nucleotide A occurs 1142136 times, or 24.6191332553 %
The nucleotide C occurs 1179433 times, or 25.423082884 %
The nucleotide T occurs 1140877 times, or 24.5919950785 %
The nucleotide G occurs 1176775 times, or 25.3657887822 %

So, now we know that the four nucleotides are present in roughly
equal numbers in the E. coli genome.

23

12



