Classifiers!!!
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Clustering = task of grouping a set of objects in such a
way that objects in the same group (a cluster) are more
similar (in some sense) to each other than to those in
other groups (clusters).

VS.

Classification = task of categorizing a new observation,
on the basis of a training set of data with observations
(or instances) whose categories are known

Adapted from Wikipedig




Remember, for clustering, we had a matrix

of data...
M samples
Gene 1,samplel | ... | Genel,samplej | .. | Gene 1, sample M
4 | Gene 2,samplel | ... | Gene2,samplej | .. | Gene 2, sample M
Gene 3,sample1 | ... | Gene3,samplej | .. | Gene 3, sample M
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> Genei,samplel | ... | Genei, samplej ... | Genei, sample M
Gene N,sample1| ... | Gene N, samplej | .. | Gene N, sample M

For yeast, N~ 6,000

i.e., a matrix of N
For human, N ~ 22,000

X M numbers

We discussed gene expression profiles.
Here’s another example of gene features.

enomes
M s3pagles

»

Gene 1,samplel | ... | Genel,samplej | .. | Gene 1, sample M
4 | Gene2,s Gene expression profiles: , sample M
" Gene3, s each entry indicates an mRNA’s , sample M
g abundance in a different condition
ol .
o1 | Gene i, sa Phylogenetic profiles: sample M
< each entry indicates whether the gene
has homologs in a different organism
Gene N,sample1| ... | Gene N,samplej | .. | Gene N, sample M

For yeast, N~ 6,000
For human, N ~ 22,000




This is useful
because
biological
systems tend to
be modular and
often inherited
intact across
evolution.

(e.g. you tend to
have a flagellum
or not)
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The method of phylogenetic profiles
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P1 P2 P4 P5 P7
S. cerevisiae (SC)

Conclusion P2 and P7 are functionally linked,

P3 and P6 are functionally linked

Many such features are possible...

M samples
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Gene 1, sample 1
4 | Gene 2,sample 1
Gene 3, sample 1

Gene i, sample 1

N genes

Gene N, sample 1

Gene 1, samplej
Gene 2, sample j
Gene 3, samplej

Gene i, sample

Gene N, sample j

Gene 1, sample M
Gene 2, sample M
Gene 3, sample M

Gene i, sample M

Gene N, sample M

For yeast, N~ 6,000
For human, N ~ 22,000

i.e., a matrix of N

X M numbers




We also needed a measure of the
similarity between feature vectors. Here
are a few (of many) common distance
measures used in clustering.

Names Formula

Euclidean distance ||G = le = Z(G,‘ = bi)2
i
Manhattan distance ”“ - le — Z |“i - bi'
1
a-b
cosine similarity
llall][5]

Wikipedia

We also needed a measure of the
similarity between feature vectors. Here
are a few (of many) common distance

measures used in cl ing.
classifying
Names Formula
Euclidean distance ||G = bHZ = Z(ai — bi)2
Manhattan distance ||(l - b”l = Z |ai - bi'
—_— a-b
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Wikipedia




Clustering refresher: 2-D example

Experiment 1 Experlr\nent 2

_______

Experiment 2

Experiment 1

Nature Biotech 23(12):1499-1501 (2005)

Clustering refresher: hierarchical

Nature Biotech 23(12):1499-1501 (2005)




Clustering refresher: SOM
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Nature Biotech 23(12):1499-1501 (2005)

Clustering refresher: k-means

Nature Biotech 23(12):1499-1501 (2005)




Clustering refresher: k-means

Decision boundaries

Nature Biotech 23(12):1499-1501 (2005)

One of the simplest classifiers uses the
same notion of decision boundaries.

i ! =i
Decision boundaries|i. « *

*

Nature Biotech 23(12):1499-1501 (2005)




One of the simplest classifiers uses this
notion of decision boundaries.

Rather than first
o o . clustering, calculate
. the centroid (mean)
— of objects with each

Rl S| label.

New observations
are classified as
belonging to the

group whose mean

is nearest.

=“minimum distance

classifier”
Nature Biotech 23(12):1499-1501 (2005)

One of the simplest classifiers uses this
notion of decision boundaries.

B cell lymphoma

For example....

Nature Biotech 23(12):1499-1501 (2005)




Molecular Classification of Let's |OOk at a SpECiﬁC

Cancer: Class Discovery and . )
Class Prediction by Gene historic exam p|e:

Expression Monitoring

T. R. Golub,*t D. K. Slonim,"t P. Tamayo," C. Huard,?
M. Gaasenbeek, J. P. Mesirov," H. Coller,” M. L. Loh,”
J. R. Downing, M. A. Caligiuri,* C. D. Bloomfield,*

E. S. Lander™*

“Enzyme-based histochemical analyses were introduced in the
1960s to demonstrate that some leukemias were periodic acid-
Schiff positive, whereas others were myeloperoxidase positive...

This provided the first basis for classification of acute leukemias into
those arising

from_lymphoid precursors (acute lymphoblastic leukemia, ALL), or
from myeloid precursors (acute myeloid leukemia, AML).”
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“Distinguishing ALL from AML is critical for successful treatment...

chemotherapy regimens for ALL generally contain corticosteroids,
vincristine, methotrexate, and L-asparaginase, whereas

most AML regimens rely on a backbone of daunorubicin and
cytarabine (8).

Although remissions can be achieved using ALL therapy for AML
(and vice versa), cure rates are markedly diminished, and
unwarranted toxicities are encountered.”

15 OCTOBER 1 Vi IEN
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AML ALL
¢ =(1,1,1,1,1,1,0,0,0,0,0,0) ﬂ" H

gene; = (e, ez, €3, . . . ,€p2) m_ ﬂﬂ_ O=n
gene; = (e, 2,3, . . ., &2) |7 [] I'Iﬂ..ﬂl'lnﬂrl

Take labeled samples, find genes whose
abundances separate the samples...
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B
am : ML AML ALL  Weight
gene, [ r 1> Vi Wy
gene, I > 1 v2 w2
1
gene; | | < | ] v3 w3
gene, L ;—jb v4 wq
gene; I : vs ws
Vaur Va

Calculate weighted average of indicator
genes to assign class of an unknown
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Fig. 3. (A) Prediction strengths. The scatter-
plots show the prediction strengths (PSs) for
the samples in cross-validation (left) and on the
independent sample (right). Median PS is de-
noted by a horizontal line. Predictions with PS
< 0.3 are considered as uncertain. (B) Genes
distinguishing ALL from AML The 50 genes
most highly correlated with the ALL-AML class
distinction are shown. Each row corresponds to
a gene, with the columns corresponding to
expression levels in different samples. Expres-
sion levels for each gene are normalized across
the samples such that the meanis 0 and the SD
is 1. Expression levels greater than the mean
are shaded in red, and those below the mean A BE O AR

PS=(Vwin-Vlose)/(Vwin+Vlose), whereVwin and
VLose are the vote totals for the winning and losing
classes.
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illustrating the value of a multigene prediction method. For a complete list

of gene names, accession numbers, and raw expression values, see www.
genome wimit.edu/MPR.
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Fig. 3. (A) Prediction strengths. The scatter-
plots show the prediction strengths (PSs) for
the samples in cross-validation (left) and on the
independent sample (right). Median PS is de-
noted by a horizontal line. Predictions with PS
< 0.3 are considered as uncertain. (B) Genes
distinguishing ALL from AML The 50 genes
most highly correlated with the ALL-AML class
distinction are shown. Each row corresponds to
a gene, with the columns corresponding to
expression levels in different samples. Expres-
sion levels for each gene are normalized across
the samples such that the mean is 0 and the SD
is 1. Expression levels greater than the mean
are shaded in red, and those below the mean 3 25 2 -5
are shaded in blue. The scale indicates SDs . b
above or below the mean. The top panel shows
genes highly expl!ssed in ALL, the bottom panel shows genes more
highly expressed in AML. Although these genes as a group appear
correlated with class, no single gene is uniformly expressed across the class,
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illustrating the value of a multigene prediction method. For a complete list
of gene names, accession numbers, and raw expression values, see www.
genome.wimit.edu/MPR.
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Cross-validation

Withhold a sample, build a predictor based
only on the remaining samples, and predict the
class of the withheld sample.

Repeat this process for each sample, then
calculate the cumulative or average error rate.

15 OCTOBER 1999 VOL 286 SCIENCH

X-fold cross-validation
e.g. 3-fold or 10-fold

Can also withhold 1/X (e.g. 1/3 or 1/10) of
sample, build a predictor based only on the
remaining samples, and predict the class of the
withheld samples.

Repeat this process X times for each withheld
fraction of the sample, then calculate the
cumulative or average error rate.

15 OCTOBER 1999 VOL 286 SCIENCH
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Independent data

Withhold an entire dataset, build a predictor

based only on the remaining samples
(the training data).

Test the trained classifier on the independent
test data to give a fully independent measure
of performance.

15 OCTOBER 1999 VOIL 286 SCIENCH

You already know how to measure how well these algorithms
work (way back in our discussion of gene finding!)...

True answer:
Positive Negative

True False

Algorithm positive | positive

predicts:

False True
negative | negative

Negative Positive

Specificity = TP / (TP + FP)
Sensitivity = TP / (TP + FN)

13



You already know how to measure how well these algorithms
work (way back in our discussion of gene finding!)...

Sort the data by their classifier score, then step from best to
worst and plot the performance:

Precision = 100%} ="~ " N
Good 7 ~-« Better \
TP/ (TP +FP) classifier \'\,\ \‘
also called | ~. | Precision-
positive “\ Much worse “.\ recall curve
predictive value |« :
(PPV) Oo/oo -

100%
Recall =

TP /(TP + FN)
(= sensitivity)

Another good option:

Sort the data by their classifier score, then step from best to
worst and plot the performance:

First used in WWII to analyze

radar signals (e.g., after
el attack on Pearl Harbor)
Best 6\35‘3"“

100%
Sensitivity = B

TP / (TP + FN)

ROC curve
also cal!gd (receiver operator
True Positive characteristic)
Rate (TPR) ,
°% 1 Specificity = 100%
FP/(FP +TN)

also called False Positive Rate (FPR)




ROC curve, as you go from stronger to
weaker predictions

W true - false + | false - M true + AUC = 0.853
1.00
0.06
0.75
o
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o
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0.02
0.25
0.001-----~ - APPSO - - = = x == 0.00
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predictor false positive rate

Thanks to Dariya Sydykova (UT Austin), for her excellent visualizations, available here:

https://github.com/dariyasydykova/open_projects/tree/master/ROC_animation

ROC curve, as you go from stronger to
weaker classifiers

AUC =0.496
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Thanks to Dariya Sydykova (UT Austin), for her excellent visualizations, available here:

https://github.com/dariyasydykova/open_projects/tree/master/ROC_animation
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ROC versus Recall/Precision

The 2 measures are related and both useful. They differ strongly in
performance as proportions of positive and negative classes change.

AUG = 0.496

precision
o
@
2

Top
/ preds

R/P

predictor

025

0.50 075 1.00
faise positive rate

Thanks to Dariya Sydykova (UT Austin), for her excellent visualizations, available here:
https://github.com/dariyasydykova/open_projects/tree/master/ROC_animation

ROC versus Recall/Precision

* R/P depends strongly on relative rates of the 2 classes

ROC performance is independent of their relative rates

(It may be important or not for your particular problem...)

frue positive rate
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Thanks to Dariya Sydykova (UT Austin), for her excellent visualizations, available here:
https://github.com/dariyasydykova/open_projects/tree/master/ROC_animation
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Back to our minimum distance classifier...

\Would it work well for this data?
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Back to our minimum distance classifier...

How about this data? What might?
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Back to our minimum distance classifier...

How about this data? What might?

XXXXOOOOXXXXO
XXXXOOOOXXXXO
XXXXOOOOXXXXO
XXXXO000OXXXX0O

000
000
000
000
OOOOXXXXOOOOXXXX
OOOOXXXXO0OOOXXXX
OO0OOOXXXXOOOOXXXX
OO0OOOXXXXOOOOXXXX
XXXXOO0OOOXXXXO0000
XXXXOO0O0OXXXX0O000
XXXXOO0OO0OXXXX0000
XXXXOO0OO0OXXXX0000
OOOOXXXXOO0OOOXXXX
OO0OOOXXXXOOOOXXXX
OO0OOOXXXXOOOOXXXX
OOOOXXXXOOOOXXXX

This is a great case for something called

a k-nearest neighbors classifier:
For each new object, calculate the k closest data points.

Let them vote on the label of the new object.

XXXXOOOOXXXX0O00O0
XXXXOOOOXXXX0O00O0
XXXXOOOOXXXXO00O0
XXXXOOOO0OXXXX0000
OOOOXXXXOOOOXXXX . ,
O00OXXXX O This is surrounded by O’s
O00OXXXXO OXXXX and will probably be voted
OOOOXXXXOOOOXXXX tobeanO
XXXXOOOOXXXX0O00O0
XXXXOOOOXXXXO00O0
XXXXOOO0OXXXX0O00O0
XXXXOOOO0OXXXX0000
OOOOXXXXOOOOXXXX
0000 XOOOOXXXX
000O0X OO0OO0OXXXX
OO0OO0OOXXXX OOXXXX

This one is surrounded by

X’s and will probably be
voted to be an X.
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Back to leukemias. Clinical Utility of Microarray-Based Gene Expression
Profiling in the Diagnosis and Subclassification of
There was a follow- Leukemia: Report From the International Microarray

up study in 2010: Innovations in Leukemia Study Group

Torsten Haferlach, Alexander Kohlmann, Lothar Wieczorek, Giuseppe Basso, Geertruy Te Kronnie,
Marie-Christine Béné, John De Vos, Jesus M. Herndndez, Wolf-Karstenn Hofmann, Ken I. Mills,
Amanda Gilkes, Sabina Chiaretti, Sheila A. Shurtleff, Thomas J. Kipps, Laura Z. Rassenti, Allen E. Yeoh,
Peter R. Papenhausen, Wei-min Liu, P. Mickey Williams, and Robin Foa

* Tested clinical use of MRNA expression profiling to subtype leukemias into
myeloid/lymphoid

* Meta-analysis of 11 labs, 3 continents, 3,334 patients

* Stage 1 (2,096 patients):
92.2% classification accuracy for 18 leukemia classes (99.7% median specificity)

* Stage 2 (1,152 patients):
95.6% median sensitivity and 99.8% median specificity for 14 subtypes of acute
leukemia

* Microarrays outperformed routine diagnostics in 29 (57%) of 51 discrepant cases

Conclusion: “Gene expression profiling is a robust technology for
the diagnosis of hematologic malignancies with high accuracy”

J Clin Oncol 28:2529-2537. © 2010

In practice, if you want to explore classifiers, | also strongly
recommend always testing these classifiers:

Random forests
Support vector machines (SVM)

These two are surprisingly often the best for many biological
classification problems. Weka can do both of them.




The two slide overview of Random forest classifiers:

(1) Construct many decision trees from random subsets of
your features. Because the features vary across trees,
trees tend to be weak but uncorrelated

(2) All the trees “vote” on the answer, majority wins.

X dataset

Gpee 0 R e g

N, features N, features N, features N, features
TREE #1 TREE #2 TREE #3 TREE #4
CLASS C CLASSD CLASS B CLASS C

| MAJORITY VOTING |

| FINAL CLASS I

The two slide overview of Random forest classifiers:

(1) Construct many decision trees from random subsets of
your features. Because the features vary across trees,
trees tend to be weak but uncorrelated

(2) All the trees “vote” on the answer, majority wins.

tree 1 tree 500 forest
1056 140,57
A N A
/X / N\ 7%
122195 2221 2 KA A £ A
/\/\/\K/\ SVAVA
f1<D68 2 f1<0.A3 A A\
I\ /\ I\

o
0 02z 04 05 08 10 02 04 08 02 04 06 08 10
feature 1 (F1) festure 1 (1) featura 1 (f1)

net/figure/The-Rand: I ble-of-decisi here-the:singl figl 228540194
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The one slide overview of Support vector machines:
(1) Goal: make a linear classifier, choosing a decision boundary
that maximizes the distance margin between classes

(2) But what if the boundary is non-linear? Use kernels to
implicitly map the data to higher dimension where a linear
decision can be made

Maximum margin hyperplane

In practice, if you want to explore classifiers, | strongly
recommend the Weka package:

http://www.cs.waikato.ac.nz/ml/weka/ WEKA

It’s free, and easy to install, use, & troubleshoot. It lets you
quickly test many alternative (well-vetted) classifiers,
all in a proper cross-validated/precision-recall framework.

Here’s a nice step-by-step intro for biologists :
Introducing Machine Learning Concepts with WEKA, in Statistical Genomics,
Methods in Molecular Biology, v. 1418, p. 353-378, 24 March 2016

http://link.springer.com/content/pdf/10.1007%2F978-1-4939-3578-9_17.pdf

There’s also a great book to walk you through the entire process.
Highly recommended!!!
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