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Functional genomics

= field that attempts to use the vast data produced by
genomic projects (e.g. genome sequencing projects)
to describe gene (and protein) functions and
interactions.

Focuses on dynamic aspects, e.g. transcription,
translation, and protein—protein interactions, as
opposed to static aspects of the genome such as DNA
sequence or structures.

Adapted from Wikipedia|




Functional genomics
+

Data mining

= field that attempts to computationally discover
patterns in large data sets

Adapted from Wikipedia
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We're going to first learn
about clustering algorithms
& classifiers

We're going to first learn
about clustering algorithms
& classifiers

Clustering = task of grouping a set of objects in such a
way that objects in the same group (a cluster) are more
similar (in some sense) to each other than to those in
other groups (clusters).

Adapted from Wikipedia|




We're going to first learn
about clustering algorithms
& classifiers

Classification = task of categorizing a new observation,
on the basis of a training set of data with observations
(or instances) whose categories are known

Adapted from Wikipedia

Let’s motivate this with an important
historical example:

Distinct types of diffuse large
B-cell lymphoma identified
by gene expression profiling

Ash A. Alizadeh'?, Michael B. Eisen>**, R. Eric Davis®, Chi Ma®, Izidore S. Lossos®, Andreas Rosenwald®, Jennifer C. Boldrick’,
Hajeer Sabet®, Truc Tran®, Xin Yu®, John I. Powell’, Liming Yang’, Gerald E. Marti®, Troy Moore®, James Hudson Jr°, Lisheng Lu'®,
David B. Lewis™, Robert Tibshirani"!, Gavin Sherlock®, Wing C. Chan2, Timothy C. Greiner'?, Dennis D. Weisenburger'?,

James 0. Amliiaqe“, Roger Warnke'®, Ronald Levy®, Wyndham Wilson'®, Michael R. Grever'®, John C. Byrd'”, David Botstein®,
Patrick 0. Brown"'® & Louis M. Staudt®

Nature 2000




“Diffuse large B-cell lymphoma (DLBCL), the most
common subtype of non-Hodgkin's lymphoma ... is
one disease in which attempts to define subgroups on

the basis of morphology have largely failed...”

“DLBCL ... is clinically heterogeneous:

40% of patients respond well to current therapy and
have prolonged survival, whereas the remainder
succumb to the disease.

We proposed that this variability in natural history
reflects unrecognized molecular heterogeneity in the
tumours.”

Nature 2000

Blast from the past: Profiling mRNA
expression with DNA microarrays

DNA molecules are attached to ...probed with a labeled (usually
a solid substrate, then... fluorescent) DNA sequence

* /

labelled target (sample)
fixed probes *

different features
(e.q. bind different genes)

Fully complementary Partially complementary
strands bind strongly strands bind weakly

Wikipedia
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Blast from the past: Profiling mRNA
expression with DNA microarrays

Sample

i L
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Aqueous mRNA
Y Phase -

Purification
y  Phenol &» Protein

Phase © DNA

(FYI, we would generally now
just sequence the cDNA)

(R Coupling

mRNA
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labelled cDNA Wikipedia
11

Blast from the past: Profiling mRNA
expression with DNA microarrays

o Hybridization
and washes
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Filter
:3 laser Scanning
Note that some
arrays are 1-color, e Normalization
some are 2. Why? ,,g" intensity  and analysis
& ratio

Wikipedia




DNA microarrays are a great example of
the “arc” of a technology over time

DNA microarrays

RNA sequencing

Worldwide Google trends, 2004-present
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Back to diffuse large B-cell lymphoma...

96 patient biopsies
(normal and malignant lymphocyte samples)

v

Extract mRNA from each sample

A 4

Perform DNA microarray experiment on each to
measure mRNA abundances (~1.8 million total gene
expression measurements)

l

Cluster samples by their expression patterns

Nature 2000
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Red = high expression
Green = low

(yes, | know it’s exactly
backwards from what
you might expect.)
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We can break up the DLBCL’s according the
germinal B-cell specific gene expression:

GC B-like DLBCL Activated B-like DLBCL
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What good is this? These molecular
phenotypes predict clinical survival.

1.0 eeeeeme All patients ________|

Kaplan-Meier plot
of patient survival

Probability
o
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Activated B-like

21 patients, 16 deaths

P=0.01
0.0 I T 1 I
0 2 4 6 8 10 12

Overall survival (years)

Nature 2000
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What good is this? These molecular
phenotypes predict clinical survival.
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Gene expression, and other molecular
measurements, provide far deeper
phenotypes for cells, tissues, and
organisms than traditional measurements

These sorts of observations have now
motivated tons of work using these
approaches to diagnose specific forms of
disease, as well as to discover functions of

genes and many other applications

20
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So, how does clustering work?

First, let’s think about the data, e.g. as for gene expression.
From one sample, using DNA microarrays or RNA-seq, we get:

Expression level of gene 1
4 | Expression level of gene 2

Expression level of gene 3 i.e., a vector of
' N numbers

Expression level of gene i

N genes

Expression level of gene N

For yeast, N ~ 6,000
For human, N ~ 22,000

21
So, how does clustering work?
Every additional sample adds another column, giving us a matrix
of data:
M samples
Gene 1, sample 1 Gene 1, samplej Gene 1, sample M
Gene 2, sample 1 Gene 2, sample j Gene 2, sample M
Gene 3, sample 1 Gene 3, samplej Gene 3, sample M
7]
v
c
> Gene j, sample 1 Gene /, sample j Gene i, sample M
Gene N, sample 1 Gene N, sample j Gene N, sample M
For yeast, N ™ 6,000 i.e., a matrix of N
For human, N ~ 22,000
X M numbers
22
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So, how does clustering work?

M samples

A
v

l Gene 1,samplel1 | .. | Gene 1,samplej | .. | Gene 1, sample M ||

Gene 2,sample 1 | | Gene 2, sample; | .. | Gene 2, sample M

| Every gene has a feature vector
| of M numbers associated with it

Gene 1, sample ene/, sample enel, sample M

Gene N, sample M

Gene N, sample 1 Gene N, sample §
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So, how does clustering work?

M samples

-
«

Gene 1, sample 1
Gene 2, sample 1

Similarly, every
sample has a feature .
vector of N numbers [} | Gee’sempleM

associated with it

Gene N, sample 1

Gene 1,samplej | .} | Gene 1, sample M
Gene 2,samplej | .} | Gene 2, sample M
Gene 3, sample M

Gene N, samplej | ..} | Gene N, sample M

24
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So, how does clustering work?

The first clustering method we’ll learn
about simply groups the objects

9 (samples or genes) in a hierarchy by the
1 similarity of their feature vectors.

Gene N,sample1| .. | Gene N, samplej | ... | Gene N, sample M

25

A hierarchical clustering algorithm

Start with each object in its own cluster

Until there is only one cluster left, repeat:
Among the current clusters, find the two
most similar clusters
Merge those two clusters into one

We can choose our measure of similarity
and how we merge the clusters

26
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Hierarchical clustering
Conceptually

: @@@

:/

Data points on an X-Y plane @C_de‘c Dendrogram

(grouped by closeness)

Wikipedia
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We’ll need to measure the similarity
between feature vectors. Here are a few
(of many) common distance measures
used in clustering.
Names Formula
Euclidean distance H(I - b“-? = JZ(G
Manhattan distance H[I - b”l = Z |ai - bi‘
e similarty a-b
||a||]|b]|
Wikipedia
28
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Back to the
B cell :
lymphoma Samples
example —

LCL-001

Hierarchical clustering

Similarity measure = Pearson correlation
coefficient between gene expression vectors

Similarity between clusters = average similarity
between individual elements of each cluster

(also called average linkage clustering)

CLL-14
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29

K-means clustering is a common
alternative clustering approach

The basic algorithm:
1. Pick a number (k) of cluster centers

3. Move each cluster center to the mean of its
assigned genes
4. Repeat steps 2 & 3 until convergence

*mainly because it’s easy and can be quite fast!*

2. Assign each gene to its nearest cluster center

See the K-means example posted on the web site

30
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A 2-dimensional example

Experiment 2

Experiment 1 \
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Nature Biotech 23(12):1499-1501 (2005)
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A 2-dimensional example: hierarchical
Nature Biotech 23(12):1499-1501 (2005)
32
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A 2-dimensional example: k-means

Nature Biotech 23(12):1499-1501 (2005)
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A 2-dimensional example: k-means

° *I
e o

Ml
Decision boundaries

Nature Biotech 23(12):1499-1501 (2005)
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Some features of K-means clustering

 Depending on how you seed the clusters, it may
be stochastic. You may not get the same answer
every time you run it.
e Every data point ends up in exactly 1 cluster
(so-called hard clustering)
* Not necessarily obvious how to choose k

* Great example of something we’ve seen already:

Expectation-Maximization (E-M) algorithms

EM algorithms alternate between assigning data to
models (here, assigning points to clusters) and
updating the models (calculating new centroids)

35

Some features of K-means clustering

* Depending on how you seed the clusters, it may
be stochastic. You may not get the same answer
every time you run it.

* /Every data point ends up in exactly 1 cluster

(so-called hard clustering)
* Not necessarily obviols how to choose k
. n:

Let’s think about this aspect for a minute.
Why is this good or bad?

EM How could we change it? 3 1o
ma

Upddl.lllg LHTE TTTOUCTS (CLAICUTdUTTE TTEW LCIILIUIU))

36
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k-means

The basic algorithm:

1. Pick a number (k) of cluster centers

2. Assign each gene to its nearest cluster center

3. Move each cluster center to the mean of its
assigned genes

4. Repeat steps 2 & 3 until convergence

37

Fuzzy k-means

The basic algorithm:

1. Choose k. Randomly assign cluster centers.

2. Fractionally assign each gene to each cluster:
€.8. occupancy (g,m)) _ gllgrmjl? Note: ||x|| is just shorthand for the

5 e.| |gi'mj”2 length of the vector x.

i g;=genei

m; = centroid of cluster j

3. For each cluster, calculate weighted mean of
genes to update cluster centroid
4. Repeat steps 2 & 3 until convergence

38
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Fuzzy k-means

k-means = . ¢

2 2 @ Centroid:

Genome Biology 3(11):research0059.1-0059.22 (2002)
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Remove genes
correlated >0.7

Remove genes
correlated >0.7

1st clustering cycle to the 2nd clustering cycle to the 3rd clustering cycle
identified identified
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Genome Biology 3(11):research0059.1-0059.22 (2002)
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(9)
a ® co.
e Genes B o O
® Centroids 2
M
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Final cluster means

Iterating
fuzzy k-
means

Genome Biology 3(11):research0059.1-0059.22 (2002)
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A fun clustering strategy that builds on
these ideas: Self-organizing maps (SOMs)

- Combination of clustering & visualization
- Invented by Teuvo Kohonen, also called

Kohonen maps \ I

Dr. Eng., Emeritus
Professor of the
Academy of Finland;
Academician

42
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A fun clustering strategy that builds on
these ideas: Self-organizing maps (SOMs)

SOMs have:
your data (points in some high-dimensional space)
a grid of nodes, each node also linked to a point someplace in data space

1. First, SOM nodes are arbitrarily positioned in data space. Then:

2. Choose a training data point. Find the node closest to that point.

3. Move its position closer to the training data point.

4. Move its grid neighbors closer too, to a lesser extent.

Repeat 2-4. After many iterations, the grid approximates the data distribution.

SOM grid

N
— —
Data points
single
observation Wikipedia
43

Here’s an example using colors. Each color has an RGB vector. Take a bunch of
random colors and organize them into a map of similar colors:

Map consisting of 7 x 11 map units or nodes

Each node is
associated

with a model
vector, mj

best matching
unit (BMU), m¢

Here’s the SOM >

neighborhood
of the BMU, N¢

RGB
values:

red blue
green

Each SOM node lives in
RGB space >

connections from each
input element to
all map nodes

Here’s the input color data > ... OLOAODOOC ...

stream of
inputs

Kybernetes 34(1/2): 40-53 (2005)

44
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Iteratively test new colors, update the map using some rule

weight Node neighborhood
N Y
mi(t + 1) = mi(t) + a(d)[x(t) — mi(t)] for each €& N(1),

VoA [

Updated Starting  Difference

node node from
vector vector data
vector

The weight and
node
neighborhoods
shrink with time
(iterations)

Kybernetes 34(1/2): 40-53 (2005)
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G000
Se00G0e
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09090
0000006
C XX XX T
ey
SONABO0
888600

Over time, the map self-
organizes to show
clusters of like colors.

http://www.generations.org/content/2004/
kohonenApplications.asp

http://users.ics.aalto.fi/tho/thesis/
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A SOM of U.S. Congress voting patterns

|| Bankrupteys

Red = yes votes
Blue = no votes

Republicans

Democrats

&
006 100 0.00 1.00
| PratectioncflawfulComme | ReallDAct

Wikipedia
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SOM of Wikipedia (from Wikipedia, naturally)
(data = wiki article word frequency vectors)
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SOMs can accommodate unusual data distributions

One-dimensional SOM _
Data points

i
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& * ° @ SOM 5.06%

Wikipedia
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Finally, t-SNE is a nice way to visualize data in 2 or 3D
= t-distributed stochastic neighbor embedding

t-SNE tries to reproduce high-D data neighborhoods in a 2D or 3D picture by:

1. Defining a probability distribution over pairs of high-D objects such that
“similar” objects have a high probability of being picked, whilst “dissimilar”
objects have an extremely small probability of being picked

2. Defining a similar probability distribution over the points in the low- D map

3. Minimizing the Kullback—Leibler divergence between the two distributions
by varying the locations of the points in the low-D map, i.e.

minimize this: Dij . probability i and jare close in high-D space
E Dijlog —

iz @ij < probability i and j are close in low-D space

Sum over all pairs of points

van der Maaten & Hinton, Visualizing High-Dimensional Data Using t-SNE.
Journal of Machine Learning Research 9: 2579-2605 (Nov 2008)
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Separating cells into cell types by t-SNE
- healthy human bone marrow, stained with 13 markers and measured by
mass cytometry, visualized with viSNE
CD4 T cells CD8 T cells
] ; ‘
_« e

< @ e

afF (=} i

G 1, O e e
CD3—» CD3——»

CD11b* monocytes CD20" B cells

: i
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5 | G 2 ] ’:_,

i B SRR 1 B
CD33 —————» CD19

S
Not manually gated @ CD4 Tcells & CD8 T cells
® CD20" B cells CD20™ B cells & CD11b™ monocytes The colors correspond to how an expert
# ODTIbTmonacytes © HiCeels \/ would “gate” the cytometer
Amir et al., Nature Biotechnology 31:545-552 (2013)
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You can compute your own t-SNE embeddings
using the online tools at:
http://projector.tensorflow.org/

There are also some great examples at:
http://distill.pub/2016/misread-tsne/

There are only a couple of parameters you can tweak, mainly perplexity,
which effectively captures the number of neighbors (often 5 to 50)

53
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