
DNA-binding proteins play crucial roles in many major 
cellular processes, such as transcription, splicing, rep-
lication and DNA repair. These proteins include tran-
scription factors that bind preferentially to certain DNA 
sequences, as well as histone proteins that form the core 
of nucleosomes, which are the basic units of chroma-
tin. The genomic locations of neither bound factors 
nor modified histones can be accurately predicted in a 
particular cell type using DNA sequence features alone, 
and functional assays are necessary to identify these 
cellular characteristics. Chromatin immunoprecipita-
tion coupled with microarrays (ChIP–chip) or short-
tag sequencing (ChIP–seq) has become the standard 
technique for identifying the locations and biochemical 
modifications of bound proteins genome-wide1–3. Recent 
advances in ChIP methodology have overcome some  
of the limitations of the ‘standard’ ChIP experiment, and 
the development of complementary assays and analy-
ses have expanded the number, types and resolution of  
protein–DNA interactions that have been discovered.

In this Review, I discuss the current state of ChIP-
based experiments, including modifications of the 
standard ChIP protocol, and I review basic features of 
ChIP–seq analysis pipelines. I then describe alterna-
tives to ChIP, including open chromatin assays such as 
DNase–seq4–7, formaldehyde-assisted identification of 
regulatory elements (FAIRE–seq)8–10, and genome-wide 
DNaseI footprinting11–14. Finally, I discuss approaches 

for characterizing protein–DNA interactions that are 
improving our understanding of function. These include 
three-dimensional chromatin assays — such as chroma-
tin conformation capture (3C) and its derivatives15–17, 
and chromatin interaction analysis with paired-end tag 
sequencing (ChIA-PET)18,19— that provide evidence for 
functional targets of DNA-bound proteins, and analy-
ses of sequence-based data from ChIP20,21 and other 
experiments22–24 that reveal allele-specific effects on  
protein–DNA binding.

ChIP–seq experiments
Current ChIP–seq experiments. ChIP is the most 
direct way to identify the binding sites of a single 
DNA-binding protein or the locations of modified his-
tones. The basic steps of the ChIP–seq assay have been 
reviewed elsewhere25–27 and are depicted in FIG. 1a for 
transcription factors and in FIG. 1b for histone modifica-
tions. The Encyclopedia of DNA Elements (ENCODE) 
Consortium28 has carried out hundreds of ChIP–seq 
experiments and has used this experience to develop a 
set of working standards and guidelines29 (BOX 1). It must 
be noted that given the diversity of cell types, condi-
tions, factors and modifications being assayed, it is near 
impossible to define common guidelines that will be 
appropriate for all situations. From a technical perspec-
tive, the success of a ChIP experiment depends on the 
development and validation of a highly specific antibody 
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Abstract | Chromatin immunoprecipitation experiments followed by sequencing (ChIP–
seq) detect protein–DNA binding events and chemical modifications of histone proteins. 
Challenges in the standard ChIP–seq protocol have motivated recent enhancements in 
this approach, such as reducing the number of cells that are required and increasing the 
resolution. Complementary experimental approaches — for example, DNaseI 
hypersensitive site mapping and analysis of chromatin interactions that are mediated by 
particular proteins — provide additional information about DNA-binding proteins and 
their function. These data are now being used to identify variability in the functions of 
DNA-binding proteins across genomes and individuals. In this Review, I describe the latest 
advances in methods to detect and functionally characterize DNA-bound proteins.
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Sonication
The fragmenting of DNA 
sequence by exposing it to 
high-frequency sound waves.

to the bound protein or modification. Antibody quality 
varies, even between independently prepared lots of the 
same antibody, as demonstrated in a recent assessment 
of over 200 human, fly and worm antibodies as part of 
the ENCODE and the model organism ENCODE (mod-
ENCODE) projects30. In this study, 25% failed specificity 
tests and 20% failed immunoprecipitation experiments. 
In addition, multiple histone modifications can alter the 
efficacy of certain antibodies31. Other technical chal-
lenges include the requirement for large numbers of cells 
and prior knowledge of the existence of a DNA-binding 
protein or histone modification. Possible solutions to 
these issues are considered below and in later sections.

Limited cells. Typically, large numbers of cells (~10 mil-
lion) are required for a ChIP experiment, thus limiting 
the types of cells that can be assayed and the number of 

ChIP experiments that can be carried out on a valuable 
sample. It can be especially challenging in small model 
organisms, for which multiple whole animals may be 
necessary to achieve these quantities. Two protocols have 
been developed recently to address this problem through 
post-ChIP DNA amplification (FIG. 1a,b).

Nano-ChIP–seq32 has been successfully carried out 
on as few as 10,000 cells for histone modifications. The 
authors recommend using variable sonication times and 
antibody concentrations that are scaled in proportion 
to the number of starting cells. The small amount of 
DNA that is extracted following the ChIP experiment is 
PCR amplified using custom primers that form a hair-
pin structure at their 5ʹ end to prevent self-annealing 
when being added. The primers also contain a BciVI 
restriction site that allows the direct addition of Illumina 
sequencing adaptors to the resulting amplified DNA, 

Figure 1 | Comparison of experimental protocols. Experiments to detect different aspects of DNA-binding proteins 
share many of the same steps; simplified schematics of the main steps are shown. a | Chromatin immunoprecipitation 
followed by sequencing (ChIP–seq) for DNA-binding proteins such as transcription factors. Recent variations on the 
standard protocol include using endonuclease digestion instead of sonication (ChIP–exo) to increase the resolution of 
binding-site detection and to eliminate contaminating DNA, and DNA amplification after ChIP for samples with limited 
cells. b | ChIP–seq for histone modifications uses micrococcal nuclease (MNase) digestion to fragment DNA and can also 
now be run on low-quantity samples when combined with the additional post-ChIP amplification. c | DNase–seq relies on 
digestion by the DNaseI nuclease to identify regions of nucleosome-depleted open chromatin where there are binding 
sites for all types of factors, but it cannot identify what specific factors are bound. d | Formaldehyde-assisted identification 
of regulatory elements (FAIRE–seq) similarly identifies nucleosome-depleted regions by extracting fragmented DNA that 
is not crosslinked to nucleosomes. LinDA, single-tube linear DNA amplification; T7, T7 phage RNA polymerase.
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which makes DNA library preparation and sequencing 
straightforward. The number of cells required is depend-
ent on multiple factors, including antibody efficiency 
and the abundance of the target protein. Therefore, 
although 10,000 cells were sufficient to assay the 
chromatin mark histone H3 trimethylated on lysine 4 
(H3K4me3), ChIPs for less-abundant histone modifica-
tions or transcription factors will probably require more 
cells and may require further optimization of certain 
steps such as sonication time.

The second protocol uses single-tube linear DNA 
amplification (LinDA) and has been successfully applied 
for the oestrogen receptor-α (ERα) transcription factor 
using 5,000 cells and for the H3K4me3 histone modifica-
tion using 10,000 cells33. The key to this technique is an 
optimized T7 phage RNA polymerase linear amplifica-
tion protocol34. A major concern in any amplification 
protocol is that technical biases could result in uneven  
amplification of the starting material. LinDA was 
shown to be robust for the even amplification of start-
ing material; importantly, it seemed to avoid bias in rela-
tion to GC content, which is generally problematic for  
PCR-based approaches.

Increased precision. Standard ChIP–seq experiments 
that use sonication to fragment chromatin result in 
libraries containing DNA molecules that are ~200 bases 
long, even though each protein typically binds only 6–20 
bases. In addition, the resulting libraries are often con-
taminated with DNA that was not bound by the target 
factor. This contamination is responsible for some com-
mon systematic biases and has necessitated the use of 
input control experiments.

ChIP–exo35 uses lambda (λ) phage exonuclease to 
digest the 5ʹ end of protein-bound and formaldehyde-
crosslinked DNA fragments to a fixed distance from the 
bound protein (FIG. 1a); fixation is a barrier to 5ʹ–3ʹ diges-
tion. As DNA fragments are produced from both strands 
during ChIP, the 5ʹ ends of sequence tags align primar-
ily at two genomic locations corresponding to the bar-
riers on each strand. The protein is bound to the region 
between these locations. In addition, the exonuclease 
largely eliminates contaminating DNA. Experiments 
in yeast for the Reb1 transcription factor35 showed that 
ChIP–exo could identify binding sites with single base-
pair precision (which is a 90‑fold greater precision than 
when using the standard protocol), and with a 40‑fold 
increase in the signal-to‑noise ratio, thus indicating a 
lower background (contaminating) signal.

Multiple binding events. DNA-bound proteins and 
histone modifications work together and with other 
genomic modifications to carry out cellular functions. 
When multiple experiments indicate different proteins 
or modifications at the same genomic location, it is not 
clear whether these are simultaneously present or are 
present on different chromosomes in the same cell or in 
different cells. Sequential ChIP (also known as re‑ChIP 
or co‑immunoprecipitation)36 uses antibodies to dif-
ferent proteins in successive experiments to determine 
the genomic locations where both targets are present. 

Box 1 | Recommended ChIP–seq standards

Based on the collective experience of laboratories involved in the Encyclopedia of 
DNA Elements (ENCODE) and model organism ENCODE (modENCODE) projects, 
which have carried out hundreds of chromatin immunoprecipitation followed by 
sequencing (ChIP–seq) experiments, a set of standards and guidelines for carrying 
out ChIP–seq has been written29. Experiments are classified as point source (highly 
localized signals, such as for transcription factors), broad source (signals that span 
large domains; for example, as for some histone modifications such as H3K36me3) 
or mixed source (signals that have elements of both, such as for RNA polymerase II). 
If the type of signal is unknown, multiple peak callers focusing on point-source or 
broad-source peaks may be applied to determine the best fit to the data. These 
standards are summarized below.

Antibody validation
The primary characterization of transcription factor antibodies is carried out using 
immunoblot or immunofluorescence analysis. Secondary characterization is 
carried out using one of: factor knockdown by mutation or RNAi; independent 
ChIP experiments using alternative epitopes or protein members of a complex; 
immunoprecipitation using epitope-tagged constructs; mass spectrometry; or 
binding-site motif analyses. The primary characterization of histone modification 
antibodies is carried out using immunoblot analysis. The secondary 
characterization is carried out using one of: peptide binding tests; mass 
spectrometry; immunoreactivity analysis in cell lines containing knockdowns of 
relevant histone modification enzymes or mutant histones; or genome annotation 
enrichment.

Sequencing depth
Generating a ChIP–seq profile requires different amounts of sequencing data 
depending on the size of the genome and the peak type. For human genomes, 
20 million uniquely mapped read sequences are suggested for point-source peaks, 
or 40 million for broad-source peaks. For fly or worm genomes, these values are 
8 million and 10 million reads, respectively. An increased sequencing depth allows 
the detection of more sites that have lower levels of enrichment over the genomic 
background. It is noted that setting a minimal signal strength threshold, usually 
based on a P value or false-discovery rate calculation, to identify peaks does not 
guarantee the discovery of all functional sites. It is also noted that DNA sequencing 
library complexity (that is, the amount of unique DNA molecules) must be sufficient, 
such that the sequencing depth does not exceed the library complexity. It is 
suggested that at least 80% of 10 million or more reads be mapped to distinct 
genomic locations. Low-complexity libraries generally indicate a failed experiment 
in which not enough DNA was recovered; this causes the same PCR-amplified 
products to be sequenced repeatedly and many small peaks to be detected with a 
high false-positive rate.

Experimental replication
A minimum of two replicates should be carried out per experiment. Each replicate 
of a human genome experiment should have 10 million uniquely mapped reads per 
replicate for point-source peaks or 20 million for broad-source peaks. For fly or 
worm genomes, these values should be 4 million and 5 million reads, respectively. 
Each replicate should be a biological rather than a technical replicate; that is, it 
represents an independent cell culture, embryo pool or tissue sample. For two 
replicates, either 80% of the top 40% of identified targets in one replicate must be 
among the targets in the second replicate; alternatively, 75% of target lists must  
be in common between both replicates.

Data quality assessment
No single test is universally suitable for all experiments, nor is always necessary. 
Recommended assessments include: investigating signals at known sites using a 
genome browser; calculating the fraction of reads in peaks (FRiP), which is 
recommended to be >1%; and calculating cross-correlations. Cross-correlations 
are defined as the correlation of the density of sequences aligned to the Watson 
strand with the density of sequences aligned to the Crick strand after shifting the 
Watson strand alignments by the average distance between opposite strands reads.

Data and metadata reporting
ChIP results should be submitted to the Gene Expression Omnibus (GEO)109. The 
provided experimental and analysis information should include ChIP procedures, 
antibody validation, DNA sequencing information, identified regions of enrichment 
and their method of identification, and any other analysis.
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Exonuclease
An enzyme that cleaves a 
single nucleotide from the end 
of a DNA molecule.

Crosslinked
The strong binding of DNA to 
interacting proteins through 
covalent bonds.

However, experiments have only been carried out at indi-
vidual loci and not in conjunction with high-throughput 
sequencing. Recently, assays have been developed that 
use bisulphite sequencing to identify methylated DNA 
in immunoprecipitated chromatin fragments37,38. These 
genome-wide experiments showed that DNA meth-
ylation and the histone modification H3K27me3 can 
occur simultaneously. More generally, new techniques 
have been developed to reveal the identities of individ-
ual proteins interacting in larger complexes in human 
and model organisms39–47, thus providing evidence for  
combinations of factors that bind together.

ChIP–seq analysis pipelines
There has also been a large effort to improve analytical 
tools that are necessary to interpret the sequence data 
output from ChIP–seq experiments. Computational 

processing pipelines are generally implemented to pro-
gress from raw sequence reads to usable annotations. 
Steps common to many pipelines are depicted in FIG. 2. 
Each step has led to the development of specialized  
software tools, which are briefly discussed below.

Sequence aligners must be fast and accurate, and sev-
eral strategies have been developed to achieve these goals 
(TABLE 1; see REF. 48 for a recent review). Given a final set 
of aligned sequences, genomic regions are identified that 
contain enriched signals (that is, ‘peaks’) where more 
sequences are aligned than would be expected by chance, 
thus indicating locations of binding sites or histone mod-
ifications. Several software programs have been devel-
oped to identify these peaks (TABLE 1; see REFS 49–52 for 
recent comparisons of the methods). When available, 
data from input control experiments are used by most 
peak callers to represent the background levels of signal. 
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Filter poor-quality reads (optional)
• Remove sequences with poor-
   quality bases
• Remove sequences with adapter
   sequence or other contaminants

Align reads to the genome
• Many aligners to choose from
• Allele-aware aligners
• Speed and memory considerations

Filter artefacts and reads aligning
to multiple locations
• Remove duplicate sequences
• PCR artefacts
• Eliminate non-unique aligning 
   reads (but this masks segmental 
   duplications)

Call narrow/broad peaks 
(ChIP–seq, DNase–seq, FAIRE–seq)
• Settings may vary based on the 
   type of peak
• Highly dependent on threshold 
   settings

Determine DNaseI footprints
(DNase–seq)
• Identify small depleted regions 
   in peaks
• Associate with TFs using motifs

Call interactions (3C, ChIA-PET)
• Identify interactions based on 
   multiple paired-end tags

Identify allelic biases
• Ensure alignments/processing not
   biased towards one allele
• Binomial test for enrichment

Figure 2 | General analysis pipeline for sequence-tag experiments. Different experiments that use short sequence reads 
to identify regions with a particular molecular characteristic share many of the same analysis steps. Poor-quality reads can 
be filtered initially, but often the inability to align these reads to the genome sufficiently removes bad sequences. 
Alignment using one of many possible software programs (TABLE 1) is followed by filtering artefacts that arose during the 
PCR amplification step when sequencing, or that appear owing to the under-representation of certain sequences in the 
reference genome, such as peri-centromeric satellite sequences. Often, reads aligning to more than a chosen number of 
genomic locations are removed. For experiments to identify independent locations, ‘peak’-calling tools (TABLE 1) identify 
genomic regions of signal enrichment, which indicate a bound protein, histone modification or open chromatin. By 
contrast, chromatin interaction experiments use aligned paired-end reads to find evidence of interacting distal genomic 
regions. DNaseI footprints (FIG. 3) indicate local protection from DNaseI digestion within a larger DNaseI-hypersensitive 
site (DHS) region due to a bound protein. The distribution of alleles in sequences spanning heterozygous variants can 
be analysed to determine if a bias towards sequences with one of the two alleles exists (FIG. 5). This may reflect a 
functional difference caused by the underlying genotype.3C, chromatin conformation capture; ChIA-PET, chromatin 
interaction analysis with paired-end tag sequencing; ChIP–seq, chromatin immunoprecipitation followed by 
sequencing; DNase–seq, DNaseI-hypersensitive sites sequencing; FAIRE–seq, formaldehyde-assisted identification  
of regulatory elements; TFs, transcription factors.
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Mappability
The uniqueness of a stretch of 
DNA sequence compared with 
a whole-genome sequence. 
Short sequence reads can be 
confidently mapped to unique 
sequence, but less confidently 
mapped to sequence that 
occurs multiple times in a 
genome.

DNA binding motifs
A degenerate pattern of  
DNA sequences to which 
transcription factors prefer  
to bind. They are often 
represented as a probabilistic 
matrix.

Many programs also control for differences in mappability  
to regions of the genome. As described in BOX 1, peaks 
can be point source (highly localized signals, such as for 
transcription factors), broad source (signals that span 
large domains; for example, for some histone modifica-
tions such as H3K36me3) or mixed source (signals that 
have elements of both, such as for RNA polymerase II 
(Pol II) binding). Each of these requires different detec-
tion strategies; some software is focused primarily on 
one type of peak, whereas others offer different settings 
that tune the software on the basis of the peak shape.

It is often desirable to compare data from multiple 
experiments; for example assaying the same transcrip-
tion factor in two different cell types or conditions, to 
investigate common and cell-type-specific activity. 
Simply comparing peaks from each experiment is often 
used to identify regions that are differentially bound 
or modified. However, this approach may not identify 
regions that are called as peaks in both experiments but 
which have very different strengths of signal, and it may 
incorrectly identify regions that were just above the peak 
threshold in one experiment but just below in the other. 

Several software packages, which were originally devel-
oped for high-throughput RNA sequencing (RNA-seq) 
data, are now available that can be adapted to identify 
statistically significant differences directly on the basis 
of ChIP–seq read count data (TABLE 1; see REFS 53, 54 for 
a comparison).

Using experimental evidence of factor binding sites, 
there is an opportunity to improve the characterization 
of preferred DNA binding motifs for each factor. Several 
groups have developed software that uses information 
from ChIP–seq experiments during motif discovery55–60. 
More-accurate modelling of binding preferences allows 
for better prediction of significant signals and the precise 
DNA contact site for factor binding events identified by 
ChIP–seq.

Sequencing considerations. We are still discovering 
biases and systematic errors in sequence data that result 
from combinations of genomic characteristics, experi-
mental protocols, specific sequencing technologies, 
batch effects and analytical methods61. Biases have been 
studied in multiple types of experimental data, mainly 

Table 1 | A subset of software tools available for three key steps in the analysis of sequence data

Software tool Web address Notes

Short-read aligners

BWA http://bio-bwa.sourceforge.net Fast and efficient; based on the Burrows–Wheeler 
transform

Bowtie http://bowtie-bio.sourceforge.net Similar to BWA, part of suite of tools that includes TopHat 
and CuffLinks for RNA-seq processing

GSNAP http://research-pub.gene.com/gmap Considers a set of variant allele inputs to better align to 
heterozygous sites

Wikipedia list 
of aligners

http://en.wikipedia.org/wiki/List_of_
sequence_alignment_software#Short-
Read_Sequence_Alignment

A comprehensive list of available short-read aligners, with 
descriptions and links to download the software

Peak callers

MACS http://liulab.dfci.harvard.edu/MACS Fits data to a dynamic Poisson distribution; works with and 
without control data

PeakSeq http://info.gersteinlab.org/PeakSeq Takes into account differences in mappability of genomic 
regions; enrichment based on FDR calculation

ZINBA http://code.google.com/p/zinba Can incorporate multiple genomic factors, such as 
mappability and GC content; can work with point-source 
and broad-source peak data

Differential peak calling

edgeR http://www.bioconductor.org/
packages/2.9/bioc/html/edgeR.html

Uses negative binomial distribution to model differences 
in tag counts; uses replicates to better estimate significant 
differences

DESeq http://www-huber.embl.de/users/
anders/DESeq

Also uses negative binomial distribution modelling, but 
differs in the calculation of the mean and variance of the 
distribution

baySeq http://www.bioconductor.org/packages/
release/bioc/html/baySeq.html

Uses empirical Bayes approach to identify significant 
differences; assumes negative binomial distribution of data

SAMSeq http://www.stanford.edu/~junli07/
research.html#SAM

Based on the popular SAM software; a non-parametric 
method that uses resampling to normalize for differences 
in sequencing depth

BWA, Burrows–Wheeler Aligner; DESeq, analysis of high-throughput sequencing to detect differential expression; FDR, 
false-discovery rate; GSNAP, Genomic Short-read Nucleotide Alignment Program; MACS, Model-based Analysis for ChIP–seq; 
RNA-seq, high-throughput RNA sequencing; SAM, significance analysis of microarrays; ZINBA, Zero-Inflated Negative Binomial 
Algorithm.
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Promoters
DNA sequences immediately 
upstream of transcription  
start sites at which RNA 
polymerases and transcription 
factors bind to initiate gene 
transcription.

Enhancers
DNA sequences at which 
transcription factors bind that 
increase the transcription rate 
of one or more target genes 
that can be at varying 
distances from the enhancer.

Silencers
DNA sequences at which 
transcription factors bind that 
decrease the transcription rate 
of one or more target genes 
that can be at varying 
distances from the silencer.

Insulators
DNA sequences that interfere 
with enhancer and/or silencer 
activity.

Locus control regions
Regulatory elements that 
generally control transcription 
of multiple genes in a single 
locus.

generated using Illumina’s Genome Analyzer sequencer, 
to better understand how to detect biases and correctly 
normalize data to uncover true signals62–67. These studies 
indicate the need to normalize for chromatin structure 
(which may affect fragmentation), for uneven nucleo-
tide distributions across read base positions and for GC 
content. All of these can affect the number of sequence 
reads generated from particular genomic regions. Using 
an input control to correct for these assumes that biases 
are similar between the paired ChIP and input experi-
ments, which is not necessarily the case65, and thus 
biases may need independent correction in input con-
trols. Mappability can also affect accurate signal detec-
tion; this can partially be remedied by using paired-end 
sequencing. In one study, sequencing paired-ends was 
shown to nearly double the effective genomic coverage 
in repeat regions, but with increased sequencing costs62. 
The effect of sequencing depth on accuracy and sen-
sitivity was also assessed, and it was found that some 
binding sites were missed even at high depths (16.2 mil-
lion reads across the Drosophila melanogaster genome, 
which is equivalent to approximately 327 million reads 
across the human genome)62. Individual base sequenc-
ing errors in reads are also not uniform. For example, it 
is well known that base-pair quality degrades towards 
the 3ʹ end of Illumina-sequenced reads63. In addition, 
certain substitutions are more prevalent (that is, A→C 
and G→T), inverted repeats and G‑rich sequences 
(especially GGC) often precede errors, and quality 
scores at the high and low end often overestimate and  
underestimate, respectively, the true error rate61,63,66,68.

Further analytical challenges. Despite the progress, 
several challenges remain. As read length increases, the 
current short-read aligners will probably require further 
modification48, and alignments to repetitive sequences 
will remain a challenge69–71. Continued effort is needed 
to develop or improve methods to identify real events, 
given the inherent biases and errors described above, 
and to enable a better interpretation. For example, 
although we would like to think of the assayed binding 
or modification events as binary — that is, a protein is 
or is not bound to a given location — the data are more 
continuous in nature. Signal strength at a particular 
location is influenced by the strength of the interaction, 
which can be modulated by variations in genotype, and 
by the percentage of the population of cells assayed that 
have the binding or modification event. Signals may 
reflect not only direct binding events, but also indirect 
binding in which one factor interacts with another factor 
that is bound to DNA. Distinguishing between direct 
and indirect events is important but cannot be achieved 
directly from ChIP data.

Open chromatin
Most transcription factors cannot stably interact with 
their DNA targets if the DNA is nucleosomal. For sta-
ble binding to occur, nucleosomes must be displaced 
or translocated to create a nucleosome-depleted, open 
chromatin region. Detecting open chromatin comple-
ments ChIP–seq data and can identify binding sites for 

nearly all factors simultaneously. Two distinct assays, 
DNase–seq and FAIRE–seq, have been developed to 
detect open chromatin directly (see REF. 72 for a review 
of genome accessibility experiments).

DNase–seq and FAIRE–seq. The DNaseI endonuclease 
non-specifically digests DNA, but in the normal con-
text of chromatin structure it will preferentially digest 
unbound, open chromatin. As most DNA is wrapped 
in a nucleosome, DNaseI-hypersensitive (DHS) sites 
largely correspond to nucleosome-depleted regions, and 
these are primarily the regions that have gene-regulatory 
functions, such as promoters, enhancers, silencers, insula-
tors and locus control regions73–75. DNase–seq experiments 
(FIG. 1c) combine traditional DHS assays with high-
throughput sequencing to simultaneously identify all 
types of regulatory regions genome-wide4,7,76. The 5ʹ end 
of a sequence tag generated by DNase–seq indicates the 
site of a DNaseI digestion event, and regions of enrich-
ment in digestion events are identified as DHS sites, each 
of which can contain binding sites of multiple factors. 
Comparisons with ChIP–seq data indicate that DNase–
seq captures the vast majority of binding sites for most 
factors4,6,7.

The FAIRE–seq assay8,9 starts with formaldehyde 
crosslinking, similarly to ChIP, but then instead of 
using an antibody to target specific factors, DNA is 
sonicated and the extract is subjected to phenol-chlo-
roform extraction. The nucleosome-depleted fraction of 
DNA is preferentially segregated to the aqueous phase. 
FAIRE-enriched DNA has been shown to correspond 
to regulatory regions8.

Enriched regions from these two assays are highly 
overlapping but are not identical6. In a comparison6, 
both showed good correspondence to ChIP–seq data 
for multiple factors, and most factor binding sites were 
found by both methods. However, each method identi-
fied a subset of putative regulatory elements that are 
not seen in the other. Binding sites of certain factors 
(such as FOXA1, FOXA3 and GATA1) were better iden-
tified by FAIRE–seq, whereas others (such as ZNF263 
and CTCF) were more often seen in DNase–seq data. 
Sites that were only found in DNase–seq assays were 
enriched at promoter regions and in regions that 
have the promoter-associated histone modifications 
H3K4me3 and H3K9 acetylation (H3K9ac), whereas 
sites that were specific to FAIRE–seq were more often 
in introns and exons, intergenic regions and H3K4me1 
regions6.

The FAIRE–seq assay is fairly easy to carry out, 
although some optimization of crosslinking times may 
be needed for different cell types or tissues owing to vari-
ation in fixation efficiency10. DNase–seq can be more 
difficult at the bench as optimization is required for 
cell lysis procedures and DNaseI concentration5. The 
signal-to‑noise ratio — that is, the fraction of sequences 
in enriched regions versus non-enriched regions — is 
higher for DNase–seq than for FAIRE–seq, which 
contributes to the identification of more-precise DNA 
binding sites (known as DNaseI footprints), as described 
below. Advantages of DNase–seq and FAIRE–seq 
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compared with ChIP–seq are that they can identify 
genomic locations bound by proteins that are unchar-
acterized or for which antibodies do not exist. However, 
standard open chromatin analysis does not allow the 
determination of which protein or proteins are present 
in these regions.

Nucleosome positioning experiments such as 
MNase–seq77,78 use micrococcal nuclease (MNase) diges-
tion to determine where nucleosomes are present and, by 
extension, nucleosome-free regions. For large genomes, 
such as the human genome, MNase–seq may not be as 
economically practical because >90% of the genome is 
nucleosomal. Considerably greater sequencing cover-
age is required for MNase–seq to obtain the same level 
of resolution of nucleosome-free regions as the open  
chromatin assays described above.

DNaseI footprinting. Within a DHS site there are 
smaller, more-focal areas of DNaseI protection, called 
DNaseI footprints (FIG. 3), which result from the binding 
of individual proteins or complexes. Single-site DNaseI 
footprinting has been used to identify binding sites at 
individual loci for over 30 years79, and DNase–seq now 
enables the discovery of footprints genome-wide7,11–13.

Two different basic strategies have been used for pre-
dicting protein binding sites using DNaseI footprints 
in DNase–seq data. The first tries initially to delineate 
individual footprints solely based on the distribution of 
the sequence reads; a depletion of the 5ʹ ends of reads 
within the footprint would be expected compared with 
the immediately adjacent, non-footprint bases. This 
strategy has been used in the yeast and human genomes 
to identify 8–30 bp footprint regions of significantly 
reduced DNaseI digestion compared to a random back-
ground distribution11,14 and in the human genome using 
a hidden Markov model (HMM) to model the character-
istic changes in sequence read density in footprints12. To 
predict what factor might be bound at each identified 
footprint, transcription factor binding motif databases 
such as TRANSFAC80, JASPAR81 and UniPROBE82 
can be scanned using the sequence in the footprint. 
Footprints can also be used to identify DNA binding 
motifs for novel transcription factors. A recent analysis  
of 41 diverse cell-types showed that approximately 90% of  
all motifs in TRANSFAC, JASPAR, and UniPROBE 
could be identified using footprinted sequences, and 
an additional 289 distinct motifs could be defined14. 
Comparing ChIP–seq data with motifs in footprints 
also provides the ability to estimate which sites are being 
directly versus indirectly bound by a factor14. As these 
are predictions, it is recommended that specific binding 
events are tested experimentally.

An alternative strategy, which is implemented in 
the CENTIPEDE software tool13, essentially carries 
out the above steps in the reverse order. First, the 
genome is scanned to identify all potential binding sites 
for a given DNA-binding protein based on its motif. 
CENTIPEDE then uses an unsupervised Bayesian  
mixture model to predict which of these sites are bound 
by protein and which are not bound in a particular 
cell type. This probabilistic model uses evidence based 

Figure 3 | DNaseI footprints correspond to bound proteins. The distribution of 
DNaseI digestion sites with DNaseI hypersensitive regions is not uniform; peaks and 
troughs occur in the signal, where troughs are due to the protection of DNA sequences 
by bound proteins. Transcription factor binding motif databases such as JASPAR81 can 
be searched using the sequence from each footprint to predict what factor is bound. 
Shown here are data from the proximal promoter region of the human fragile-X mental 
retardation 1 (FMR1) gene, with motif-matching results for one footprint indicating that 
potentially bound factors are interferon regulatory factor 1 (IRF1) or IRF2. DNaseI 
footprints had been identified previously at this locus110 in lymphoblastoid cells. More 
recent data from DNase–seq was used to recapitulate these results in a single 
experiment12. The upper panel is modified, with permission, from REF 12 © (2010) Cold 
Spring Harbor Laboratory Press.
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primarily on DNaseI digestion, but can also incor-
porate evidence from the evolutionary conservation 
of bases and the presence of histone modifications, 
if those data are available. A second analysis in this 
study13 using all 10‑mers that were enriched in DHS 
sites predicted 49 novel motifs not found in existing 
motif databases, demonstrating that CENTIPEDE can 
also find binding sites of undefined factors.

A comparison of the accuracies of the two meth-
ods has not been carried out. The first method may be 
more appropriate for a more global annotation of poten-
tial binding sites regardless of the existence of a motif, 
whereas CENTIPEDE provides a more straightforward 
method to identify footprints for particular factors with 
known binding site preferences. Both methods are con-
strained by sequencing depth — which can limit their 
ability to identify footprints in the DHS sites that have 
reduced signals in DNase–seq data — and by the lack 
of knowledge of binding site preferences for factors. 
Increased sequencing depths will enable further refine-
ment of footprint models. As DNaseI footprint annota-
tions are generated for more cell types, motif-finding 
algorithms may help to predict new factor-binding motifs 
that in turn will help with the annotation of footprints.

Mapping chromatin interactions
Identifying protein–DNA binding sites is important, but 
that by itself does not lead to an understanding of the 
regulatory programs and other biological processes in 
cells. ChIP–seq, DNase–seq, and FAIRE–seq do not map 
each bound protein to the target gene or genes that it is 
helping to regulate, nor to the genomic region or regions 
with which it is interacting to form a higher order chro-
matin structure. Towards this end, approaches have 
been developed that are based on the 3C method15. This 
method has been extended to improve the scope and/
or precision, resulting in methods known as chromatin 
conformation capture carbon copy (5C)16 and Hi‑C17. 
Furthermore, 3C has been adapted to identify interac-
tions that are associated with specific proteins, resulting 
in the ChIA-PET sequencing method18,19.

The principal steps of chromatin conformation 
capture experiments (FIG. 4a) are to: crosslink genomic 
regions that are in close proximity (analogous to the 
crosslinking that is used in ChIP–seq to find DNA–
protein interactions); digest the DNA using restriction 
enzymes to create pairs of crosslinked DNA fragments 
that originated from distinct genomic locations; and 
identify these pairs of fragments (for example, using 
paired-end sequencing after the ligation and amplifi-
cation of the fragments). 3C experiments require PCR 
primers that are designed for regions of interest and 
thus are low-throughput. However, designing prim-
ers for promoter regions of genes and for regulatory 
regions that have been identified through ChIP–seq or 
DNase–seq experiments can identify potential interac-
tions between specific bound proteins and their target 
genes. 5C experiments simultaneously use thousands of 
primers in one experiment to detect millions of inter-
actions16. 5C is still limited in the size of the genomic 
region that can be assayed, both by the number of prim-
ers that are incorporated and by sequencing depth to 
confidently detect interactions. 5C was used to analyse 
a 400 kb region that included the human β‑globin locus 
and was able to confirm known interactions between 
regulatory elements and genes in the locus, as well as 
to identify new looping interactions16. Hi‑C does not 
depend on primers but instead incorporates biotinylated 
residues after restriction enzyme digestion that allow 
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Figure 4 | Detecting chromatin interactions. In three-dimensional space, distal 
genomic regions on the same or different chromosomes interact, and this can be 
mediated by one or more DNA-binding proteins. a | Chromatin conformation capture 
experiments use a ligation step to join distant fragments that are interacting in 
three-dimensional chromatin space, thus providing information on possible targets 
for DNA-bound proteins. b | Chromatin interaction analysis with paired-end tag 
sequencing (ChIA-PET) similarly detects chromatin interactions using a ligation step 
to pair non-adjacent interacting regions. However, ChIA-PET uses a chromatin 
immunoprecipitation (ChIP) step to more specifically identify interactions with a 
particular bound protein, such as RNA polymerase II. It should be noted that the DNA 
that is actually sequenced as part of the paired-end sequencing does not necessarily 
correspond to the precise region of interaction but is dictated by the presence of 
restriction enzyme targets.
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Hidden Markov model
(HMM). A statistical model 
consisting of states that 
represent an aspect of a 
sequence (such as in a 
footprint), which transitions 
between states; it is used to 
label bases in a sequence with 
the modelled property. HMMs 
are also used in many gene 
prediction programs.

Bayesian mixture model
A probabilistic model that is 
used to represent the presence 
of multiple subpopulations 
(such as DNaseI footprints) 
within the whole population 
(such as the whole genome 
sequence). Bayesian mixture 
models allow for the 
incorporation of prior 
knowledge about 
subpopulation frequencies.

Biotinylated
A protein or nucleic acid to 
which a small biotin molecule 
has been attached. Biotin 
binds to streptavidin, thus 
allowing for the isolation of 
biotinylated molecules.

Dissociation constant
A constant that reflects the 
amount of energy that is 
required to separate two 
interacting molecules, often 
referred to as Kd.

these fragments to be pulled down using streptavidin 
beads and the detection of interactions genome-wide. 
Extremely deep sequencing is required to confidently 
identify all interactions. Although this represents a 
substantial increase in throughput, the resolution is 
limited to a megabase scale owing to the frequency of 
restriction sites in the genome83. This limits the ability 
to confidently associate individual factor binding sites 
with target genes. A recent study showed that Hi‑C was 
able to identify correctly interaction domains in the 
mouse and human HOXA locus that are separated by 
a known CTCF insulator element83. Thus, chromosome 
conformation information can provide boundaries for  
potential factor–gene interactions.

ChIA-PET (FIG. 4b) also starts with formaldehyde-
based crosslinking, but this is followed by fragmentation 
by sonication and an immunoprecipitation step using a 
specific antibody, as is done in a ChIP experiment. DNA 
ligase is added to create chimeric DNA fragments, fol-
lowed by restriction enzyme digestion and paired-end 
tag sequencing. ChIP–seq experiments for the factor of 
interest are also carried out to support the interaction 
data and to annotate where the factor is bound.

ChIA-PET provides genome-wide high-resolution 
data for interactions that involve a given DNA-binding 
protein. An initial study of the ERα protein revealed 
that ERα binding sites are involved in long-range loop-
ing interactions to gene promoters, and these interac-
tions affect transcription rates84. Knockdown of ERα by 
short interfering RNA (siRNA) led to at least some of 
the interactions disappearing and transcriptional regu-
lation being affected. As with Hi‑C, the resolution of 
ChIA-PET is limited by the frequency and distribution 
of restriction enzyme digestion sites. Because ChIA-
PET relies on an antibody targeted to the factor of inter-
est, as for ChIP an increase in available antibodies will 
increase the scope of interactions that can be discovered 
by this method.

Data from ChIA-PET and 5C experiments are avail-
able in the University of California, Santa Cruz (UCSC) 
Genome Browser, which provides a visual representation 
of the sequenced paired-end tags. Together, the chroma-
tin conformation capture and ChIA-PET technologies 
offer the ability to generate evidence of what genes are 
being targeted by DNA-bound proteins and regions with 
specific histone modifications.

Variation in protein binding
ChIP–seq, DNase–seq, and chromatin interaction 
experiments generate complex data sets that reflect the 
dynamic nature of the biological processes being meas-
ured. The results of these experiments provide a snap-
shot of varying chromatin states and protein binding 
events across millions of cells that are subject to genetic 
and environmental influences. Signals from these data 
reveal a spectrum of intensities, but the molecular 
underpinnings of this variation — among loci in the 
genome of an individual and among multiple individuals 
— remains unclear. Using data from these experiments, 
we can begin to understand both types of variation more 
completely.

Variation across loci. DNA-binding proteins can gen-
erally interact with a range of DNA sequences, giving 
rise to a sequence ‘motif ’ to describe the binding prefer-
ence of a protein. A motif, which is often more specifi-
cally defined as a position weight matrix, describes the 
nucleotide preferences (usually defined as probabilities) 
at each position in a binding site. These probabilities are 
usually based on the frequency at which each nucleotide 
is present in known binding sites that have been identi-
fied across the genome. It is generally thought that the 
presence of the higher probability nucleotides at a locus 
indicates an increase in binding affinity and/or specific-
ity. Binding affinity refers to the strength of an interac-
tion and is generally specified in terms of a dissociation 
constant, whereas binding specificity refers to the prefer-
ence for binding to specific sequences. Higher affinity 
or specificity sites may be expected to generate higher 
signals in protein-binding assays owing to increased 
occupancy and/or stability of the interaction.

Several high-throughput methods are now available 
to determine binding specificities of proteins in an unbi-
ased manner (see REF. 85 for a more detailed review). 
Protein-binding microarrays have been developed that 
contain all possible 10 bp sequences86 and have been 
used, for example, to determine the binding specificities 
for 104 diverse factors in the mouse87. The binding pref-
erences of factors are largely unique, and approximately 
half of the factors show preferences for two motifs. More 
recently, a similar study was carried out in D. melano­
gaster using the novel method protein–DNA binding 
followed by sequencing (PB–seq). In this approach, the 
protein of interest — in this case, heat shock factor (HSF) 
— was fused to the 3×FLAG epitope and allowed to bind 
to fragmented DNA. The HSF-bound DNA was recov-
ered and sequenced88. This study compared the binding 
preferences of HSF defined by PB–seq in vitro to binding 
sites defined by ChIP–seq in vivo. Interestingly, in vitro 
and in vivo binding intensities were not highly correlated 
when all possible binding sites in the genome were con-
sidered. A chromatin environment data model was then 
generated using available DNaseI hypersensitivity data, 
MNase data and ChIP–chip data for 21 histone modifi-
cations, and this model was used with the in vitro results 
to predict binding intensities. This resulted in a high cor-
relation with in vivo data, underscoring the influence 
of chromatin on protein–DNA binding. In fact, a prior 
model based solely on DNaseI data produced the highest 
correlation, suggesting that DNA accessibility generally 
corresponds to the actual binding of factors in vivo.

Chromatin is dynamic and has substantial, stable dif-
ferences between phenotypically different cell types and 
also smaller, more variable differences across a popula-
tion of similar cells. ChIP–seq and other protein-binding  
experiments provide a snapshot of the occupancy 
of binding sites, but do not describe the dynamics or 
function of factor binding. Competition ChIP assays89,90 
have enabled the investigation of binding site turnover 
in yeast. These studies integrated into a single strain 
two copies of a factor-encoding gene; the two copies 
had different epitope tags, and one copy was consti-
tutively expressed whereas the other was inducible. 
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ChIP for each epitope was carried out on samples col-
lected at multiple time points after the induction of the 
inducible gene to show the dynamics of factor bind-
ing (specifically to show at which sites there is stable 
binding and at which there is turnover). A study91 of 
the Rap1 transcription factor showed that sites stably 
bound by the same factor (resident sites) were associ-
ated with efficient transcriptional activation, whereas 
high-turnover sites (treadmilling sites) were associated 
with lower transcriptional output, even under similar 
rates of occupancy.

These studies demonstrate that binding sites across 
a genome are not functionally equivalent and reveal 
influences on this variation. Complementary informa-
tion about factor binding, chromatin state and binding 
dynamics provides a more complete picture of how pro-
tein–DNA interactions at particular loci contribute to 
cellular processes.

Variation across individuals. The adaptation of ChIP 
and other experiments to sequencing technologies 
also provides the opportunity to investigate potential 
functional effects of the underlying DNA sequence on  
the presence or absence of a particular event, such as the 
binding of a protein. Polymorphic bases within regula-
tory regions can affect the stability of a bound protein or 
the ability of a region to acquire or propagate chromatin 
marks. These, in turn, can affect the ability of that locus 
to regulate the transcription of its target gene.

To identify polymorphic sites that are associated 
with functional variation, we can investigate sequences 
in individual ChIP–seq peaks that align across a hetero
zygous base in a particular sample; a significant differ-
ence in the distribution of sequences containing one 
allele versus the other indicates a potential allelic effect 
on protein binding (FIG. 5). For example, given ChIP–seq 
data for transcription factor F, we can investigate each 
heterozygous site that falls within a called peak (bind-
ing site) in that data. For a site with alleles A and B, if 
the presence of A or B has no effect, we would expect 
an even distribution of sequences containing A and B at 
that binding site. If sequences at that site predominantly 
contain allele A, we could hypothesize that A provides 
a more favourable binding sequence for that protein, or 
conversely that B interferes with binding.

Allelic analysis of sequence data requires modifica-
tions to the standard analysis pipelines described above 
(FIG. 2). Aligning short-read sequences to a single refer-
ence sequence creates a bias at heterozygous loci where 
reads containing the allele present in the reference 
genome are aligned at a higher rate owing to the inher-
ent ‘mismatch’ penalty incurred by the non-reference 
allele sequences. Ideally, sequences would be aligned 
to fully defined haplotype genomes, as described in 
the AlleleSeq computation pipeline21. These are rarely 
available, but more often the genotype of each individ-
ual has been obtained. This can be used to create two 
reference genomes, each one containing one allele for 
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Figure 5 | Allele-specific bias in a CTCF ChIP–seq 
experiment. Sequence-based experiments allow for the 
investigation of functional differences across individuals 
due to their underlying genotype. This schematic depicts a 
region with an enriched number of sequence reads from  
a chromatin immunoprecipitation followed by 
sequencing (ChIP–seq) experiment. Each red and blue 
line indicates an aligned read, with blue reads aligned to 
the forward strand and red reads to the reverse strand. As 
is typical of a ChIP–seq experiment for a DNA-binding 
factor, forward strand reads accumulate 5′ to the site 
whereas reverse strand reads accumulate 3′ to the site. 
Contained within this locus is a heterozygous 
polymorphism, denoted by A and T bases. Only 
one-quarter of the spanning reads contain the T allele 
while three-quarters contain the A allele, thus indicating 
an allelic imbalance. This variant site corresponds to a 
highly conserved position with an A in the CTCF motif, 
suggesting that the alternative T allele in that position 
negatively affects binding. The CTCF weblogo at the 
bottom of the figure is modified from REF 111.
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DNaseI-sensitivity 
quantitative trait loci
(dsQTL). A locus whose 
sensitivity to DNaseI digestion 
varies based on the presence 
of different alleles in that locus. 
An allelic difference may 
influence the binding of 
proteins at this locus, causing 
the variation in digestion.

each heterozygous location, thus enabling the merging 
of separate alignments of sequences to each of these 
genome sequences. Alternatively, allele-aware aligners 
such as the Genomic Short-read Nucleotide Alignment 
Program (GSNAP)92 can be used that dynamically con-
sider multiple alleles during alignments. In addition, the 
alignability of a sequence containing each variant must 
be considered. The presence of allele A may make a par-
ticular sequence unique with respect to the rest of the 
genome, whereas allele B of that sequence might be found 
one or more times elsewhere in the genome. This can be 
determined by aligning all possible sequences overlap-
ping the site of interest back to the genome and analys-
ing the uniqueness of these alignments. Overall, a more 
careful consideration of non-reference-sequence bases is 
necessary to accurately detect signals at these locations.

Allelic biases have been detected in data from several 
sequencing-based experiments, including ChIP–seq20,93–96  
and DNase–seq22,24. In one study, analysis of ChIP–seq 
data from 10 human lymphoblastoid cell lines showed 
that the occupancy of 7.5% of nuclear factor-κB (NF‑κB) 
binding sites and 25% of Pol II binding sites differed sig-
nificantly between individuals, and that 35% and 26% 
of these corresponded with genetic variations, respec-
tively20. Another study, also using human lymphoblas-
toid cells, found that 7% of DHS sites and 11% of CTCF 
binding sites showed allele-specific effects22. Both studies 
were carried out on family trios that showed evidence of 
the heritability of these allelic functional traits. A more 
recent study of DNase–seq and expression data from 
lymphoblastoid cell lines from 70 individuals uncovered 
just under 9,000 DNaseI-sensitivity quantitative trait loci 
(dsQTLs) for which genetic variants with allelic biases 
in DHS sites are associated with changes in expression 
levels of nearby genes24. Many dsQTLs could also be 
mapped to previously identified DNaseI footprints12,13, 
suggesting that the binding of specific factors is altered. 
Analysis of the footprints with predicted binding factors 
showed that there was enrichment for allelic biases in 
CTCF binding sites, cAMP-response-elements (CREs) 
and interferon-stimulated response elements (ISREs), 
but depletion for allelic biases in myocyte-specific 
enhancer factor 2A (MEF2A) sites.

Perspective
The importance of DNA-binding proteins has motivated 
the continued development of experimental and ana-
lytical methods to better identify and characterize these 
interactions. ChIP–seq remains the standard for identi-
fying binding site locations for individual proteins and 
histone modifications. However, practical limitations 

of antibody development, the limit of a single factor 
or modification per experiment, the lack of functional 
annotation and the static snapshots of a dynamic cell 
that are provided necessitate the use of complementary 
methods or extensions of ChIP–seq to provide a more 
complete picture of biological processes in the cell,  
especially transcriptional regulation.

Open chromatin assays, such as DNase–seq and 
FAIRE–seq, provide a more comprehensive status of 
all active regulatory elements in a single experiment. 
Comparisons of changes in open chromatin profiles 
across cell types6,7,97,98, differentiation states99,100, dis-
ease states101–104 and species105 are revealing key changes 
in factor binding that underlie functional differences 
across cells. Reduced sequencing costs are enabling a 
deeper coverage in these experiments, thus uncovering 
more-precise positioning of bound proteins in the form 
of footprints.

Identifying the genomic locations of protein–DNA 
interactions is just the start. Bound proteins interact 
with other proteins in complexes, create higher order 
chromatin structures, are involved in specific cellular 
processes (such as the regulation of a particular gene) 
and vary across time, cell types and genetic background. 
Answering these questions requires complementary 
assays, many of which are presented here. As data from 
complementary assays accumulate, the challenge will be 
to integrate these to provide a more complete under-
standing of transcriptional networks and cellular pro-
cesses106,107. Comparisons across cell types will provide 
new insights into the properties of individual factors 
(and their combinations) that drive cell-type-specific 
functions. These will require the further development of 
new analytical and computational modelling techniques, 
as well as focused validation experiments to support 
model hypotheses.

Results from these studies continue to further our 
understanding of normal cell biology, but also provide 
crucial information that will benefit efforts to determine 
the causes and consequences of abnormal cellular states 
that are associated with disease. Genome-wide association 
studies in humans have identified thousands of loci that 
are strongly associated with a complex disease or a related 
trait108, most of which are located in non-coding genomic 
regions and lack functional annotation. Characterizing 
the effects of different SNP alleles on DNA–protein inter-
actions provide potential functional consequences of the 
alleles. These can then be used to suggest testable hypoth-
eses for observed associations of individual SNPs with 
complex diseases, potentially leading to the development 
of better diagnoses and treatment options.
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