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POINTS OF SIGNIFICANCE

Machine learning: 
supervised methods
Supervised learning algorithms extract general 
principles from observed examples guided by a 
specific prediction objective.
In supervised learning, a set of input variables, such as blood 
metabolite or gene expression levels, are used to predict a quan-
titative response variable like hormone level or a qualitative one 
such as healthy versus diseased individuals. We have previously 
discussed several supervised learning algorithms, including logis-
tic regression and random forests, and their typical behaviors 
with different sample sizes and numbers of predictor variables. 
This month, we look at two very common supervised methods in 
the context of machine learning: linear support vector machines 
(SVMs) and k-nearest neighbors (kNNs). Both have been success-
fully applied to challenging pattern-recognition problems in biol-
ogy and medicine1.

SVM and kNN exemplify several important trade-offs in machine 
learning (ML). SVM is often less computationally demanding than 
kNN and is easier to interpret, but it can identify only a limited set 
of patterns. On the other hand, kNN can find very complex patterns, 
but its output is more challenging to interpret. To illustrate both 
algorithms, we will apply them to classification, because they tend to 
perform better at predicting categorical outputs (e.g., health versus 
disease) than at approximating target functions with numeric out-
puts (e.g., hormone level). Both learning techniques can be used to 
distinguish many classes at once, use multiple predictors and obtain 
probabilities for each class membership.

We’ll illustrate SVM using a two-class problem and begin with 
a case in which the classes are linearly separable, meaning that a 
straight line can be drawn that perfectly separates the classes, with 

the margin being the perpendicular distance between the closest 
points to the line from each class (Fig. 1a). Many such separating 
lines are possible, and SVM can be used to find one with the widest 
margin (Fig. 1b). When three or more predictors are used, the sepa-
rating line becomes a (hyper-)plane, but the algorithm remains the 
same. The closest points to the line are called support vectors1 and 
are the only points that ultimately influence the position of the sepa-
rating line—any points that are further from the line can be moved, 
removed or added with no impact on the line. When the classes are 
linearly separable, the wider the margin, the higher our confidence in 
the classification, because it indicates that the classes are less similar.

Practically, most data sets are not linearly separable, and any sepa-
rating line will result in misclassification, no matter how narrow the 
margin is. We say that the margin is violated by a sample if it is on 
the wrong side of the separating line (Fig. 1c, red arrows) or is on the 
correct side but within the margin (Fig. 1c, orange arrow).

Even when the data are linearly separable, allowing a few points 
to be misclassified might improve the classifier by allowing a wider 
margin for the bulk of the data (Fig. 2a). To handle violations, we 
impose a penalty proportional to the distance between each violat-
ing point1 and the separating line, with nonviolating points having 
zero penalty. In SVM, the separating line is chosen by minimizing 
1/m+C∑pi, where m is the margin width, pi is the penalty for each 
point, and C is a hyperparameter (a parameter used to tune the over-
all fitting behavior of an algorithm) balancing the trade-off between 
margin width and misclassification. A point that has a nonzero pen-
alty is considered a support vector, because it impacts the position of 
the separating line and its margin.

When C is large, the margin width has a low impact on the mini-
mization, and the line is placed to minimize the sum of the violation 
penalties (Fig. 2, C = 1,000). When C is decreased, the misclassified 
points have lower impact, and the line is placed with more empha-
sis on maximizing the margin (Fig. 2, C = 50 and C = 5). When C 
is very small, classification penalties become insignificant, and the 
margin can be encouraged to actually grow to encompass all points. 
Typically, C is chosen using cross-validation2.

Recall we showed previously3 how regularization can be used to 
guard against overfitting that occurs when the prediction equation 
is too closely tailored to random variation in the training set. In that 
sense, the role of C is similar, except here it tunes the fit by adjusting 
the balance of terms being minimized rather than the complexity 
of the shape of the boundary. Large values of C force the separat-
ing line to adjust to data far from the center of each class and thus 
 encourage overfitting. Small values tolerate many margin violations 
and encourage underfitting.
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Figure 1 | A support vector machine (SVM) classifies points by maximizing 
the width of a margin that separates the classes. (a) Points from two classes 
(gray, blue) that are perfectly separable by various lines (black) illustrate 
the concept of a margin (orange highlight), which is the rectangular region 
that extends from the separating line to the perpendicularly closest point. 
(b) An SVM finds the line (black) that has the widest margin (0.48). Points 
at the margin’s edge (black outlines) are called support vectors—the margin 
here is not influenced by moving or adding other points outside it. (c) 
Imposing a separating line on linearly nonseparable classes will incur margin 
violations and misclassification errors. Data same as in b but with two 
additional points added (those that are misclassified). The margin is now 
0.64 with six support vectors.
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Figure 2 | The balance between the width of the margin and penalties for 
margin violations is controlled by a regularization parameter, C. Smaller 
values of C places more weight on margin width and less on classification 
constraints.
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We can avoid the explicit assumption of a linear class boundary 
by using the k-nearest neighbors (kNN) algorithm. This algorithm 
determines the class of an unclassified point by counting the major-
ity class vote from its k-nearest neighbor training points (Fig. 3a). 
For example, a patient whose symptoms closely match those of 
patients with a specific diagnosis would be classified with the same 
disease status. Because kNN does not assume a particular boundary 
between the classes, its boundary can be closer to the ‘true’ relation-
ship. However, for a given training set, predictions may be less stable 
than for SVMs, especially when k is small, and the algorithm will 
often overfit the training data.

The value of the hyperparameter k acts to regularize kNN, analo-
gous to C in SVM, and is generally selected by cross-validation. To 
avoid ties in the vote, k can be chosen to be odd. Small k gives a finely 
textured boundary, which is sensitive to outliers and yields a high 
model variance (k = 3, Fig. 3b). Larger k gives more rigid boundar-
ies, and high model bias (k = 7, Fig. 3b), and this pools the effect of 
more distant neighbors. The largest possible value of k is the number 
of training points—at this extreme, any new observation is classi-
fied based on the majority in the entire training sample incurring 
maximum model bias.

Neither SVM nor kNN make explicit model specifications about 
the data-generating process such as normality of the data. However, 
linear SVM is considered a parametric method because it can only 
produce linear boundaries. If the true class boundary is nonlinear, 
SVM will struggle to find a satisfying fit even with increased size of 
the training set. To help the algorithm capture nonlinear boundaries, 
functions of the input variables, such as polynomials, could be added 
to the set of predictor variables1. This extension of the algorithm is 
called kernel SVM.

In contrast, kNN is a nonparametric algorithm because it avoids 
a priori assumptions about the shape of the class boundary and can 

thus adapt more closely to nonlinear boundaries as the amount of 
training data increases. kNN has higher variance than linear SVM, 
but it has the advantage of producing classification fits that adapt 
to any boundary. Even though the true class boundary is unknown 
in most real-world applications, kNN has been shown to approach 
the theoretically optimal classification boundary as the training set 
increases to massive data1. However, because kNN does not impose 
any structure on the boundary, it can create class boundaries that 
may be less interpretable than those of linear SVM. The simplicity 
of the linear SVM boundary also lends itself more directly to formal 
tests of statistical significance that give P values for the relevance of 
individual variables.

There are also trade-offs in the number of samples and the num-
ber of variables that can be handled by these approaches. SVM 
can achieve good prediction accuracy for new observations despite 
large numbers of input variables. SVM therefore serves as an off-
the-shelf technique that is frequently used in genome-wide analy-
sis and brain imaging, two application domains that often have 
small sample sizes (e.g., hundreds of participants) but very high 
numbers of inputs (e.g., hundreds of thousands of genes or brain 
locations). 

By contrast, the classification performance of kNN rapidly dete-
riorates when searching for patterns using high numbers of input 
variables1 when many of the variables may be unrelated to the clas-
sification or contribute only small amounts of information. Because 
equal attention is given to all variables, the nearest neighbors may 
be defined by irrelevant variables. This so-called curse of dimen-
sionality occurs for many algorithms that become more flexible as 
the number of predictors increases1.

Finally, computation and memory resources are important prac-
tical considerations4 when analyzing extensive data. SVM only 
needs a small subset of training points (the support vectors) to 
define the classification rule, making it often more memory effi-
cient and less computationally demanding when inferring the class 
of a new observation. In contrast, kNN typically requires higher 
computation and memory resources because it needs to use all 
input variables and training samples for each new observation to 
be classified.
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Figure 3 | Illustration of the k-nearest neighbors (kNN) classifier. 
(a) kNN assigns a class to an unclassified point (black) based on a majority 
vote of the k nearest neighbors in the training set (gray and blue points). 
Shown are cases for k = 1, 3, 5 and 7; the k neighbors are circumscribed in 
the circle, which is colored by the majority class vote. (b) For k = 3, the 
kNN boundaries are relatively rough (calculated by classifying each point 
in the plane) and give 10% misclassifications. The SVM separating line 
(black) and margin (dashed) are also shown for C = 1,000 yielding 15% 
misclassification. As k is increased (here, k = 7, 13% misclassifications), 
single misclassifications have less impact on the emerging boundary, which 
becomes smoother.
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