
NATURE METHODS | VOL.15 NO.1 | JANUARY 2018 | 5

THIS MONTH

POINTS OF SIGNIFICANCE

Machine learning:
supervised methods
Supervised learning algorithms extract general
principles from observed examples guided by a
specific prediction objective.
In supervised learning, a set of input variables, such as blood
metabolite or gene expression levels, are used to predict a quan-
titative response variable like hormone level or a qualitative one
such as healthy versus diseased individuals. We have previously
discussed several supervised learning algorithms, including logis-
tic regression and random forests, and their typical behaviors
with different sample sizes and numbers of predictor variables.
This month, we look at two very common supervised methods in
the context of machine learning: linear support vector machines
(SVMs) and k-nearest neighbors (kNNs). Both have been success-
fully applied to challenging pattern-recognition problems in biol-
ogy and medicine1.

SVM and kNN exemplify several important trade-offs in machine
learning (ML). SVM is often less computationally demanding than
kNN and is easier to interpret, but it can identify only a limited set
of patterns. On the other hand, kNN can find very complex patterns,
but its output is more challenging to interpret. To illustrate both
algorithms, we will apply them to classification, because they tend to
perform better at predicting categorical outputs (e.g., health versus
disease) than at approximating target functions with numeric out-
puts (e.g., hormone level). Both learning techniques can be used to
distinguish many classes at once, use multiple predictors and obtain
probabilities for each class membership.

We’ll illustrate SVM using a two-class problem and begin with
a case in which the classes are linearly separable, meaning that a
straight line can be drawn that perfectly separates the classes, with

the margin being the perpendicular distance between the closest
points to the line from each class (Fig. 1a). Many such separating
lines are possible, and SVM can be used to find one with the widest
margin (Fig. 1b). When three or more predictors are used, the sepa-
rating line becomes a (hyper-)plane, but the algorithm remains the
same. The closest points to the line are called support vectors1 and
are the only points that ultimately influence the position of the sepa-
rating line—any points that are further from the line can be moved,
removed or added with no impact on the line. When the classes are
linearly separable, the wider the margin, the higher our confidence in
the classification, because it indicates that the classes are less similar.

Practically, most data sets are not linearly separable, and any sepa-
rating line will result in misclassification, no matter how narrow the
margin is. We say that the margin is violated by a sample if it is on
the wrong side of the separating line (Fig. 1c, red arrows) or is on the
correct side but within the margin (Fig. 1c, orange arrow).

Even when the data are linearly separable, allowing a few points
to be misclassified might improve the classifier by allowing a wider
margin for the bulk of the data (Fig. 2a). To handle violations, we
impose a penalty proportional to the distance between each violat-
ing point1 and the separating line, with nonviolating points having
zero penalty. In SVM, the separating line is chosen by minimizing
1/m+C∑pi, where m is the margin width, pi is the penalty for each
point, and C is a hyperparameter (a parameter used to tune the over-
all fitting behavior of an algorithm) balancing the trade-off between
margin width and misclassification. A point that has a nonzero pen-
alty is considered a support vector, because it impacts the position of
the separating line and its margin.

When C is large, the margin width has a low impact on the mini-
mization, and the line is placed to minimize the sum of the violation
penalties (Fig. 2, C = 1,000). When C is decreased, the misclassified
points have lower impact, and the line is placed with more empha-
sis on maximizing the margin (Fig. 2, C = 50 and C = 5). When C
is very small, classification penalties become insignificant, and the
margin can be encouraged to actually grow to encompass all points.
Typically, C is chosen using cross-validation2.

Recall we showed previously3 how regularization can be used to
guard against overfitting that occurs when the prediction equation
is too closely tailored to random variation in the training set. In that
sense, the role of C is similar, except here it tunes the fit by adjusting
the balance of terms being minimized rather than the complexity
of the shape of the boundary. Large values of C force the separat-
ing line to adjust to data far from the center of each class and thus
 encourage overfitting. Small values tolerate many margin violations
and encourage underfitting.

0.48 0.64

Linearly separable
classesa SVM maximizes

margin between classesb Margin violations and
misclassificationsc

−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
X

Y Y Y

X X

Figure 1 | A support vector machine (SVM) classifies points by maximizing
the width of a margin that separates the classes. (a) Points from two classes
(gray, blue) that are perfectly separable by various lines (black) illustrate
the concept of a margin (orange highlight), which is the rectangular region
that extends from the separating line to the perpendicularly closest point.
(b) An SVM finds the line (black) that has the widest margin (0.48). Points
at the margin’s edge (black outlines) are called support vectors—the margin
here is not influenced by moving or adding other points outside it. (c)
Imposing a separating line on linearly nonseparable classes will incur margin
violations and misclassification errors. Data same as in b but with two
additional points added (those that are misclassified). The margin is now
0.64 with six support vectors.

Tuning the fit of SVM by balancing margin width and margin violation penalties
C = 1,000 C = 50 C = 5

0.11 0.29
0.72

−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
X X X

Y Y Y

Figure 2 | The balance between the width of the margin and penalties for
margin violations is controlled by a regularization parameter, C. Smaller
values of C places more weight on margin width and less on classification
constraints.

6 | VOL.15 NO.1 | JANUARY 2018 | NATURE METHODS

THIS MONTH

We can avoid the explicit assumption of a linear class boundary
by using the k-nearest neighbors (kNN) algorithm. This algorithm
determines the class of an unclassified point by counting the major-
ity class vote from its k-nearest neighbor training points (Fig. 3a).
For example, a patient whose symptoms closely match those of
patients with a specific diagnosis would be classified with the same
disease status. Because kNN does not assume a particular boundary
between the classes, its boundary can be closer to the ‘true’ relation-
ship. However, for a given training set, predictions may be less stable
than for SVMs, especially when k is small, and the algorithm will
often overfit the training data.

The value of the hyperparameter k acts to regularize kNN, analo-
gous to C in SVM, and is generally selected by cross-validation. To
avoid ties in the vote, k can be chosen to be odd. Small k gives a finely
textured boundary, which is sensitive to outliers and yields a high
model variance (k = 3, Fig. 3b). Larger k gives more rigid boundar-
ies, and high model bias (k = 7, Fig. 3b), and this pools the effect of
more distant neighbors. The largest possible value of k is the number
of training points—at this extreme, any new observation is classi-
fied based on the majority in the entire training sample incurring
maximum model bias.

Neither SVM nor kNN make explicit model specifications about
the data-generating process such as normality of the data. However,
linear SVM is considered a parametric method because it can only
produce linear boundaries. If the true class boundary is nonlinear,
SVM will struggle to find a satisfying fit even with increased size of
the training set. To help the algorithm capture nonlinear boundaries,
functions of the input variables, such as polynomials, could be added
to the set of predictor variables1. This extension of the algorithm is
called kernel SVM.

In contrast, kNN is a nonparametric algorithm because it avoids
a priori assumptions about the shape of the class boundary and can

thus adapt more closely to nonlinear boundaries as the amount of
training data increases. kNN has higher variance than linear SVM,
but it has the advantage of producing classification fits that adapt
to any boundary. Even though the true class boundary is unknown
in most real-world applications, kNN has been shown to approach
the theoretically optimal classification boundary as the training set
increases to massive data1. However, because kNN does not impose
any structure on the boundary, it can create class boundaries that
may be less interpretable than those of linear SVM. The simplicity
of the linear SVM boundary also lends itself more directly to formal
tests of statistical significance that give P values for the relevance of
individual variables.

There are also trade-offs in the number of samples and the num-
ber of variables that can be handled by these approaches. SVM
can achieve good prediction accuracy for new observations despite
large numbers of input variables. SVM therefore serves as an off-
the-shelf technique that is frequently used in genome-wide analy-
sis and brain imaging, two application domains that often have
small sample sizes (e.g., hundreds of participants) but very high
numbers of inputs (e.g., hundreds of thousands of genes or brain
locations).

By contrast, the classification performance of kNN rapidly dete-
riorates when searching for patterns using high numbers of input
variables1 when many of the variables may be unrelated to the clas-
sification or contribute only small amounts of information. Because
equal attention is given to all variables, the nearest neighbors may
be defined by irrelevant variables. This so-called curse of dimen-
sionality occurs for many algorithms that become more flexible as
the number of predictors increases1.

Finally, computation and memory resources are important prac-
tical considerations4 when analyzing extensive data. SVM only
needs a small subset of training points (the support vectors) to
define the classification rule, making it often more memory effi-
cient and less computationally demanding when inferring the class
of a new observation. In contrast, kNN typically requires higher
computation and memory resources because it needs to use all
input variables and training samples for each new observation to
be classified.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Danilo Bzdok, Martin Krzywinski & Naomi Altman

1. Hastie, T., Tibshirani, R. & Friedman, J. Springer Series in Statistics,
Heidelberg (2001).

2. Lever, J., Krzywinski, M. & Altman, N. Nat. Methods 13, 703–704 (2016).
3. Lever, J., Krzywinski, M. & Altman, N. Nat. Methods 13, 803–804 (2016).
4. Bzdok, D. & Yeo, B.T.T. Neuroimage 155, 549–564 (2017).

Danilo Bzdok is an Assistant Professor at the Department of Psychiatry, RWTH
Aachen University, in Germany and a Visiting Professor at INRIA/Neurospin
Saclay in France. Martin Krzywinski is a staff scientist at Canada’s Michael
Smith Genome Sciences Centre. Naomi Altman is a Professor of Statistics at The
Pennsylvania State University.

Figure 3 | Illustration of the k-nearest neighbors (kNN) classifier.
(a) kNN assigns a class to an unclassified point (black) based on a majority
vote of the k nearest neighbors in the training set (gray and blue points).
Shown are cases for k = 1, 3, 5 and 7; the k neighbors are circumscribed in
the circle, which is colored by the majority class vote. (b) For k = 3, the
kNN boundaries are relatively rough (calculated by classifying each point
in the plane) and give 10% misclassifications. The SVM separating line
(black) and margin (dashed) are also shown for C = 1,000 yielding 15%
misclassification. As k is increased (here, k = 7, 13% misclassifications),
single misclassifications have less impact on the emerging boundary, which
becomes smoother.

−1

0

1

−1 0 1
−1

0

1

−1 0 1

Effect of k on kNN boundarieskNN algorithm

k = 5

k = 1 k = 3

k = 7

k = 3 k = 7
a b

X X

Y Y

