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Abstract
Dense subgraphs of sparse graphs (communities), which appear in most real-world complex

networks, play an important role in many contexts. Computing them however is generally expen-

sive. We propose here a measure of similarities between vertices based on random walks which

has several important advantages: it captures well the community structure in a network, it can

be computed efficiently, and it can be used in an agglomerative algorithm to compute efficiently

the community structure of a network. We propose such an algorithm, called Walktrap, which

runs in time O(mn2) and space O(n2) in the worst case, and in time O(n2 log n) and space O(n2)

in most real-world cases (n and m are respectively the number of vertices and edges in the input

graph). Extensive comparison tests show that our algorithm surpasses previously proposed ones

concerning the quality of the obtained community structures and that it stands among the best

ones concerning the running time.

Keywords: complex networks, graph theory, community structure, random walks.

1 Introduction

Recent advances have brought out the importance of complex networks in many differ-
ent domains such as sociology (acquaintance networks, collaboration networks), biology
(metabolic networks, gene networks) or computer science (internet topology, web graph,
p2p networks). We refer to [45, 42, 1, 31, 12] for reviews from different perspectives and for
an extensive bibliography. The associated graphs are in general globally sparse but locally
dense: there exist groups of vertices, called communities, highly connected between them
but with few links to other vertices. This kind of structure brings out much information
about the network. For example, in a metabolic network the communities correspond
to biological functions of the cell [38]. In the web graph the communities correspond to
topics of interest [29, 18].

This notion of community is however difficult to define formally. Many definitions
have been proposed in social networks studies [45], but they are too restrictive or cannot
be computed efficiently. However, most recent approaches have reached a consensus,
and consider that a partition P = {C1, . . . , Ck} of the vertices of a graph G = (V, E)
(∀i, Ci ⊆ V ) represents a good community structure if the proportion of edges inside
the Ci (internal edges) is high compared to the proportion of edges between them (see
for example the definitions given in [19]). Therefore, we will design an algorithm which
finds communities satisfying this criterion. More precisley, we will evaluate the quality
of a partition into communities using a quantity (known as modularity [32, 33]) which
captures this.

We will consider throughout this paper an undirected graph G = (V, E) with n = |V |
vertices and m = |E| edges. We impose that each vertex is linked to itself by a loop (we
add these loops if necessary). We also suppose that G is connected, the case where it is
not being treated by considering the components as different graphs.

1.1 Our approach and results

Our approach is based on the following intuition: random walks on a graph tend to get
“trapped” into densely connected parts corresponding to communities. We therefore begin
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with some properties of random walks on graphs. Using them, we define a measurement
of the structural similarity between vertices and between communities, thus defining a
distance. We relate this distance to existing spectral approaches of the problem. But
our distance has an important advantage on these methods: it is efficiently computable,
and can be used in a hierarchical clustering algorithm (merging iteratively the vertices
into communities). One obtains this way a hierarchical community structure that may
be represented as a tree called dendrogram (an example is provided in Figure 1). We
propose such an algorithm, called Walktrap, which computes a community structure in
time O(mnH) where H is the height of the corresponding dendrogram. The worst case is
O(mn2). But most real-world complex networks are sparse (m = O(n)) and, as already
noticed in [8], H is generally small and tends to the most favourable case in which the den-
drogram is balanced (H = O(log n)). In this case, the complexity is therefore O(n2 log n).
We finally evaluate the performance of our algorithm with different experiments which
show that it surpasses previously proposed algorithms in most cases.

1.2 Related work

Many algorithms to find community structures in graphs exist. Most of them result from
very recent works, but this topic is related to the classical problem of graph partitioning
that consists in splitting a graph into a given number of groups while minimizing the cost
of the edge cut [17, 35, 28]. However, these algorithms are not well suited to our case
because they need the number of communities and their size as parameters. The recent
interest in the domain has started with a new divisive approach proposed by Girvan and
Newman [23, 33]: the edges with the largest betweenness (number of shortest paths passing
through an edge) are removed one by one in order to split hierarchically the graph into
communities. This algorithm runs in time O(m2n). Similar algorithms were proposed by
Radicchi et al [36] and by Fortunato et al [19]. The first one uses a local quantity (the
number of loops of a given length containing an edge) to choose the edges to remove and
runs in time O(m2). The second one uses a more complex notion of information centrality
that gives better results but poor performances in O(m3n).

Hierarchical clustering is another classical approach introduced by sociologists for data
analysis [3, 15]. From a measurement of the similarity between vertices, an agglomera-
tive algorithm groups iteratively the vertices into communities (different methods exist,
depending on the way of choosing the communities to merge at each step). Several ag-
glomerative methods have been recently introduced and we will use it in our approach.
Newman proposed in [32] a greedy algorithm that starts with n communities correspond-
ing to the vertices and merges communities in order to optimize a function called mod-
ularity which measures the quality of a partition. This algorithm runs in O(mn) and
has recently been improved to a complexity O(mH log n) (with our notations) [8]. The
algorithm of Donetti and Muñoz [10] also uses a hierarchical clustering method: they use
the eigenvectors of the Laplacian matrix of the graph to measure the similarities between
vertices. The complexity is determined by the computation of all the eigenvectors, in
O(n3) time for sparse matrices. Other interesting methods have been proposed, see for
instance [46, 9, 39, 5, 7, 14].

Random walks themselves have already been used to infer structural properties of
networks in some previous works. Gaume [21] used this notion in linguistic context. Fouss
et al [20] used the Euclidean commute time distance based on the average first-passage
time of walkers. Zhou and Lipowsky [48] introduced another dissimilarity index based on
the same quantity; it has been used in a hierarchical algorithm (called Netwalk). Markov
Cluster Algorithm [43] iterates two matrix operations (one corresponding to random walks)
bringing out clusters in the limit state. Unfortunately the three last approaches run
in O(n3) and cannot manage networks with more than a few thousand vertices. Our
approach has the main advantage to be significatively faster while producing very good
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results.

2 Preliminaries on random walks

The graph G is associated to its adjacency matrix A: Aij = 1 if vertices i and j are
connected and Aij = 0 otherwise. The degree d(i) =

∑
j Aij of vertex i is the number of

its neighbors (including itself). As we discussed in the introduction, the graph is assumed
to be connected. To simplify the notations, we only consider unweighted graphs in this
paper. It is however trivial to extend our results to weighted graphs (Aij ∈ R+ instead
of Aij ∈ {0, 1}), which is an advantage of this approach.

Let us consider a discrete random walk process (or diffusion process) on the graph G
(see [30, 4] for a complete presentation of the topic). At each time step a walker is on a
vertex and moves to a vertex chosen randomly and uniformly among its neighbors. The
sequence of visited vertices is a Markov chain, the states of which are the vertices of the
graph. At each step, the transition probability from vertex i to vertex j is Pij = Aij

d(i) . This
defines the transition matrix P of random walk processes. One can also write P = D−1A
where D is the diagonal matrix of the degrees (∀i,Dii = d(i) and Dij = 0 for i 6= j).

The process is driven by the powers of the matrix P : the probability of going from
i to j through a random walk of length t is (P t)ij . In the following, we will denote this
probability by P t

ij . It satisfies two well known properties of the random walk process
which we will use in the sequel:

Property 1 When the length t of a random walk starting at vertex i tends towards in-
finity, the probability of being on a vertex j only depends on the degree of vertex j (and
not on the starting vertex i):

∀i, lim
t→+∞

P t
ij =

d(j)∑
k d(k)

We will provide a proof of this property in the next section.

Property 2 The probabilities of going from i to j and from j to i through a random walk
of a fixed length t have a ratio that only depends on the degrees d(i) and d(j):

∀i, ∀j, d(i)P t
ij = d(j)P t

ji

Proof : This property can be written as the matricial equation DP tD−1 = (P t)T (where
MT is the transpose of the matrix M). By using P = D−1A and the symmetry of the
matrices D and A, we have: DP tD−1 = D(D−1A)tD−1 = (AD−1)t = (AT (D−1)T )t =
((D−1A)T )t = (P t)T . ¤

3 Comparing vertices using short random walks

3.1 A distance r to measure vertex similarities

In order to group the vertices into communities, we will now introduce a distance r between
the vertices that captures the community structure of the graph. This distance must be
large if the two vertices are in different communities, and on the contrary if they are in
the same community it must be small. It will be computed from the information given
by random walks in the graph.

Let us consider random walks on G of a given length t. We will use the information
given by all the probabilities P t

ij to go from i to j in t steps. The length t of the random
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walks must be sufficiently long to gather enough information about the topology of the
graph. However t must not be too long, to avoid the effect predicted by Property 1; the
probabilities would only depend on the degree of the vertices. Each probability P t

ij gives
some information about the two vertices i and j, but Property 2 says that P t

ij and P t
ji

encode exactly the same information. Finally, the information about vertex i encoded
in P t resides in the n probabilities (P t

ik)1≤k≤n, which is nothing but the ith row of the
matrix P t, denoted by P t

i.. To compare two vertices i and j using these data, we must
notice that:

• If two vertices i and j are in the same community, the probability P t
ij will surely be

high. But the fact that P t
ij is high does not necessarily imply that i and j are in the

same community.

• The probability P t
ij is influenced by the degree d(j) because the walker has higher

probability to go to high degree vertices.

• Two vertices of a same community tend to “see” all the other vertices in the same
way. Thus if i and j are in the same community, we will probably have ∀k, P t

ik ' P t
jk.

We can now give the definition of our distance between vertices, which takes into account
all previous remarks:

Definition 1 Let i and j be two vertices in the graph and

rij =

√√√√
n∑

k=1

(P t
ik − P t

jk)2

d(k)
=

∥∥∥D− 1
2 P t

i. −D− 1
2 P t

j.
∥∥∥ (1)

where ‖.‖ is the Euclidean norm of Rn.

One can notice that this distance can also be seen as the L2 distance [4] between the
two probability distributions P t

i. and P t
j.. Notice also that the distance depends on t

and should be denoted by rij(t). We will however consider it as implicit to simplify the
notations.

Now we generalize our distance between vertices to a distance between communities
in a straightforward way. Let us consider random walks that start from a community: the
starting vertex is chosen randomly and uniformly among the vertices of the community.
We define the probability P t

Cj to go from community C to vertex j in t steps:

P t
Cj =

1
|C|

∑

i∈C

P t
ij

This defines a probability vector P t
C. that allows us to generalize our distance:

Definition 2 Let C1, C2 ⊂ V be two communities. We define the distance rC1C2 between
these two communities by:

rC1C2 =
∥∥∥D− 1

2 P t
C1. −D− 1

2 P t
C2.

∥∥∥ =

√√√√
n∑

k=1

(P t
C1k − P t

C2k)2

d(k)

This definition is consistent with the previous one: rij = r{i}{j} and we can also define
the distance between a vertex i and a community C: riC = r{i}C .
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3.2 Relation with spectral approaches

Theorem 1 The distance r is related to the spectral properties of the matrix P by:

r2
ij =

n∑
α=2

λ2t
α (vα(i)− vα(j))2

where (λα)1≤α≤n and (vα)1≤α≤n are respectively the eigenvalues and right eigenvectors of
the matrix P .

In order to prove this theorem, we need the following technical lemma:

Lemma 1 The eigenvalues of the matrix P are real and satisfy:

1 = λ1 > λ2 ≥ . . . ≥ λn > −1

Moreover, there exists an orthonormal family of vectors (sα)1≤α≤n such that each vector
vα = D− 1

2 sα and uα = D
1
2 sα are respectively a right and a left eigenvector associated to

the eigenvalue λα:
∀α, Pvα = λαvα and PT uα = λαuα

∀α, ∀β, vT
α uβ = δαβ

Proof : The matrix P has the same eigenvalues as its similar matrix S = D
1
2 PD− 1

2 =
D− 1

2 AD− 1
2 . The matrix S is real and symmetric, so its eigenvalues λα are real. P is a

stochastic matrix (
∑n

j=1 Pij = 1), so its largest eigenvalue is λ1 = 1. The graph G is
connected and primitive (the gcd of the cycle lengths of G is 1, due to the loops on each
vertex), therefore we can apply the Perron-Frobenius theorem which implies that P has
a unique dominant eigenvalue. Therefore we have: |λα| < 1 for 2 ≤ α ≤ n.

The symmetry of S implies that there also exists an orthonornal family sα of eigen-
vectors of S satisfying ∀α, ∀β, sT

αsβ = δαβ (where δαβ = 1 if α = β and 0 otherwise). We
then directly obtain that the vectors vα = D− 1

2 sα and uα = D
1
2 sα are respectively a right

and a left eigenvector of P satisfying uT
αvβ = δαβ . ¤

We can now prove Theorem 1 and obtain Property 1 as a corrolary:

Proof : Lemma 1 makes it possible to write a spectral decomposition of the matrix P :

P =
n∑

α=1

λαvαuT
α , and P t =

n∑
α=1

λt
αvαuT

α , and so P t
ij =

n∑
α=1

λt
αvα(i)uα(j)

When t tends towards infinity, all the terms α ≥ 2 vanish. It is easy to show that the
first right eigenvector v1 is constant. By normalizing we have ∀i, v1(i) = 1√∑

k d(k)
and

∀j, u1(j) = d(j)√∑
k d(k)

. We obtain Property 1:

lim
t→+∞

P t
ij = lim

t→+∞

n∑
α=1

λt
αvα(i)uα(j) = v1(i)u1(j) =

d(j)∑n
k=1 d(k)

Now we obtain the expression of the probability vector P t
i.:

P t
i. =

n∑
α=1

λt
αvα(i)uα = D

1
2

n∑
α=1

λt
αvα(i)sα

We put this formula into the second definition of rij given in Equation (1). Then we
use the Pythagorean theorem with the orthonormal family of vectors (sα)1≤α≤n, and we
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remember that the vector v1 is constant to remove the case α = 1 in the sum. Finally we
have:

r2
ij =

∥∥∥∥
n∑

α=1

λt
α(vα(i)− vα(j))sα

∥∥∥∥
2

=
n∑

α=2

λ2t
α (vα(i)− vα(j))2

¤

This theorem relates random walks on graphs to the many current works that study
community structure using spectral properties of graphs. For example, [41] notices that
the modular structure of a graph is expressed in the eigenvectors of P (other than v1)
that corresponds to the largest positive eigenvalues. If two vertices i and j belong to a
same community then the coordinates vα(i) and vα(j) are similar in all these eigenvectors.
Moreover, [40, 22] show in a more general case that when an eigenvalue λα tends to 1, the
coordinates of the associated eigenvector vα are constant in the subsets of vertices that
correspond to communities. A distance similar to ours (but that cannot be computed
directly with random walks) is also introduced: d2

t (i, j) =
∑n

α=2
(vα(i)−vα(j))2

1−|λα|t . Finally,
[10] uses the same spectral approach applied to the Laplacian matrix of the graph L =
D −A.

All these studies show that the spectral approach takes an important part in the
search for community structure in graphs. However all these approaches have the same
drawback: the eigenvectors need to be explicitly computed (in time O(n3) for a sparse
matrix). This computation rapidly becomes untractable in practice when the size of the
graph exceeds some thousands of vertices. Our approach is based on the same foundation
but has the advantage of avoiding the expensive computation of the eigenvectors: it only
needs to compute the probabilities P t

ij , which can be done efficiently as shown in the
following subsection.

3.3 Computation of the distance r

Once the two vectors P t
i. and P t

j. are computed, the distance rij can be computed in
time O(n) using Equation (1). Notice that given the probability vectors P t

C1. and P t
C2.,

the distance rC1C2 is also computed in time O(n)
The probability vectors can be computed once and stored in memory (which uses

O(n2) memory space) or they can be dynamically computed (which increases the time
complexity) depending on the amont of available memory. We propose an exact method
and an approximated method to compute them.

Exact computation

Theorem 2 Each probability vector P t
i. can be computed in time O(tm) and space O(n).

Proof : To compute the vector P t
i., we multiply t times the vector P 0

i. (∀k, P 0
i.(k) = δik)

by the matrix P . This direct method is advantageous in our case because the matrix P is
generally sparse (for real-world complex networks) therefore each product is processed in
time O(m). The initialization of P 0

i. is done in O(n) and thus each of the n vectors P t
i.

is computed in time O(n + tm) = O(tm). ¤

Approximated computation

Theorem 3 Each probability vector P t
i. can be approximated in time O(Kt) and space

O(K) with an relative error O( 1√
K

).
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Proof : We compute K random walks of length t starting from vertex i. Then we
approximate each probability P t

ik by Nik

K where Nik is the number of walkers that ended
on vertex k during the K random walks. The Central Limit Theorem implies that this
quantity tends toward P t

ik with a speed O( 1√
K

) when K tends toward infinity. Each
random walk computation is done in time O(t) and constant space hence the overall
computation is done in time O(Kt) and space O(K). ¤

The approximated method is only interresting for very large graphs. In the following
we will consider the exact method for the complexity and the experimental evaluation.

3.4 Generalizing the distance

We saw that our distance is directly related to the spectral properties of the transition
matrix P . We show in this section how one can generalize easily and efficiently this
distance to use another weighting of the eigenvectors. To achieve this, we only need to
define different vectors P̂i., all the rest of the approach follows.

Theorem 4 Let us consider the generalized distance r̂2
ij =

n∑
α=2

f2(λα)(vα(i) − vα(j))2

where f(x) =
∞∑

k=0

ckxk is any function defined by a power series.

Then r̂ij =
∥∥∥D− 1

2 P̂i.−D− 1
2 P̂j.

∥∥∥, where P̂i. =
∑∞

k=0 ckP k
i., can be approximated in time

O(rm) and space O(n) with relative error on each coordinate less than εr =
∞∑

k=r+1

ck.

Proof : We have P̂i. =
∑∞

k=0 ckP k
i. = D

1
2

∑∞
k=0

∑n
α=1 ckλk

αvα(i)sα. Therefore :

r̂ij =
∥∥∥D− 1

2 P̂i. −D− 1
2 P̂j.

∥∥∥ =
∥∥∥
∞∑

k=0

n∑
α=2

ckλk
α(vα(i)− vα(j))sα

∥∥∥

And we can conclude because the vectors sα are orthonormal :

n∑
α=2

∥∥∥
∞∑

k=0

ckλk
α(vα(i)− vα(j))sα

∥∥∥
2

=
n∑

α=2

f2(λα)(vα(i)− vα(j))2 = r̂2
ij

To compute the vectors, we approximate the series to the order r: P̂i. ' ∑r
k=0 ckP k

i..
We only need to compute the successive powers P̂ k

i. for 0 ≤ k ≤ r which can be done in
time O(rm) and space O(n). ¤

To illustrate this generalization, we show that it directly allows to consider continuous
random walks. Indeed, the choice of the length of the random walks (which must be an
integer) may be restrictive in some cases. To overcome this constraint, one may consider
the continuous random walk process: during a period dt the walker will go from i to
j with probability Pijdt. One can prove that the probabilities to go from i to j after
a time t are given by the matrix et(P−Id). For a given period length t, the associated
distance is now r̂2

ij =
∑n

α=2 e2t(λα−1)(vα(i) − vα(j))2 which corresponds to a function

f(x) = et(x−1) =
∑∞

k=0 ckxk with ck = tke−t

k! .
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4 The algorithm

In the previous section, we have proposed a distance between vertices (and between sets
of vertices) to capture structural similarities between them. The problem of finding com-
munities is now a clustering problem. We will use here an efficient hierarchical clustering
algorithm that allows us to find community structures at different scales. We present an
agglomerative approach based on Ward’s method [44] that is well suited to our distance
and gives very good results while reducing the number of distance computations.

We start from a partition P1 = {{v}, v ∈ V } of the graph into n communities reduced
to a single vertex. We first compute the distances between all adjacent vertices. Then
this partition evolves by repeating the following operations. At each step k:

• choose two communities C1 and C2 in Pk according to a criterion based on the
distance between the communities that we detail later,

• merge these two communities into a new community C3 = C1 ∪ C2 and create the
new partition: Pk+1 = (Pk \ {C1, C2}) ∪ {C3}, and

• update the distances between communities (we will see later that we actually only
do this for adjacent communities).

After n − 1 steps, the algorithm finishes and we obtain Pn = {V }. Each step defines
a partition Pk of the graph into communities, which gives a hierarchical structure of
communities called dendrogram (see Figure 1(b)). This structure is a tree in which the
leaves correspond to the vertices and each internal node is associated to a merging of
communities in the algorithm: it corresponds to a community composed of the union of
the communities corresponding to its children.

The key points in this algorithm are the way we choose the communities to merge, and
the fact that the distances can be updated efficiently. We will also need to evaluate the
quality of a partition in order to choose one of the Pk as the result of our algorithm. We
will detail these points below, and explain how they can be managed to give an efficient
algorithm.

4.1 Choosing the communities to merge.

This choice plays a central role for the quality of the obtained community structure.
In order to reduce the complexity, we will only merge adjacent communities (having at
least an edge between them). This reasonable heuristic (already used in [32] and [10])
limits to m the number of possible mergings at each stage. Moreover it ensures that each
community is connected.

We choose the two communities to merge according to Ward’s method. At each step
k, we merge the two communities that minimize the mean σk of the squared distances
between each vertex and its community.

σk =
1
n

∑

C∈Pk

∑

i∈C

r2
iC

This approach is a greedy algorithm that tries to solve the problem of maximizing σk

for each k. This problem is known to be NP-hard: even for a given k, maximizing σk

is the NP-hard “K-Median clustering problem” [16, 13] for K = (n − k) clusters. The
existing approximation algorithms [16, 13] are exponential with the number of clusters to
find and unsuitable for our purpose. So for each pair of adjacent communities {C1, C2},
we compute the variation ∆σ(C1, C2) of σ that would be induced if we merge C1 and C2

into a new community C3 = C1 ∪ C2. This quantity only depends on the vertices of C1

and C2, and not on the other communities or on the step k of the algorithm:

∆σ(C1, C2) =
1
n

( ∑

i∈C3

r2
iC3

−
∑

i∈C1

r2
iC1

−
∑

i∈C2

r2
iC2

)
(2)
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Finally, we merge the two communities that give the lowest value of ∆σ.

4.2 Computing ∆σ and updating the distances.

The important point here is to notice that these quantities can be efficiently computed
thanks to the fact that our distance is a Euclidean distance, which makes it possible to
obtain the two following classical results [26]:

Theorem 5 The increase of σ after the merging of two communities C1 and C2 is directly
related to the distance rC1C2 by:

∆σ(C1, C2) =
1
n

|C1||C2|
|C1|+ |C2|r

2
C1C2

Proof : First notice that
∑

i∈C1
(P t

C1. − P t
i.) = 0 and (|C1| + |C2|)P t

C3. = |C1|P t
C1. +

|C2|P t
C2.. Then we consider the distance r as a metric in Rn (that contains the probability

vectors PC.) associated to an inner product < .|. >. Finally, after some elementary
computations, we obtain :

∑

i∈C1

r2
iC3

=
∑

i∈C1

< P t
C3. − P t

i.|P t
C3. − P t

i. >=
∑

i∈C1

r2
iC1

+
|C1||C2|2

(|C1|+ |C2|)2 r2
C1C2

This also holds if we replace C1 by C2 and C2 by C1. Therefore:
∑

i∈C3

r2
iC3

=
∑

i∈C1

r2
iC3

+
∑

i∈C2

r2
iC3

=
∑

i∈C1

r2
iC1

+
∑

i∈C2

r2
iC2

+
|C1||C2|
|C1|+ |C2|r

2
C1C2

We deduce the claim by replacing this expression into Equation (2). ¤

This theorem shows that we only need to update the distances between communities
to get the values of ∆σ: if we know the two vectors PC1. and PC2., the computation
of ∆σ(C1, C2) is possible in O(n). Moreover, the next theorem shows that if we already
know the three values ∆σ(C1, C2), ∆σ(C1, C) and ∆σ(C2, C), then we can compute
∆σ(C1 ∪ C2, C) in constant time.

Theorem 6 (Lance-Williams-Jambu formula) If C1 and C2 are merged into C3 =
C1 ∪ C2 then for any other community C:

∆σ(C3, C) =
(|C1|+ |C|)∆σ(C1, C) + (|C2|+ |C|)∆σ(C2, C)− |C|∆σ(C1, C2)

|C1|+ |C2|+ |C| (3)

Proof : We replace the four ∆σ of Equation (3) by their values given by Theorem 5. We
multiply each side by n(|C1|+|C2|+|C|)

|C| and use |C3| = |C1|+ |C2|, and obtain the equivalent
equation:

(|C1|+ |C2|)r2
C3C = |C1|r2

C1C + |C2|r2
C2C −

|C1||C2|
|C1|+ |C2|r

2
C1C2

Then we use the fact that P t
C3. is the barycenter of P t

C1. weighted by |C1| and of P t
C2.

weighted by |C2|, therefore:

|C1|r2
C1C + |C2|r2

C2C = (|C1|+ |C2|)r2
C3C + |C1|r2

C1C3
+ |C2|r2

C2C3

We conclude using |C1|r2
C1C3

+ |C2|r2
C2C3

= |C1||C2|
|C1|+|C2|r

2
C1C2

. ¤

Since we only merge adjacent communities, we only need to update the values of ∆σ
between adjacent communities (there are at most m values). These values are stored in
a balanced tree in which we can add, remove or get the minimum in O(log m). Each
computation of a value of ∆σ can be done in time O(n) with Theorem 5 or in constant
time when Theorem 6 can be applied.
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4.3 Evaluating the quality of a partition.

The algorithm induces a sequence (Pk)1≤k≤n of partitions into communities. We now
want to know which partitions in this sequence capture well the community structure.
The most widely used criterion is the modularity Q introduced in [32, 33], which relies
on the fraction of edges eC inside community C and the fraction of edges1 aC bound to
community C:

Q(P) =
∑

C∈P
eC − a2

C

The best partition is then considered to be the one that maximizes Q.
However, depending on one’s objectives, one may consider other quality criterion of

a partition into communities. For instance, the modularity is not well suited to find
communities at different scales. Here we provide another criterion that helps in finding
such structures. When we merge two very different communities (with respect to the
distance r), the value ∆σk = σk+1 − σk at this step is large. Conversely, if ∆σk is large
then the communities at step k − 1 are surely relevant. To detect this, we introduce the
increase ratio ηk:

ηk =
∆σk

∆σk−1
=

σk+1 − σk

σk − σk−1

One may then consider that the relevant partitions Pk are those associated with the
largest values of ηk. Depending on the context in which our algorithm is used, one may
take only the best partition (the one for which ηk is maximal) or choose among the best
ones using another criterion (like the size of the communities, for instance). This is an
important advantage of our method, which helps in finding the different scales in the
community structure. However we used the modularity (which produces better results to
find an unique partition and is not specific to our algorithm) in our experimental tests to
be able to compare our algorithm with the previouly proposed ones.

4.4 Complexity.

First, the initialization of the probability vectors is done in O(mnt). Then, at each step
k of the algorithm, we keep in memory the vectors P t

C. corresponding to the current
communities (the ones in the current partition). But for the communities that are not
in Pk (because they have been merged with another community before) we only keep the
information saying in which community it has been merged. We keep enough information
to construct the dendogram and have access to the composition of any community with
a few more computation.
When we merge two communities C1 and C2 we perform the following operations:

• Compute P t
(C1∪C2). =

|C1|P t
C1.+|C2|P t

C2.
|C1|+|C2| and remove P t

C1. and P t
C2..

• Update the values of ∆σ concerning C1 and C2 using Theorem 6 if possible, or
otherwise using Theorem 5.

The first operation can be done in O(n), and therefore does not play a significant role in
the overall complexity of the algorithm. The dominating factor in the complexity of the
algorithm is the number of distances r computed (each one in O(n)). We prove an upper
bound of this number that depends on the height of the dendrogram. We denote by h(C)
the height of a community C and by H the height of the whole tree (H = h(V )).

Theorem 7 An upper bound of the number of distances computed by our algorithm is
2mH. Therefore its global time complexity is O(mn(H + t)).

1inter-community edges contribute for 1
2

to each community.
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Figure 1: (a) An example of community structure found by our algorithm using random
walks of length t = 3. (b) The stages of the algorithm encoded as a tree called dendrogram.
The maximum of ηk and Q, plotted in (c), show that the best partition consists in two
communities. The maximal values of ηk show also that communities of different scales may
be relevant.

Proof : Let M be the number of computations of ∆σ. M is equal to m (initialization
of the first ∆σ) plus the sum over all steps k of the number of neighbors of the new
community created at step k (when we merge two communities, we need to update one
value of ∆σ per neighbor). For each height 1 ≤ h ≤ H, the communities with the same
height h are pairwise disjoint, and the sum of their number of neighbor communities is
less than 2m (each edge can at most define two neighborhood relations). The sum over
all heights finally gives M ≤ 2Hm. Each of these M computations needs at most one
computation of r in time O(n) (Theorem 5). Therefore, with the initialization, the global
complexity is O(mn(H + t)). ¤

In practice, a small t must be chosen (we must have t = O(log n) due to the exponential
convergence speed of the random walk process) and thus the global complexity isO(mnH).
We always empirically observed that best results are obtained using length 3 ≤ t ≤ 8.
We moreover observed that the choice of t in this range is not crutial as the results are
often similar. Hence we think that a good empirical compromise is to choose t = 4 or
t = 5. We also advise to reduce this length for very dense graphs and to increase it for
very sparse ones because the convergence speed of the random walk process increase with
the graph density. Studying more formally the influence of t, and determining optimal
values, remains to be done.

The worst case is H = n − 1, which occurs when the vertices are merged one by one
to a large community. This happens in the “star” graph, where a central vertex is linked
to the n − 1 others. However Ward’s algorithm is known to produce small communities
of similar sizes. This tends to get closer to the favorable case in which the community
structure is a balanced tree and its height is H = O(log n).

However, this upper bound is not reached in practical cases. We evaluated the actual

11



Method Number of distances computed

Upper bounds
2m(n− 1) 282 000 000

2mH 2 970 000

Practical tests
without theorem 6 321 000

with theorem 6 277 000
with additional heuristics 103 000

Table 1: Number of distances computed according to upper bounds and practical tests.

number of distance computations done on graphs from the test set presented in Section 5.1.
We chose graphs with n = 3000 vertices, their mean number of edges is m = 47 000 and
the mean height of the computed dendrograms is H = 31.6. We compared the worst case
upper bound 2(mn(n−1)) and the upper bound 2mnH with the actual number distances
computed with and without using Theorem 6.

We also considered an additional heuristics that consists in applying Theorem 6 when-
ever we only know one of the two quantities ∆σ(C1, C) or ∆σ(C2, C). In this case we
assume that the other one is greater than the current minimal ∆σ and we obtain a lower
bound for ∆σ(C1 ∪ C2, C). Later, if this lower bound becomes the minimal ∆σ then we
compute the exact distance in O(n). Otherwise if the community C3 = C1∪C2 is merged
using another community than C the exact computation is avoided. This heuristics can
induce inexact merging ordering when the other unknown ∆σ is not greater than the
current minimal ∆σ, we observed in this test that this happened on 0.05% of the cases.

The results, transcribed in Table 1, show that in practical cases, the actual complexity
of our approach is significantly lower than the upper bound we proved. However, this
upper bound can be reached in the pathological case of the star graph.

5 Experimental evaluation of the algorithm

In this section we will evaluate and compare the performances of our algorithm with
most previously proposed methods. This comparison has been done in both randomly
generated graphs with communities and real world networks. In order to obtain rigorous
and precise results, all the programs have been extensively tested on the same large set
of graphs.
The test compares the following community detection programs:

• this paper (Walktrap) with random walk length t = 5 and t = 2,

• the Girvan Newman algorithm [23, 33] (a divisive algorithm that removes larger
betweeness edges),

• the Fast algorithm that optimize the modularity proposed by Newman and im-
proved in [8] (a greedy algorithm designed for very large graphs that optimizes the
modularity),

• the approach of Donetti and Muñoz using the Laplacian matrix [10] and its new
improved version [11] (a spectral approach with a hierarchical algorithm),

• the Netwalk algorithm [48] (another algorithm based on random walks),

• the Markov Cluster Algorithm (MCL) [43] (an algorithm based on simulation of
(stochastic) flow in graphs),

• and the Cosmoweb algorithm [6] (a gravitational approach designed for web cluster-
ing).

We refer to Section 1.2 and to the cited references for more details on these algorithms.
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5.1 Comparison on generated graphs
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Figure 2: Quality and time performance of different approaches in function of the size of the
graphs (N). (Left) Mean quality of the partition found (R′). Right: Mean execution time (in
seconds).

Evaluating a community detection algorithm is a difficult task because one needs
some test graphs whose community structure is already known. A classical approach is
to use randomly generated graphs with communities. Here we will use this approach and
generate the graphs as follows.

The parameters we consider are :

• the number k of communities and their sizes |Ci| (these parameters give the number
of vertices N),

• the internal degree din(Ci) of each community,

• and the wanted modularity Q.

In order to reduce the number of parameters, we consider that the external degrees are
proportional to the internal degrees: ∀i, dout(Ci) = β × din(Ci). One can check that the
expected modularity is then:

Qe =
1

1 + β
−

∑
i(din(Ci)× |Ci|)2

(
∑

i din(Ci)× |Ci|)2

We therefore obtain the wanted modularity by choosing the appropriate value for β.
Once these parameters have been chosen, we draw each internal edge of a given com-

munity with the same probability, producing Erdös-Renyi like communities. Then the
external degrees are chosen proprotionally to the internal degrees (with a factor β) and
the vertices are randomly linked with respect to some constraints (no loop, no multiple
edge).
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To evaluate the quality of the partition found by the algorithms, we compare them
to the original generated partition. To achieve this, we use the Rand index corrected by
Hubert and Arabie [37, 25] which evaluates the similarities between two partitions. The
Rand index R(P1,P2) is the ratio of pairs of vertices correlated by the partitions P1 and
P2 (two vertices are correlated by the partitions P1 and P2 if they are classified in the
same community or in different communities in the two partitions). The expected value
of R for a random partition is not zero. To avoid this, Hubert and Arabie proposed a
corrected index that is also more sensitive : R′ = R−Rexp

Rmax−Rexp
where Rexp is the expected

value of R for two random partitions with the same community size as P1 and P2. This
quantity can be efficiently computed using the following equivalent formula :

R′(P1,P2) =

N2
∑

i,j

|C1
i ∩ C2

j |2 −
∑

i

|C1
i |2

∑

j

|C2
j |2

1
2N2


∑

i

|C1
i |2 +

∑

j

|C2
j |2


−

∑

i

|C1
i |2

∑

j

|C2
j |2

Where (Cx
i )1≤i≤kx

are the communities of the partition Px and N is the total number of
vertices.

This quantity has many advantages compared to the “ratio of vertices correctly identi-
fied” that has been widely used in the past. It captures the similarities between partitions
even if they do not have the same number of communities, which is crucial here as we
will see below. Moreover, a random partition always gives the same expected value 0 that
does not depend on the number of communities.

We also compared the partitions using the modularity. However, the results and the
conclusions were very similar to those obtained with R′. In order to reduce the size of this
section and to avoid duplicated information, we only plotted the results obtained with
the corrected Rand index R′.

Homogeneous graphs Let us start with the most simple case where all the com-
munities are similar (same size and same density). Therefore we only have to choose
the size N of the graphs, the number k of communities, the internal degree din of com-
munities and the wanted modularity Q. The internal edges are drawn with the same
probability, producing a Poisson degree distribution. We generated graphs corresponding
to combinations of the following parameters:

• sizes N in {100, 300, 1 000, 3 000, 10 000, 30 000, 100 000},
• number of communities, k = Nγ with γ in {0.3, 0.42, 0.5},
• internal degree, din(Ci) = α ln(|Ci|) with α in {2, 4, 6, 8, 10},
• wanted modularity Q in {0.2, 0.3, 0.4, 0.5, 0.6}.
The first comparison of the quality and time performances is plotted on Figure 2. For

each graph size, we plotted the mean corrected Rand index (R′) and the mean running
time. To avoid that some approaches can be advantaged (or disadvantaged) by particular
parameters, the mean has been computed over all the possible combinations of the pa-
rameters listed above. This first comparison shows that our algorithm has the advantage
of being efficient regarding both the quality of the results and the speed, while other
alorithms only achieve one of these goals. It can handle very large graphs with up to
300 000 vertices (this limitation is due to its memory requirements). Larger graphs can
be processed (without the same quality of results) with the Fast Modularity algorithm
that has been able to process a 2 million vertex graph.

We also plotted R′ on Figure 3 to observe the influence of the modularity of the gen-
erated partition on the results. These first tests show that most previously proposed
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Figure 3: Quality of the partition found in function of the modularity of the generated
partition for different sizes N (same legend as Figure 2).

approaches have good performances on small graphs. But our approach is the only one
that allows to process large graphs while producing good results. Notice that the im-
proved approach of Donetti and Muñoz also produces very good results but requires more
computational time. This improved version [11] uses exactly the same eigen vectors as the
ones we use in our algorithm, which explains that the quality of the results are similar.
The MCL algorithm was difficult to use in this intensive test since the user must choose
a granularity parameter for each input graph, which is a limitation of this algorithm. We
manually chose one parameter for each size of graph (hence the results are not optimal
and it can explain their fluctuations), doing our best to find a good one.

It is also interesting to compare the distribution of the size of the communities found to
the size of the generated communities. We plotted these quantities on Figure 4 for graphs
with N = 3000 vertices. We generated graphs with three different sizes of communities
and the results can explain the limitations of some approaches. It seems for instance that
the Fast Modularity algorithm [8] produces communities that always have the same size
independantly of the actual size of the communities. Likewise, Cosmoweb [6] produces
too many very small communities (1 to 4 vertices).

Heterogeneous graphs The second set of graphs has different kind of communities
(different sizes and different densities). The sizes of the communities are randomly chosen
according to a power law and the internal densities of each community is also randomly
chosen. We therefore have the two following additional parameters:

• the range of internal degree, din(Ci) is uniformely chosen between αmin ln(|Ci|) and
αmax ln(|Ci|) with (αmin, αmax) = (5, 7), (4, 8) and (3, 9), and

• the community size distribution is a power law of exponent α in 2.1, 2.5 and 3.2

2The community sizes are chosen within a range [Smin..Smax] and the probability that a community has
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Figure 4: Distribution of the size of the communities for three different numbers of generated
communities corresponding to 11, 30 or 55 communities on N = 3000 vertex graphs.

To study the influence of the heterogeneity of the communities, we generated graphs of
size N = 3000 with all combinations of the previous parameters (modularity, number
of communities) and of the two new ones. The three values of the above parameters
correspond to three levels of heterogeneity. Figure 5 shows that our approach is not
influenced by the heterogeneity of the communities, whereas the others are.

5.2 Comparison on real world networks

To extend the comparison between algorithms, we also conducted experiments on some
real world networks. However judging the quality of the different partiton found is very
difficult because we do not have a reference partition that can be considered as the actual
communities of the network. We only compared the value of the modularity found by the
different algorithms. The results are reported in Table 2.

We used the following real world networks :

• The Zachary’s karate club network [47], a small social network that has been widely
used to test most of the community detection algorithms.

• The college football network from [23].

• The protein interaction network studied in [27].

• A scientists collabaration network computed on the arXiv database [50].

• An internet map provided by Damien Magoni [24].

• The web graph studied in [2]

size S is actualy proportional to (S + µ)α, with µ chosen such that the expected size of the overall graph is
equal to a given N .
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graph karate foot protein arxiv internet www
nb vertices/mean degree 33/4.55 115/10.7 594/3.64 9377/5.14 67882/8.12 159683/11.6

Walktrap (t = 5) 0.38/0s 0.60/0s 0.67/0.02s 0.76/4.61s 0.76/1030s 0.91/5770s
Walktrap (t = 2) 0.38/0s 0.60/0s 0.64/0.01s 0.71/1.08s 0.69/273s 0.84/468s
Fast Modularity 0.39/0s 0.57/0s 0.71/0s 0.77/1.65s 0.72/483s 0.92/1410s
Donetti Muñoz 0.41/0s 0.60/0s 0.59/0.34s 0.66/1460s – –

Donetti Muñoz (Laplacian) 0.41/0s 0.60/0s 0.60/1.37s 0.62/1780s – –
Cosmoweb -0.05/0s 0.33/0s 0.50/0.02s 0.60/0.65 0.47/6.82s 0.79/21s

Girvan Newman 0.40/0s 0.60/0.39s 0.70/6.93s >40000s – –
Netwalk 0.40/0.02s 0.60/0.07s 0.60/5.2s >40000s – –

Duch Arenas 0.41/0s 0.60/0.05s 0.69/1.9s 0.77/14000s – –
MCL 0.36/0s 0.60/0.05s 0.66/0.58s 0.73/61.3s – –

Table 2: Performances on real world networks (modularity / time (in seconds)). The second
line shows the size of the graphs given by their number of vertices and their mean degree.

We reduced the sizes of these networks by only keeping the largest connected component
and by iteratively removing all the one-degree vertices (which do not provide significant
information on community structures). This allowed us to run the comparison tests with
all the algorithms on smaller networks (Table 2 reports the size and the mean degree of
the graphs after this processing).
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6 Conclusion and further work

We proposed a new distance between vertices that quantify their structural similarity
using random walks. This distance has several advantages: it captures much information
on the community structure, and it can be used in an efficient hierarchical agglomerative
algorithm that detects communities in a network. We designed such an algorithm which
works in the worst case in time O(mn2). In practice, real-world complex networks are
sparse (m = O(n)) and the height of the dendrogram is small (H = O(log n)); in this
case the algorithm runs in O(n2 log n). An implementation is provided at [49].

Extensive experiments show that our method provides good results in various condi-
tions (graph sizes, densities, and number of communities). We used such experiments to
compare our algorithms to the main previously proposed ones. This direct comparision
shows that our approach has a clear advantage in term of quality of the computed parti-
tion and presents the best tradeoff between quality and running time for large networks.
It however has the limitation of needing quite a large amount of memory, which makes
the Fast Modularity approach a relevant challenger of our method for very large graphs
(million vertices).

Our method could be integrated in a multi-scale visualization tool for large networks,
and it may be relevant for the computation of overlapping communities (which often
occurs in real-world cases and on which very few has been done until now [34]). We
consider these two points as promising directions for further work. Finally, we pointed
out that the method is directly usable for weighted networks. For directed ones (like the
important case of the web graph), on the contrary, the proofs we provided are not valid
anymore, and random walks behave significantly differently. Therefore, we also consider
the directed case as an interesting direction for further research.
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