Assembling Genomes

BCH394P/364C Systems Biology / Bioinformatics

Edward Marcotte, Univ of Texas at Austin

: .-.-‘.._-,. !-ud'--:?____‘ .‘.')
§409;.360-971(2007)

-

#

Beljing Genomics Thstitute

A

“If it tstesgood you should sequence it... |
you should know what's in the genes of that species” ™=
Wang Jun, Chief executive, BGI

; (Wikipedia)

The NovaSeq in the UT GSAF core generates
>1.4 terabases of sequence in a 1-day run

- Many millions of 75-150 bp reads

- Thousands of 1,000 to 1,000,000 (ish) bp reads

A new strategy for genome sequencing

J. Craig Venter, Hamiiton O. Smith and Leroy Hood

Conventional

Chromosome (250 Mb)
g YAClibrary

Sequence-tagged connectors

YAC S e
Array 300,000
---------- BACS
P Sequence both ends
Fingerprint each BAC
=gy e v S i ekt High-resolution | Select seed BAC
Cosmid ~T————— — — map
\ 150 kb
' 1 . oy
s otg u n ¥ M43 or plasmid library
Plasmid e ° *:—_:—_—:::__
S Sequence 3,000 clones
(5-10kb) _ s e q u e n C I n g § and assemble
or M13
(1 kb) and assemble Find 30 overlapping
e 4 BACs from STCs
' Choose mnnlmurjn cgsmld ove‘arlap‘ Fingerprint comparisons
. Sequence cosmids in both directions Sequence BACs with minimal
‘ overlap at each end and repeat
Cosmids = B8 . e
et — — —a - BACs

<= Cosmid walking=+

: %,
< BAC walking = STCs

NATURE - VOL 381 - 30 MAY 1996

(Translating the cloning jargon)

Vector

Yeast artificial
chromosome
(YAC)

Bacterial artificial
chromosome
(BAC)

Cosmid

Plasmid

M13 phage

100-2,000 kb

80-350 kb

30-45 kb
3-10 kb

1 kb

CLONE LIBRARIES USED FOR GENOME MAPPING
AND SEQUENCING

Human-DNA insert
size range

Number of clones
required to cover
the human genome

3,000 (1,000 kb)
20,000 (150 kb)

75,000 (40 kb)
600,000 (5 kb)
3,000,000 (1 kb)

NATURE - VOL 381 - 30 MAY 1996

* Extra 30X depth
* Haploid organism

Select reads and budget
T —

(see Jung ef al., 2019 [14])

¢

Short and Long Reads

Short Reads

NGS Sequences

se|
e novy

* Inbred/Isogenetic line

[

Short and Hybrid Reads
= Jabba, LoRDEC, Pilon

Long Reads
= Arrow, Quiver, Racon

)

J

< Polishing <«

Assessment and Decision

Confirm/
Refine

= N50 length > IMb
= Assembled genome coverage > 90%

\ (&P Go to Chmmosome Assembly

< S

Follow recommended actions

= BUSCO completion > 90% (see Jung et al., 2019 [14])

Contemporary genome assembly is fairly complex, but at its core
are assembly algorithms that grew from the shotgun concept

Chromosome
Assembly

-«

Annotation

<-E m‘ﬁ n,;mf, l«-

Community
Effort

Twelve quick steps for genome assembly and annotation in the classroom
PLoS Comp Biology (2020), doi:10.1371/journal.pcbi.1008325

Interactive Genome Viewer

Chromosome-Scale Assembly
[BioNano: RefAligner | [Hi-C: 3D-DNA/HIRis/ALLHIC |
[Comparison and advice for selecting technologies (See Paajanen ef al., 2019 [15])]

Automatic Genome Annotation Pipeline Yes

<>

= RepBase, RepeatMasker, RepeatRunner]

Repeat
Elements

Sequence I yak o
; = Evidence-based prediction: MAKER, BRAKER, StringTie
Annotation

= b initio: August, SNAP
= Noncoding RNA: NONCODE, LncFunTK

Functional

T = BLAST, Blast2GO, GO FEAT, AmiGO, eggNOG

= Ensembl, GBrowser, JBrowser, NCBI, UCSC]

= Twitter, websites, blogs, conferences)
= New data, improvement biois ics, update computers]
= Apollo, G-OnRamp, recruitment and coordination of expertise]

Beverly Micro “Pure White Hell” Jigsaw Puzzle (10 000,000, 000 Plece)

—_
. —
a-ﬂ; —

@%@I'IODLM.,}J@&I); "C%%b\? & 552

L ————— 1

2

=% ‘%
nE AN T T
A% L FBEH rsmgm%» féjzﬁ /
!
/ﬂ)\lfil/ﬁﬁ‘sz #IFIC FaHEEV .

A poy R DHRIE

Thinking about the basic shotgun concept

e Start with a very large set of random
sequencing reads

 How might we match up the
overlapping sequences?

* How can we assemble the overlapping
reads together in order to derive the
genome?

10

Thinking about the basic shotgun concept

* At a high level, the first genomes were
sequenced by comparing pairs of reads
to find overlapping reads

* Then, building a graph (i.e., a network)
to represent those relationships

 The genome sequence is a “walk”
across that graph

11

The “Overlap-Layout-Consensus” method

Overlap: Compare all pairs of reads
(allow some low level of mismatches)

Layout: Construct a graph describing the overlaps

sequence
overlap
read
Simplify the graph read
Find the simplest path through the graph

Consensus: Reconcile errors among reads along that
path to find the consensus sequence

12

Building an overlap graph

Edge Overlap
5 A =¥
i\ m— o1 &= ||§B|
A
A>—>B IR B}
A
A<—— B <B RERRRRRRRRRRRRNN =>
A
A>——< B u&mmm%‘l B

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290

13
Building an overlap graph
Reads
5’ 3’
A E
B F I
C G
D H<=s—"
Overlap graph

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

14

Simplifying an overlap graph

< R € >

A>— D< E—X G I

N PVAY

1. Remove all contained nodes & edges going to them

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

15

Simplifying an overlap graph

2. Transitive edge removal:
GivenA—-B-D and A-D,removeA-D

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

16

Simplifying an overlap graph

3. If un-branched, calculate consensus sequence
If branched, assemble un-branched bits and then decide
how they fit together

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

17

Simplifying an overlap graph

G

1
1
| D
|
1

“contig” (assembled contiguous sequence)

EUGENE W. MYERS. Journal of Computational
Biology. Summer 1995, 2(2): 275-290 (more or less)

18

This basic strategy was used for most of
the early genomes.
Also useful: “mate pairs”

2 reads separated by a known distance

A
Read #1_ [\
—_—

DNA fragment of known size —
Read #2

Contigs can be ordered using these paired reads

I N

Contig #1 Contig #2

to produce “scaffolds”

19

GigAssembler (used to assemble the public
human genome project sequence)

Jim Kent David Haussler

Let’s take a little walk through history to see what they did...

20

10

Whole genome Assembly: big picture

STS

Mapped Genome
Scaffolds: - == s S B =t -

T [I | | L1 i i I
Scaffold: I | | I

Read pair (mates) Gap (mean & std. dev. Known)
Contig: .
— —— Consensus
——— _=®T" ——_ Reads (of several haplotypes)
® SNPs

=== BAC Fragments

http://www.nature.com/scitable/content/anatomy-of-whole-genome-assembly-20429

21

GigAssembler — Preprocessing

1. Decontaminating & Repeat Masking.

2. Aligning of mRNAs, ESTs, BAC ends & paired
reads against initial sequence contigs.

. psLayout — BLAT
3. Creating an input directory (folder) structure.

chril/
chrl/contigl.e
chrl/contigl.a
chrl/fcontigl.
chrl/contigl.
chrl/fcontigl.
chr3/

chrz/
chr2z/contig2.
chr2z/contig2.
chr2/contig2.a

chr2z/contig2.

22

11

RepBase + RepeatMasker

>MER51D ERV1 Homo sapiens

taejoon@fourierseq:~/RepBase/RepBasel5.05.fasta$ 1s -a
dcotrep.ref mamsub.ref rodsub.ref
diarep.ref mcotrep.ref simple.ref
drorep.ref mousub.ref spurep.
fngrep.ref nemrep.ref synrep.
fugrep.ref oryrep.ref tmplan

grasrep.ref plnrep.ref tmpnemrep.ref
humrep. ref irep.ref tmpxenrep.ref
humsub. ref i .ref version
invrep.ref .ref vrtrep.ref
invsub.ref 3 .ref zebrep.ref
mamrep.ref rodrep.ref

g tcagaccctgecaaged
gccctctgatcocttaaaacttgecccagaccccaaatoggggagacagatttgageccacctectgtet
El t

23

GigAssembler: Build merged
sequence contigs (“rafts”

RRNRRRR RN RRARRRRA Y

Figure 1 Two sequences overlapping end to end. The sequences
are represented as dashes. The aligning regions are joined by vertical
bars. End-to-end overlap is an extremely strong indication that two
sequences should be joined into a contig.

24

Sequencing quality (Phred Score

10 20 30 40 =0
NG OG AG ATC TCG C C G WG IGGATTC TCCAT TCCCAC TTACTCCATCATGG TEAGE

>gnl|ti|2299297598 name:fwn 1207 x1 NCBI Accession: AC243936 Mate pair 2289297599

Quality score: not available >0 - <20 >=20 - <40 >=40 - <60 >=60 - <B0 >=80 - <100

03666 6683888888886 6 86 6 7 13191010102213222235353630
35323536353635352828283029282828252319213 0 3 13141010151515139 6 6 7
7 6 6 6 6 6 B 1111121611 101222233024 23 24 31 37 44 53 53 57 38 38 35 35 35 35 31 31 37
37372721158 6 B B 6 6 141216 18 28 25 31 34 43 37 36 36 50 50 50 53 53 53 57 57 57 57 57 57
57 57 57 57 57 57 53 59 57 59 59 59 68 50 50 50 50 50 53 57 57 57 57 57 6B 68 68 63 68 68 68 653 68 68 68
63 6B 68 68 68 68 50 51 51 51 51 65 65 68 68 63 68 68 65 63 63 68 68 63 68 68 63 63 68 68 63 65 65 68 63
63 68 65 65 68 68 68 63 63 65 6B 65 65 68 63 63 63 68 63 63 63 68 68 63 68 68 63 63 68 68 63 65 68 68 63
63 68 65 65 68 68 68 63 63 65 6B 65 65 68 63 63 63 68 63 63 63 68 68 63 68 68 63 63 68 68 63 65 68 68 63
63 6B 68 65 68 66 68 65 63 65 6B 65 65 68 63 63 68 68 68 68 63 68 68 63 68 68 63 63 65 68 68 65 658 68 68
63 6B 65 65 68 66 68 65 63 65 6B 65 65 68 68 63 65 68 68 68 63 68 68 63 68 68 63 63 68 68 68 65 68 62 62
62 62 62 62 62 66 68 65 63 65 6B 65 65 68 68 63 68 68 68 68 63 68 68 63 68 68 63 63 65 68 68 65 68 68 68
63 68 68 68 68 62 68 68 63 68 68 68 68 68 62 62 68 68 68 68 63 68 68 68 68 62 62 62 62 62 68 68 68 68 68
63 68 68 68 68 68 68 68 63 68 68 68 68 68 68 68 68 68 68 68 63 68 68 63 68 68 68 63 68 68 68 68 68 68 68
B8 BB 6B B8 6B 6B 6B 68 68 B8 68 68 68 68 68 68 68 68 68 6B 68 68 68 68 68 68 68 63 68 68 68 68 68 68 68
B8 BB 68 B8 6B 68 62 62 62 B8 68 68 62 68 68 68 68 68 68 68 68 68 68 68 68 68 68 63 68 62 62 62 68 68 68

7/ 6B BB BB 68 BB 6B B8 68 B8 B8 59 59 59 68 6B 68 B8 6B

58 59 59 59 57 59 59 59 59 B8

25
Sequencing quality (Phred Score
Base-calling
Q =—10 lﬂgm P Error
Probability
ar
-9
P=101
Phred quality scores are logarithmically linked to error probabilities
Phred Quality Score Probability of incorrect base call Base call accuracy
10 1in10 90 %
20 1in 100 99 %
30 1in 1000 999 %
40 1in 10000 99.99 %
50 1 in 100000 99.999 %
http://en.wikipedia.org/wiki/Phred_quality_score
26

13

We're going to skip the remaining
details of GigAssembler (mainly of
historical interest now) to get to the
key strategy for assembling all of
the various contigs and paired end
reads into a genome

27

Figure 4 Three overlapping draft clones: A, B, and C. Each clone
has two initial sequence contigs. Note that initial sequence contigs
al, b1, and a2 overlap as do b2 and c1.

—>— >0 — >0 — >0 —>9d
As Bs Ae Cs Be Ce
Figure 5 Ordering graph of clone starts and ends. This represents
the same clones as in Fig. 4. (As) The start of clone A; (Ae) the end of
clone A. Similarly Bs, Be, Cs, and Ce represent the starts and ends of
clones B and C.

GigAssembler:
Build a “raft-ordering” graph

b2ct

°
i c2
Ae Cs Be Ce

As Bs

atbia2

Figure 6 Ordering graph after adding in rafts. The initial sequence
contigs shown in Fig. 4 are merged into rafts where they overlap. This
forms three rafts: albla2, b2c1, and c2. These rafts are constrained to
lie between the relevant clone ends by the addition of additional
ordering edges to the graph shown in Fig. 5.

28

14

GigAssembler:
Build a “raft-ordering” graph

« Add information from mRNAs, b2ct
ESTs, paired plasmid reads,
BAC end pairs: building a

)
“bridge” ¢
. Different weight to different data ®)
Ae Cs Be C

type: (MRNA ~ highest) As Bs

€

. Conflicts with the graph as
constructed so far are rejected.

. Build a sequence path through each

raft.
« Fill the gap with N’s. atbla2
Figure 6 Ordering graph after adding in rafts. The initial sequence
« 100: between rafts contigs shown in Fig. 4 are merged into rafts where they overlap. This

forms three rafts: alb1a2, b2c1, and c2. These rafts are constrained to

. 50,000 between brldged bargeS lie be.tween the relevant clone end§ b){ the addition of additional
ordering edges to the graph shown in Fig. 5.

29

Finding the shortest path across the
ordering graph using the
Bellman-Ford algorithm

http://compprog.wordpress.com/2007/11/29/one-source-shortest-path-the-bellman-ford-algorithm/

30

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

Find the shortest path to all nodes.

31
Find the shortest path to all nodes.
Take every edge and try to relax it (N — 1 times where N is the count of nodes)
+5
Cc
L. O
+6
A +8 -3
+7
-4
+7 D s e E
+9
32

16

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

+5

Inf. Inf.

Find the shortest path to all nodes.

33

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

Find the shortest path to all nodes.

34

17

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

35

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

36

18

Find the shortest path to all nodes.

Take every edge and try to relax it (N — 1 times where N is the count of nodes)

37

Answer: A-D-C-B-E

38

19

Modern assemblers now work a bit differently,
using so-called DeBruijn graphs:

Here’s what we saw before:

v A
v A ATGSSS
o GGCGTGC
L
-------- > TGCAATG ATGGCGT CGLEcAn
@ Short-read] TGCAATG
i [
< 9) sequencing CAATGGC
(GacaTaC | (CAATGGC | .

ATG

Genome: ATGGCGTGCAATGGLGT

In Overlap-Layout-Consensus:
Nodes are reads
Edges are overlaps

Nature Biotech 29(11):987-991 (2011)

39

Modern assemblers now work a bit differently,
using so-called DeBruijn graphs:

w A g In a DeBruijn graph:

o Vertices are (k—=1)-mers

........ & TGCAATG *-.. Edges are k-mers
& Short-read ..

< A sequencing 5 a
2 [GGeaTaC | [CAATGGC |
A
b
i
GGC
[
o6
cGT

11 e m e e e e e e e e e e e

GT(,-’ k-mers from edges

TGC

11
0n
o
A
ATG

Eulerian cycle

Genome: ATGGCGTGCAATG

Nature Biotech 29(11):987-991 (2011) Visit each edge once

40

20

Why Eulerian?

From Leonhard Euler’s solution in 1735 to the
‘Bridges of Konigsberg’ problem:

Konigsberg (now Kaliningrad, Russia) had 7 bridges connecting 4
parts of the city. Could you visit each part of the city, walking
across each bridge onIy once, & finish back where you started?

i
A
L,

A If';‘

‘ Ilﬁlllllrlﬂ&ﬁ e A

Nodes = parts of city

(Visiting every edge once = an Eulerian path) Edges = bridges

Nature Biotech 29(11):987-991 (2011)

Euler conceptualized it as a graph:

41

DeBruijn graph assemblers tend to have nice
properties, e.g. correcting sequencing errors &
handling repeats better

ATGG TGGC GGCG GCGT CGTG m GTGC TGCA m GCAA CAAT
CG @ GTG @ (Gea [CAA @
e S e O &, y

AATG

coas e Sequencing errors appear as
ST © é’ ‘bulges’
@ GGCG @ GCGT @ CGTG @ GTGC @ TGCA @ GCAA : S CAAT @

Removing the ‘bulges’
<« corrects the errors
(e.g. leaves the red path)

Nature Biotech 29(11):987-991 (2011)

42

21

e.g. Velvet, an example algorithm using DeBruijn graphs

reads —-b Convert | _p k-mers —p{ Assemble —rb contigs
' reads to k-mers into -

1
1 .
: k-mers contigs
. VAERY
1 / \
i \
1 L \
1 — _.‘_

Beginner’s guide to comparative bacterial genome analysis using next-generation sequence data
Microb Informatics Exp (2013) doi:10.1186/2042-5783-3-2

43

Once a reference genome is assembled,
new sequencing data can ‘simply’ be
mapped to the reference.

reads

Reference genome

44

22

Mapping reads to assembled

genomes

Table 1 A selection of short-read analysis software
Open Handles ABI color Maximum read

Program Website source? space? length
Bowtie http://bowtie.cbcb.umd.edu Yes No None
BWA http://mag.sourceforge.net/bwa-man.shiml Yes Yes None
Mag http://mag.sourceforge.net Yes Yes 127
Mosaik http://bicinformatics.bc.edu/marthlab/Mosaik No Yes None
Novoalign http://www.novocraft.com No No None
SOAP2 http://soap.genomics.org.cn No No 60
Z00M http://www.bioinfor.com No Yes 240
The list is a little longer now! e.g. see https://en.wikipedia.org/wiki/
List_of_sequence_alignment_software#Short-Read_Sequence_Alignment
Trapnell C, Salzberg SL, Nat. Biotech., 2009
45
a Spaced seeds b Burrows-Wheeler
Reference genome Short read Reference genome Short read
(> 3 gigabases) (> 3 gigabases)
ch” ACTCCOGTACTCTAAT Chf‘i ACTOCCGTACTCTAAT
Chrz2 chr2
Chr3m== Chr3m==
Chr4 Chr4
Concatenate into l IVI .
Extract seeds single string a p p I n g
'S) .
AR Burrows-Wheeler | St rateg I es
Position 2 transform and indexing
Position 1 v Bowfis indox v

ACTG COGT ABAC TAAT
ACTG =xer ABAC wese
sxss COGT s+er TAAT
ACTG sz sxss TAAT
seen wwes AMAC TAAT
ACTG CCGT =#xs wxxs
#rxr COGT ABAC wrrr

Seed index
(tens of gigabytes)

ACTG =wes ABAC wewe

sess e

#xsh COGT #+=s TAAT |

ACTG ewes =wes TAAT
ween COGT AAAC wees

lrndex seed pairs

=0

(~2 gigabytes)

ACTC CCGT AGTG TAAT

ACTCGCGTAGTGTAAT

. L] e
Six seed L2 Loock up
pairs per —— 3 ‘suffixes’ n e
read/ 4 ofread ™ .
fragment 5 I i .
i d
g = T ACTCCCGTACTCTAAT
Hits identify y
positions in y

genome where
Look up each pair read is found

of seeds in index

Hits identify positions
in genome where
spaced seed pair

is found

Confirm hits

by checking
“wurs” positions

o
y
4

=

Convert each
hit back to
genome location

—_— —_—)
T Report alignment to user €——

Trapnell C, Salzberg SL, Nat. Biotech., 2009

46

23

Reference genome Short read
(> 3 gigabases)
Chr1 ACTCCCGTACTCTAAT
Chr2
Chr3imm==
Chr4
AR Burroughs
Concatenate into
single string Wheeler
L_— _J in d exin g
v
Burrows-Wheeler
transform and indexing
Bowtie index [
(~2 gigabytes) ;;“‘m \/
-]“‘“--.._-_M.-""---q.__ ACTCCCGTACTCTAAT
. N
ook up —
‘suffixes’ " e O~
ofread M il
n 4
- ACTCCCGTACTCTAAT
Hits identify
positions in /
genome where ”/
read is found ZZ
Trapnell C, Salzberg SL, Nat. Biotech., 2009
47

Burroughs-Wheeler transform indexing

BWT is often used for file compression (like bzip2),
here used to make a fast ‘lookup’ index in a genome

BWT = ‘reversible block-sorting’

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

This sequence is
// more compressiblg
Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIONIT

Forward BWT

Reverse BWT

Recovered SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES
input

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

48

24

Burroughs-Wheeler transform indexing

Input

~BANANA |

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

49

Burroughs-Wheeler transform indexing

All
Rotations

~“BANANA |
| “"BANANA
A | "BANAN
NA | “BANA
ANA | "BAN
NANA | “BA
ANANA| "B
BANANA |~

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

50

25

Burroughs-Wheeler transform indexing

Sorting All Rows in Alphabetical
Order

ANANA | “B
ANA | “BAN
A| “BANAN
BANANA | ~
NANA | “BA
NA | “BANA
ABANANA |
| ~“BANANA

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

51

Burroughs-Wheeler transform indexing

Taking
Last Column

ANANA| "B
ANA | “"BAN
A | "BANAN
BANANA |
NANA | “BA
NA& | “BANA
~BANANA |

| "BANANA

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

52

26

Output

Last Column

BNN"AA|A

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

Burroughs-Wheeler transform indexing

53
Transformation
| ¢ All Sorting All Rows in Alphabetical Taking Output
npu .
: Rotations Order Last Column | Last Column
~BANANA | ANANA | "B ANANA | "B
| “"BANANA ANA | “BAN ANA | “BAN
L | “"BANAN A| ~“BANAN A | “"BANAN
NA [“BANA BANANA | » BANANA | 4
~BANANA | BNN"BRA|A

LNA | ~BAN NANA | “BA NANA | “BA
NANA | “BA N2 | “BANA NA& | “BANA
ANANA| ~B ABANANA | ~BANANA |
BANANA | ~ | “BANANA | "BANANA

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

54

BWT is remarkable because it is
reversible.

Any ideas as how you might reverse it?

55

Burroughs-Wheeler transform indexing

Input

BNN"AA|A

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

56

28

Burroughs-Wheeler transform indexing

Add 1 Sort 1 Add 2 Sort 2
B A BA AN
N A NA AN
N A NA Al
” B ~B BA
A N AN NA
A N AN NA
| g |~ *B
A Al |~

Write the Sort it... Add the Sort those...

sequence as columns..

the last column

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

57
Burroughs-Wheeler transform indexing
Add 3 Sort 3 Add 4 Sort 4
BAN ANA BANA ANAN
NAN ANA NANA ANA |
N | Al” NA |~ A|l"B
“BA BAN “BAN BANA
ANA NAN ANAN NANA
ANA NA | ANA | NA |~
| “B ~BA | “BA “BAN
Aln | B A|"B | “BA
Add the Sort those... Add the Sort those...
columns... columns...
http://en.wikipedia.org/wiki/Burrows-Wheeler transform
58

29

Burroughs-Wheeler transform indexing

Add 5 Sort 5 Add 6 Sort 6
BANAN ANANA BANANA ANANA |
NANA | ANA| " NANA| " ANA| "B
NA| "B A|"BA NA|~BA A| ~“BAN
~“BANA BANAN ~“BANAN BANANA
ANANA NANA | ANANA | NANA |~
ANA| " NA| "B ANA| "B NA | “BA
| “BAN “BANA | “"BANA ~“BANAN
A|"BA | “BAN A | "BAN | “"BANA

Add the Sort those... Add the Sort those...
columns... columns...

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

59

Burroughs-Wheeler transform indexing

Add 7

BANANA |
NANA | ~B
NA | “BAN
“BANANA
ANANA |~
ANA | ~“BA
| “"BANAN
A|~"BANA

Add the
columns...

Sort7

ANANA| "~
ANA | “BA
A | “"BANA
BANANA |
NANA| "B
NA | “"BAN
~“"BANANA
| “BANAN

Sort those...

Add the
columns...

Add 8
BANANA | ~
NANA | “BA The row with
NA | “BANA the "end of file"
~BANANA character at the
ANANA | B end is the
ANA | ~“BAN original text
| “BANANA
A | “BANAN

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

60

30

Burroughs-Wheeler transform indexing

Ouftput

~“BANANA |

The row with the "end of file"
character at the end is the
original text

http://en.wikipedia.org/wiki/Burrows-Wheeler transform

61

The Burroughs-Wheeler transform
leads naturally to a suffix array

10i/googol$ ® i6i[$googo 1
11iloogolsg 1 i3ilgol$go o
121logol$go . . 2 10i|googol $
Loy St Sort et
14101$goog 4 i2ilogol$g o
5!/ 1$googo 5 '4ilo1$goo g
16i|$googol 6 ilijoogol$ g
Pos i S(1) B[1]
X = googol$ lo$oogg

(6’3’®,5’2,4’1)

Li & Durbin, doi:10.1093bioinformatics/btp324/

62

31

The Burroughs-Wheeler transform
leads naturally to a suffix array

D

mmmm.:o\.

S (S| T || |

O BN OWUBIW|F

m.:o‘mmm

@ i « DR « DR « DI 6 =2 O (e Tl e |
QJ‘-&H:SDD"DJQJ
D‘CTQJQJQJ"W:D
Q)AQJ-U-'PJ DAD'QJ

http://blog.avadis-ngs.com/2012/04/elegant-exact-string-match-using-bwt-2/ (& wikipedia)

63

“If string W is a substring of X, the position of each occurrence of
W in X will occur in an interval in the suffix array. This is because
all the suffixes that have W as prefix are sorted together.”

Li & Durbin, doi:10.1093bioinformatics/btp324/

e.g. applying BWT to construct the suffix array of GATGCGAGAGATG

| I
?_712_7011 T CER ORE (KB - EAC D O 2
?lGGGGGGTCAA$TAAIBWI:
g
“$AAAACGGGGGGTT G$ < GAGA
G GTTGS$AAAACG GG
A A GG A G G T TG $C I |
$Iscg 22gc2 ¢ —— OENHEEECETH
g A & & A GTSCG a E] 6 R 10N 4 A 5 el o K0 3 A 2
& T $ A G A G G A G *
2 G G A T § A G A
b s AT G G A [} GATGCGAGAGATGS > GAGA
£ G G s AT A
& A S G ¢ T
T PO G
G T $
$ G
s

The search can be even more efficient by using compression & various other extensions

http://blog.thegrandlocus.com/2016/07/a-tutorial-on-burrows-wheeler-indexing-methods

64

32

Why is this efficient?

Searching a suffix array in this way cuts the search

space in half at each step, so...

A suffix array of the human genome (3.2 billion bases)

takes at most

log,(3.2 billion) + 1 = 32 steps

to determine if a query sequence is present or not

There are few more steps to find all the occurrences, build an efficient
real-world implementation, use compression to reduce memory and
storage space, etc., but this still illustrates the massive savings in time

and memory from constructing an index

65
Reference genome Short read
(> 3 gigabases)
Chr1 ACTCCCGTACTCTAAT
Chrz
Chr3m==
Chr4
_ Burroughs
Concatenate into
single string Wheeler
§ : indexing
Burrows-Wheeler
transform and indexing
Bowtie index 13
(~2 gigabytes) H A\
i ACTCCCGTACTCTAAT
T 7T
Look up H B =< .
‘suffixes’ — 7~ m
of read « e
S
ACTCCCGTACTCTAAT
Hits identify
positions in
genome where ” y
read is found ZZF Convert each hit back
to genome location Trapnell C, Salzberg SL, Nat. Biotech., 2009
66

33

