In a First, Man Receives a Heart From a
Genetically Altered Pig

The breakthrough may lead one day to new supplies of animal
organs for transplant into human patients.

Surgeons performed an eight-hour transplant of a genetically modified pig’s heart at
the University of Maryland School of Medicine on Friday. Unive:
of &

y of Maryland School

https://www.nytimes.com/2022/01/10/health/
heart-transplant-pig-bennett.html

Science news of the day: “humanized” pigs!

“The heart transplanted into Mr. Bennett
came from a genetically altered pig
provided by Revivicor, a regenerative
medicine company based in Blacksburg,
Va”

“The pig had 10 genetic modifications. Four
genes were knocked out, or inactivated,
including one that encodes a molecule that
causes an aggressive human rejection
response.”

“A growth gene was ... inactivated to
prevent the pig’s heart from continuing to
grow...”

“In addition, six human genes were
inserted into the genome of the donor pig
— modifications designed to make the
porcine organs more tolerable to the
human immune system.”

1

GDIIII]lBlBlU []I"BI‘BII[

A Python programming primer for biologists

(Named after Monty Python’s Flying Circus &
designed to be fun to use)

Systems Biology/Bioinformatics
Edward Marcotte, Univ of Texas at Austin

In bioinformatics, you often want to do completely new analyses.
Having the ability to program a computer opens all sorts of
research opportunities. Plus, it’s fun!

Most bioinformatics researchers use a scripting language, such as
Python, Perl, or R, rather than a compiled language like C++

These languages are not the fastest, not the slowest, nor best, nor
worst languages, but they’re easy to learn and write, and for
many reasons, are well-suited to bioinformatics.

We'll spend the next 2 lectures introducing Python to give you a
sense for the language and help introduce the basics of
algorithms.

Python documentation: http://www.python.org/doc/
& tips: http://www.tutorialspoint.com/python

Good introductory Python books:

* Learning Python, Mark Lutz & David Ascher, O’Reilly Media

* Bioinformatics Programming Using Python: Practical
Programming for Biological Data, Mitchell Model, O'Reilly

Good intro video (from a 2 day intro class at Google):

* https://www.youtube.com/playlist?list=PLC8825D0450647509

Practical Python, a self-paced online intro course:
* https://dabeaz-course.github.io/practical-python/

An online Python tutor with a nice interactive code viewer:
* http://www.pythontutor.com/

By now, you should have installed Python on your computer.
If you’re using Anaconda/Jupyter, it runs in a web browser:

— Jupyter Quit | | Logout

Setect ams o et acions o them Upians o
£

Clo |~ |
[033D Objects

notebook

' Jupyter Untitled2 Lest hecpoint: s few ssconds ago. (unssved changss)

File Edit View Inset Gell Kemel Widgets Help Trustea | Pytnenz ©

B |+ |3 @& B+ + PR |8 C W |cose v =

N

You can write your commands and programs here
and they will be evaluated when you press Shift-Enter
(or other options from the Cell pulldown menu)

Or if you installed IDLE by following the instructions in Rosalind
Homework problem #1:

Launch IDLE:

- o x [untitled - o X
Eile Edit_Format Run Options Window Help
18 2019, 22:39:24) [MSC v.1916 32 bit (In |

£5" or "license()" for more information

You can test out commands here
to make sure they work...

...but to actually write your programs,
open a new window.

This window will serve as a command line This window will serve as a text editor for
interface & display your program output. programming.

Let’s start with some simple programs in Python:

A very simple example is:
print("Hello, future bioinformatician!") # print out the greeting

Run the program. In Jupyter, you can just type Shift-Enter & the
output will appear below this cell of the notebook.

The output looks like this:

Hello, future bioinformatician!

FYI: This is version agnostic. Python 3 takes print(“X”). Python 2 also takes print “X” as in Rosalind

8

A slightly more sophisticated version:

name = input("What is your name? ") # asks a question and saves the answer
#in the variable "name"
print("Hello, future bioinformatician " + name + "1") # print out the greeting

When you run it this time, the output looks like:

What is your name?

If you type in your name, followed by the enter key, the program will
print:

Hello, future bioinformatician Alice!

FYI: Python 2.x uses raw_input() instead of input()

9

GENERAL CONCEPTS

Names, numbers, words, etc. are stored as variables.

Variables in Python can be named essentially anything except
words Python uses as command.

For example:

BobsSocialSecurityNumber = 456249685
mole = 6.022e-23
password = "7 infinite fields of blue"

N\

Note that strings of letters and/or numbers
are in quotes, unlike numerical values.

10

LISTS

Groups of variables can be stored as lists.
A list is a numbered series of values,
like a vector, an array, or a matrix.

Lists are variables, so you can name them just as you would name
any other variable.

Individual elements of the list can be referred to using [] notation:

The list nucleotides might contain the elements
nucleotides[0] = "A"
nucleotides[1] ="C"
nucleotides[2] = "G"
nucleotides[3] ="T"

(Notice the numbering starts from zero. This is standard in Python.)

11

DICTIONARIES

A VERY useful variation on lists is called a dictionary or dict
(sometimes also called a hash).

- Groups of values indexed not with numbers (although they could
be) but with other values.

Individual hash elements are accessed like array elements:

For example, we could store the genetic code in a hash named
codons, which might contain 64 entries, one for each codon, e.g.

codons["ATG"] = "Methionine"
codons["TAG"] = "Stop codon"
etc...

12

Now, for some control over what happens in programs.

There are two very important ways to control the logical flow of
your programs:

if statements
and
for loops

There are some other ways too, but this will get you going for now.

13

if statements

if dnaTriplet == "ATG":
Start translating here. We're not going to write this part
since we’re really just learning about IF statements

else:
Read another codon

Python cares about the white space (tabs & spaces) you use!
This is how it knows where the conditional actions that follow
begin and end. These conditional steps must always be
indented by the same number of spaces (e.g., 4).

| recommend using a tab (rather than spaces) so you’re always
consistent.

14

Note: in the sense of performing a
comparison, not as in setting a value.

== equals

1= is not equal to

< is less than

> is greater than

<= is less than or equal to
>= is greater than or equal to

Can nest these using parentheses and Boolean operations, such as
and, not, or or, e.g.:

if dnaTriplet == "TAA" or dnaTriplet == "TAG" or dnaTriplet == "TGA":
print("Reached stop codon")

15

for loops

Often, we’d like to perform the same command repeatedly or with
slight variations.

For example, to calculate the mean value of the number in an array,
we might try:

Take each value in the array in turn.
Add each value to a running sum.
Divide the total by the number of values.

16

In Python, you could write this as:

grades =[93, 95, 87, 63, 75] # create a list of grades
sum=0.0 # variable to store the sum

In general, Python cares whether numbers are

il integers or floating point (also long integers
and complex numbers).

You can tell Python you want floating point by

¢ defining your variables accordingly

(e.g., X=1.0 versus X = 1)

for grade in grades:
sum =sum + grade

mean =sum /5 # now calculate the average grade

print ("The average grade is ",mean) # print the results

Python 2| Python 3

>>>2/3|>>>2/3
0 0.666666

Python 2.x: print ("The average grade is "),mean

17

In general, Python will perform most mathematical operations, e.g.

multiplication (A *B)

division (A/B)

exponentiation (A ** B)
etc.

There are lots of advanced mathematical capabilities you can explore
later on.

18

READING FILES
You can use a for loop to read text files line by line:
I Stands for “read” |

count=0 / # Declare a variable to count lines
file = open("mygenomefile", "r") # Open a file for reading (r)
for raw_line in file: #100n through each line in the file
line = raw_line.rstrip("\r\n") <] \r = carriage return [\ i, o
. e \n = newline . .
words = line.split(" ") mspreorerre into a list of words

Print the appropriate word:
print ("The first word of line {0} of the file is {1}".format(count, words[0]))
count+=1 # shorthahd for count = count + 1

fiIe.cIose(l Increment counter by 1 |

Lass.cloge the file.

print ("Read in {0} lines\n".format(count)) Placeholders (e.g., {0]) in the print

statement indicate variables listed
at the end of the line after the
format command

Note: Python expects the file to be in your working directOryorerracyoogrveTrearoamperr

19

WRITING FILES

Same as reading files, butr;e"w" for ‘write’:

file = open("test_file", "w"

file.write("Hello!\n")

file.write("Goodbye!\n")

file.close() # close the file as you did before

Unless you specify otherwise, you can find the new text file you created (test_file) in the
default Python directory on your computer. In Jupyter, you should see now it appear in the
Jupyter home page directory.

20

10

PUTTING IT ALL TOGETHER

seq_filename = "Ecoli_genome.txt"
total_length =0
nucleotide = {} # create an empty dictionary

seq_file = open(seq_filename, "r")
for raw_line in seq_file:
line = raw_line.rstrip("\r\n")
length = len(line) # Python function to calculate the length of a string
for nuc in line:
if nuc not in nucleotide:
nucleotide[nuc] = 1
else:
nucleotide[nuc] += 1
total_length += length

seq_file.close()
for n in nucleotide.keys():

fraction = 100.0 * nucleotide[n] / total_length
print ("The nucleotide {0} occurs {1} times, or {2} %".format(n, nucleotide[n], fraction))

21

Let’s choose the input DNA sequence in the file to be the genome of
E. coli, available the class web site (& originally from the Entrez
genomes web site)

The format of the file is ~77,000 lines of A’s, C’s, G’s and T’s:
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTC
TGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGG
TCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTAC
ACAACATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGT

etc...

Running the program produces the output:

The nucleotide A occurs 1142136 times, or 24.619133255346103 %
The nucleotide G occurs 1176775 times, or 25.365788782211496 %
The nucleotide C occurs 1179433 times, or 25.42308288395832 %
The nucleotide T occurs 1140877 times, or 24.591995078484082 %

So, now we know that the four nucleotides are present in roughly
equal numbers in the E. coli genome.

22

11

