Network biology
(& predicting gene function
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There are many types of biological networks.
Here’s a small portion of a large metabolic network.
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A typical
genetic
network

Contacts between proteins define protein interaction networks
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Let’s look at some of the types of
interaction data in more detail.

Some of these capture physical
interactions, some genetic, some
informational or logical.

Pairwise protein interactions

In general, purifying proteins one at a time, mixing them, and assaying
for interactions is far too slow & laborious. We need something faster!
Hence, high-throughput screens, e.g. yeast two-hybrid assays
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High-throughput yeast two-hybrid assays

Haploid yeast
cells expressing
activation domain-
prey fusion proteins

Diploid yeast
probed with
DNA-binding domain-
Pcf11 bait
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High-throughput
complex mapping by
mass spectrometry

Trypsin digest,
identify peptides by
mass spectrometry
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A variant: tandem affinity purification (TAP)
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Strategy Failed  Success
rate
PCR product ~Spacer-@BP)-TEV site-FToleinAy PCR of the TAP cassette ORFs B
processed:
Gene Homologous
recombination - - N
Transformation of yeast cells Positive
(homologous recombination) homologous 1,548 191 89%
Chromosome ¢ recombinations:
Fusion P ite-¢P A Selection of positive clones Expressin
protein NHZSpacerTE\/ S“e P clomes: ¢ 1,167 381 75%

(membrane protein 293)

v

Large-scale cultivation

Cell lysis TAP
Tandem affinity purification purifications:

!

One-dimensional SDS-PAGE

589 285 62%

MALDI-TOF protein identification

Bioinformatic data interpretation Identified complexes: 232

Secg,

Functional organization of the yeast
proteome by systematic analysis of
protein complexes
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High-throughput protein interaction mapping by
proximity labeling

4 variations on a

theme:
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biotin “oRi " i
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Affinity purify interaction
For a good recent protocol see: partners with streptavidin beads

|

ID proteins by mass
spectrometry

nature
protocols

Proximity labeling in mammalian cells with
TurbolD and split-TurbolD

Kelvin F. Cho'*?, Tess C. Branon®®, Namrata D. Udeshi ©*, Samuel A. Myers®,
Steven A. Carr* and Alice Y. Ting @567

Figure/review at https://f1000research.com/articles/8-135/v1
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The current state-of-the-art in animal PPl maps — AP/MS
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Guruharsha et al. (2011) Cell 147, 690-703
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The current state-of-the-art in human PPl maps — Y2H

Human ORFeome (v9.1) = now ~90% of the protein-coding genes!
Screened all x all (150M pairs!) in 9 Y2H assays

52,569 PPIs involving 8,275 proteins

https://www.nature.com/articles/s415

94-017-0016-2 https://www.cell.com/cellfulltext/SO
092-8674(14)01369-5

Y2H captures pairwise PPIs that can form when the ceri

proteins are expressed out of biological context i
(e.g., as fusion proteins in a yeast cell nucleus). It T oy & g
can reveal directly contacting proteins but often &
misses those that require additional molecular  ccrs =
context or higher order assemblies, f LA
€ the exocyst e.q. the CCT complex>  ccms cers

ccrr

( ( +15 additional PPIs
+111 additional PPIs

Luck et al., A reference map of the human protein interactome, bioRxiv, posted April 10, 2019
https://www.biorxiv.org/content/10.1101/605451v1, published Nature, April 8, 2020
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The current state-of-the-art in human PPl maps — large scale AP/MS
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Uncharacterized Protein Study
Huttlin et al., Cell (2015) 162:425-440

Huttlin et al., Nature (2017) 545:505-509

Huttlin et al., bioRxiv (2020)

Just in the past 5 years, >16K affinity purification/mass spec
experiments on tagged human proteins expressed in cell lines

Hein et al., Cell (2015) 163:712-23.
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The current state-of-the-art in animal PPl maps — co-fractionation/MS
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Extending the map across animals...

13,385 proteins
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aa Wan, Borgeson et al. Nature (2015)
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Extending the map across animals...
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Wan, Borgeson et al. Nature (2015)
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There are still lots of cellular machines left to find

e.g. the “Commander” complex, found in all 3
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Reviewed in Mallam & Marcotte, Cell Systems (2017)
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/@%Qj’@ U The 15t global plant PPl map
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Genetic interactions

5.4 million gene-gene pairs assayed for synthetic genetic interactions in yeast

Chromatin &
transcription P

-
Cell polarity &
morphogenesis

DNA replication
& repair

Costanzo et al., Science 327: 425 (2010)
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Genetic interactions, the 2016 version

23 million gene-gene pairs assayed for synthetic genetic interactions in yeast,
identifying ~550,000 negative and ~350,000 positive genetic interactions
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A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction
profiles are connected in a global network, such that genes exhibiting more similar profiles are located
closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial

Costanzo et al., Science 353: 1381 (2016)
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The global genetic interaction profile
similarity network reveals a hierarchy

Cell Polarity &

of cellular function.
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These sorts of data can be combined into
functional gene networks

Networks

Genes

ABCDEFG

Bayesian
statistics

Genes
pmmonm
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A
5
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AGCTCTAGCTCCC... ;
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Primary or derived
interaction data

Confidence
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HONORABLE MENTION

These networks are hypothesis generators.
Given a gene, what other genes does it function with?
What do they do?

Guilt-by-association
in the gene network

Genes already linked New candidate genes
to a disease or function for that process

26
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Gene networks frequently reflect functions, pathways, & phenotypes,
e.g., lethality in yeast is linked to the molecular machine, not the gene

TNOPT4
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Hart, Lee, & Marcotte, BMC Bioinformatics 8:236 (2007)
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We can propagate annotations across the graph to infer new
annotations for genes (network “guilt-by-association”, or GBA).

Testing how well this works on hidden, but known, cases let’s us
measure how predictive it will be for new cases.

)
—_

[l
o0
0y O
True-positive rate

o

0 1
False-positive rate

Query with genes already Assess the network’s Infer new candidate
linked to a disease or predictive ability for that genes for that process
function, e.g. the red or function using cross- (e.g. predicting the green
blue function validated ROC or genes for the red

recall/precision analysis function)

Lee, Ambaru et al. Nature Biotechnology 28:149-156 (2010)
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Numerous algorithms exist for network GBA

Similar to Google’s

Naive Bayes assigns scores to personalized PageRank

neighboring nodes based on edges

4
/ 0.24 a3t
i30 0.80 0.94 0.33 - oG
0.24 0.34
0.62 0.20 019 0.37 0.38
(@) Initial network & labels (b) Naive Bayes , (c) Iterative Ranking | (d) Gaussian Smoothing

A

Network diffusion algorithms start with initial annotations and the graph topology,
then propagate initial scores across the network,
e.g. Gaussian smoothing tries to find scores:

™l = argminga ¥ (f,——fl-o)2 + (l—a)Eiij,-j(ﬁ—f)-)z

minimizing the difference between & between a protein's score and
final and initial scores of a protein that of each of its neighbors

Revi . p )
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For example, predicting genes linked with worm phenotypes in
genome-wide RNAI screens
100 w —— Lifespan increased (Hansen) —--- Egg osmotic integrity abnormal
——-- Body morphology defect —— Pace of development abnormal
—— Nonviable Pace of P lineage
< ———- Dumpy development abnormal
< —— Growth defective —— Severe early pleiotropic defects
Z Clear === Liong
° Patchy coloration ———- Ruptured
2 50 —— Protruding vulva Blistered
a ———- Small ———- Osmotic stress
q? —— Radiation sensitive —— Distal tip cell migration
2 — Molting defect ———- dsRNA uptake
= —— Polyglutamine toxicity ——=- Meitoic maturation
—— Synthetic multivulva ———- Suppressors of par-2 lethality
o Transposon silencing defective ———- MAT-3 suppressors
r T  — i i —— Lifespan increased (essentials
0 50 100 RNAi defective ifespan i ( ials)
False-positive rate (%)

° ROC curves! Here,
indicating the likely
predictive power of the

Some ver B ereso network for a system of

oorl y g e interest, independent of
poorly 2 e Eimmicks how big the system is.
predicted 2

athways: g
P y @ A poor ROC - no better

than random guessing.
1-Specificity (%)
Lee, Lehner et al., Nat Genet, 40(2):181-8 (2008)
30
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Remarkably, this strategy works quite well
Some examples of network-guided predictions:

In worms:
Genes that can
reverse ‘tumors’
in a nematode
model of

tumorigenesis
Lee, Lehner et al.
Nature Genetics (2008)

In Arabidopsis:
New genes
regulating root

formation

Lee, Ambaru et al.
Nature Biotech (2010)

In yeast: New [BEIEZEED yir003wA
mitochondrial
biogenesis genes

Hess et al., PLoS
Genetics (2009)

pgnrr-1::GFP,Adults1 00x

pF13D12

31

In mice/frogs:

{ Functions for a
# birth defect gene

Gray et al., Nature
Cell Biology (2009)

In worms:
Predicting tissue
specific gene
expression

Chikina et al., PLoS
Comp Biology (2009)

We use this approach routinely in the lab, e.g. an example
predicting new ciliopathy genes from protein complexes

7

A

~
~

JNeural tube defects in X. laevis
upon knockdown

32
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e
-
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Drew et al.. Molecular Systems Biology (2017)
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Ehe New York Times
Scientists Identify 69 Drugs to Test Against

the Coronavirus
ASARS-CoV-2proteininteractionmap

Two dozen of the medicines are already under investigation. Also ININLe

on the list: chloroquine, a drug used to treat malaria. reveals ta rgetsr for drug repurposing
Nature | Vol583 | 16 July 2020

o s
SARS2 Nsp9
' interacts with
translation initiation
factors; drugs vs
elFs show activity
P:bnshedmamhn,mo Updated April 9, 2020 f v = » D SO, they teSted a feW more....
Nearly 70 drugs and experimental compounds may be effective in
treating the coronavirus, a team of researchers reported on Sunday
night.
33
Plitidepsin has potent preclinical efficacy against
SARS-CoV-2 hy targeting the host protein eEF1A
White et al., Science 371, 926-931 (2021)
Cancer drug derived from sea Phase IIl clinical trials
squirts outperforms remdesivir in — + data from compassionate use
COVID-19 preclinical models Fl

Plitidepsin as a successful rescue treatment for
prolonged viral SARS-CoV-2 replication in a patient
with previous anti-CD20 monoclonal antibody-
mediated B cell depletion and chronic lymphocytic

leukemia .
Published: 10 January 2022

P. Guisado-Vasco et al
Journal of Hematology & Oncology 15, Article number: 4 (2022)

|

PharmaMar shares soar after
drug study suggests efficacy
againSt Omicron January 11, 2022

7:22 AM CST

Reuters
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Live demo of
STRING, BioGRID,
GeneMania,
functional networks
and Cytoscape
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