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Points of siGnifiCAnCE

Bayes’ theorem
incorporate new evidence to update prior information.

Observing, gathering knowledge and making predictions are the 
foundations of the scientific process. The accuracy of our predic-
tions depends on the quality of our present knowledge and accuracy 
of our observations. Weather forecasts are a familiar example—the 
more we know about how weather works, the better we can use cur-
rent observations and seasonal records to predict whether it will rain 
tomorrow and any disagreement between prediction and observation 
can be used to refine the weather model. Bayesian statistics embodies 
this cycle of applying previous theoretical and empirical knowledge 
to formulate hypotheses, rank them on the basis of observed data and 
update prior probability estimates and hypotheses using observed 
data1. This will be our first of a series of columns about Bayesian 
statistics. This month, we’ll introduce the topic using one of its key 
concepts—Bayes’ theorem—and expand to include topics such as 
Bayesian inference and networks in future columns.

Bayesian statistics is often contrasted with classical (frequentist) sta-
tistics, which assumes that observed phenomena are generated by an 
unknown but fixed process. Importantly, classical statistics assumes 
that population parameters are unknown constants, given that com-
plete and exact knowledge about the sample space is not available2. For 
estimation of population characteristics, the concept of probability is 
used to describe the outcomes of measurements.

In contrast, Bayesian statistics assumes that population parameters, 
though unknown, are quantifiable random variables and that our 
uncertainty about them can be described by probability distributions. 
We make subjective probability statements, or ‘priors’, about these 
parameters based on our experience and reasoning about the popula-
tion. Probability is understood from this perspective as a degree of 
belief about the values of the parameter under study. Once we collect 
data, we combine them with the prior to create a distribution called 
the ‘posterior’ that represents our updated information about the 
parameters, as a probability assessment about the possible values of 

the parameter. Given that experience, knowledge, and reasoning 
process vary among individuals, so do their priors—making speci-
fication of the prior one of the most controversial topics in Bayesian 
statistics. However, the influence of the prior is usually diminished 
as we gather knowledge and make observations.

At the core of Bayesian statistics is Bayes’ theorem, which 
describes the outcome probabilities of related (dependent) events 
using the concept of conditional probability. To illustrate these con-
cepts, we’ll start with independent events—tossing one of two fair 
coins, C and C′. The toss outcome probability does not depend on 
the choice of coin—the probability of heads is always the same, 
P(H) = 0.5 (Fig. 1). The joint probability of choosing a given coin 
(e.g., C) and toss outcome (e.g., H) is simply the product of their 
individual probabilities, P(C, H) = P(C) × P(H). But if we were to 
replace one of the coins with a biased coin, Cb, that yields heads 
75% of the time, the choice of coin would affect the toss outcome 
probability, making the events dependent. We express this using 
conditional probabilities by P(H|C) = 0.5 and P(H|Cb) = 0.75, 
where “|” means “given” or “conditional upon” (Fig. 1).

If P(H|Cb) is the probability of observing heads given the biased 
coin, how can we calculate P(Cb|H), the probability that the coin is 
biased having observed heads? These two conditional probabilities 
are generally not the same—failing to distinguish them is known 
as the prosecutor’s fallacy. P(H|Cb) is a property of the biased coin 
and, unlike P(Cb|H), is unaffected by the chance of the coin being 
biased. 

We can relate these conditional probabilities by first writing 
the joint probability of selecting Cb and observing H: P(Cb, H) = 
P(Cb|H) × P(H) (Fig. 1). The fact that this is symmetric, P(Cb|H) 
× P(H) = P(H|Cb) × P(Cb), leads us to Bayes’ theorem, which is a 
rearrangement of this equality: P(Cb|H) = P(H|Cb) × P(Cb)/P(H) 
(Fig. 2a). P(Cb) is our guess of the coin being biased before data 
are collected (the prior), and P(Cb|H) is our guess once we have 
observed heads (the posterior). 

If both coins are equally likely to be picked, P(Cb) = P(C) = 0.5. 
We also know that P(H|Cb) = 0.75, which is a property of the biased 
coin. To apply Bayes’ theorem, we need to calculate P(H), which is 
the probability of all the ways of observing heads—picking the fair 
coin and observing heads and picking the biased coin and observ-
ing heads. This is P(H) = P(H|C) × P(C) + P(H|Cb) × P(Cb) = 0.5 
× 0.5 + 0.75 × 0.5 = 0.625. By substituting these values in Bayes’ 
theorem, we can compute the probability that the coin is biased 
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Figure 1 | Marginal, joint and conditional probabilities for independent 
and dependent events. Probabilities are shown by plots3, where columns 
correspond to coins and stacked bars within a column to coin toss outcomes, 
and are given by the ratio of the blue area to the area of the red outline. the 
choice of one of two fair coins (C, C′) and outcome of a toss are independent 
events. for independent events, marginal and conditional probabilities 
are the same and joint probabilities are calculated using the product of 
probabilities. if one of the coins, Cb, is biased (yields heads (H) 75% of the 
time), the events are dependent, and joint probability is calculated using 
conditional probabilities. 

Figure 2 | Graphical interpretation of Bayes’ theorem and its application 
to iterative estimation of probabilities. (a) Relationship between 
conditional probabilities given by Bayes’ theorem relating the probability 
of a hypothesis that the coin is biased, P(Cb), to its probability once the 
data have been observed, P(Cb|H). (b) the probability of the identity of 
the chosen coin can be inferred from the toss outcome. observing a head 
increases the chances that the coin is biased from P(Cb) = 0.5 to 0.6, and 
further to 0.69 if a second head is observed.
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after observing a head, P(Cb|H) = P(H|Cb) × P(Cb)/P(H) = 0.75 × 
0.5/0.625 = 0.6 (Fig. 2a).

Bayes’ theorem can be applied to such inverse probability problems 
iteratively—when we need to update probabilities step by step as we 
gain evidence. For example, if we toss the coin a second time, we can 
update our prediction that the coin is biased. On the second toss we 
no longer use P(Cb) = 0.5 because the first toss suggested that the 
biased coin is more likely to be picked. The posterior from the first toss 
becomes the new prior, P(Cb) = 0.6. If the second toss yields heads, we 
compute P(H) = 0.5 × 0.4 + 0.75 × 0.6 = 0.65 and apply Bayes’ theorem 
again to find P(Cb|HH) = 0.75 × 0.6/0.65 = 0.69 (Fig. 2b). We can 
continue tossing to further refine our guess—each time we observe a 
head, the assessment of the posterior probability that the coin is biased 
is increased. For example, if we see four heads in a row, there is an 
84% posterior probability that the coin is biased (see Supplementary 
Table 1).

We have computed the probability that the coin is biased given 
that we observed two heads. Up to this point we have not performed 
any statistical inference because all the probabilities have been speci-
fied. Both Bayesians and frequentists agree that P(Cb|HH) = 0.69 
and P(HH|C) = 0.25. Statistical inference arises when there is an 
unknown, such as P(H|Cb). The difference between frequentist and 
Bayesian inference will be discussed more fully in the next column.

Let’s extend the simple coin example to include multiple event out-
comes. Suppose a patient has one of three diseases (X, Y, Z) whose 
prevalence is 0.6, 0.3 or 0.1, respectively—X is relatively common, 
whereas Z is rare. We have access to a diagnostic test that measures 
the presence of protein markers (A, B). Both markers can be present, 
and the probabilities of observing a given marker for each disease are 
known and independent of each other in each disease state (Fig. 3a). 
We can ask: if we see marker A, can we predict the state of the patient? 
Also, how do our predictions change if we subsequently assay for B?

Let’s first calculate the probability that the patient has disease X 
given that marker A was observed: P(X|A) = P(A|X) × P(X)/P(A). We 
know the prior probability for X, which is the prevalence P(X) = 0.6, 
and the probability of observing A given X, P(A|X) = 0.2 (Fig. 3a). 
To apply Bayes’ theorem we need to calculate P(A), which is the total 
probability of observing A regardless of the state of the patient. To 
find P(A) we sum over the product of the probability of each disease 
and finding A in that disease, which is all the ways in which A can 
be observed: P(A) = 0.6 × 0.2 + 0.3 × 0.9 + 0.1 × 0.2 = 0.41 (Fig. 3b). 
Bayes’ theorem gives us P(X|A) = 0.2 × 0.6/0.41 = 0.29. Because 

marker A is more common in another disease, Y, this new estimate 
that the patient has disease X is much lower than the original of 0.6. 
Similarly, we can calculate the posteriors for Y and Z as P(Y|A) = 0.66 
and P(Z|A) = 0.05 (see Supplementary Table 1). With a single assay 
that confirms A, it is most likely (66%) that the patient has disease Y.

Instead, if we confirm B is present, the probabilities of X, Y and Z 
are 44%, 22% and 33%, respectively (Fig. 3b), and our best guess is 
that the patient has X. Even though marker B is nearly always pres-
ent in disease Z—P(B|Z) = 0.9—detecting it raises the probability 
of Z only to P(Z|B) = 0.33, which is still lower than the probability 
of X. The reason for this is that Z itself is rare, and observing B is 
also possible for the more common diseases X and Y. This phenom-
enon is captured by Carl Sagan’s words: “extraordinary claims require 
extraordinary evidence.” In this case, observing B is not “extraordi-
nary” enough to significantly advance our claim that the patient has 
disease Z. Even if B were always present in Z, i.e., P(B|Z) = 1, and 
present in X and Y at only 1%, P(B|X) = P(B|Y) = 0.01, observing B 
would only allow us to say that there is a 92% chance that the patient 
has Z. If we failed to account for different prevalence rates, we would 
grossly overestimate the chances that the patient has Z. For exam-
ple, if instead we supposed that all three diseases are equally likely, 
P(X) = P(Y) = P(Z) = 1/3, observing B would lead us to believe that 
the chances of Z are 69%.

Having observed A, we could refine our predictions by testing for 
B. As with the coin example, we use the posterior probability of the 
disease after observing A as the new prior. The posterior probabilities 
for diseases X, Y and Z given that A and B are both present are 0.25, 
0.56 and 0.19, respectively, making Y the most likely. If the assay for 
B is negative, the calculations are identical but use complementary 
probabilities (e.g., P(not B|X) = 1 – P(B|X)) and find 0.31, 0.69 and 
0.01 as the probabilities for X, Y and Z. Observing A but not B greatly 
decreases the chances of disease Z, from 19% to 1%. Figure 3c traces 
the change in posterior probabilities for each disease with each pos-
sible outcome as we assay both markers in turn. If we find neither A 
nor B, there is a 92% probability that the patient has disease X—the 
marker profile with the highest probability for predicting X. The 
most specific profile for Y is A+B– (69%) and for Z is A–B+ (41%).

When event outcomes map naturally onto conditional probabili-
ties, Bayes’ theorem provides an intuitive method of reasoning and 
convenient computation. It allows us to combine prior knowledge 
with observations to make predictions about the phenomenon under 
study. In Bayesian inference, all unknowns in a system are modeled 
by probability distributions that are updated using Bayes’ theorem 
as evidence accumulates. We will examine Bayesian inference and 
compare it with frequentist inference in our next discussion.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper (doi:10.1038/nmeth.3335).
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Figure 3 | Disease predictions based on presence of markers. 
(a) independent conditional probabilities of observing each marker (A, B) 
given a disease (X, Y, Z) (e.g., P(A|Y) = 0.9). (b) Posterior probability of 
each disease given a single observation that confirms the presence of one 
of the markers (e.g., P(Y|A) = 0.66). (c) Evolution of disease probability 
predictions with multiple assays. for a given disease, each path traces (left 
to right) the value of the posterior that incorporates all the assay results up 
to that point, beginning at the prior probability for the disease (blue dot). 
the assay result is encoded by an empty (marker absent) or a solid (marker 
present) dot. the red path corresponds to presence of A and B. the highest 
possible posterior is shown in bold.
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