
Articles
https://doi.org/10.1038/s41587-022-01220-6

1Department of Computer Science and Engineering, University of California, San Diego, San Diego CA, USA. 2Program in Bioinformatics and Systems
Biology, University of California, San Diego, San Diego CA, USA. 3Department of Biomolecular Engineering, University of California, Santa Cruz, Santa
Cruz CA, USA. 4Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia.
✉e-mail: abankevich@eng.ucsd.edu; ppevzner@ucsd.edu

The emergence of long and accurate reads opened a possibility
to generate the first complete (telomere-to-telomere) assem-
bly of a human genome and to get a glimpse into biomedi-

cally important genomic regions that evaded all previous attempts
to sequence them1. The Telomere-to-Telomere (T2T) and Human
Pangenome Reference projects are now using long and accurate
reads for population-scale assembly of multiple human genomes
and for diagnosing rare diseases that remained below the radar of
short-read technologies2.

These breakthroughs in genome sequencing were mainly
achieved using HiFi reads3. However, assembly of HiFi reads is far
from being straightforward: the complete assembly of a human
genome was generated using a semi-manual effort of a large con-
sortium rather than by an automated approach (Nurk et al., 2021).
Because such time-consuming efforts are neither sustainable nor
scalable in the era of population-scale sequencing, there is a need for
an accurate (nearly error-free) tool for complete genome assembly.

We argue that this challenge requires an algorithm for con-
structing large de Bruijn graphs4—that is, de Bruijn graphs for large
genomes and large k-mer sizes exceeding 1,000 nucleotides. Indeed,
similarly to assembling short and accurate reads, the de Bruijn
graph approach has the potential to improve assemblies of any type
of accurate reads. However, although it represents the algorithmic
engine of nearly all short-read assemblers5,6, the problem of con-
structing large de Bruijn graphs remains open, and the existing HiFi
assemblers HiCanu7 and hifiasm8 are based on the alternative string
graph approach9.

Because HiFi reads are even more accurate than Illumina reads,
the de Bruijn graph approach is expected to work well for their
assembly. Application of this approach to long HiFi reads requires
either constructing the de Bruijn graph with a large k-mer size or,
alternatively, using the de Bruijn graph with a small k-mer-size
for follow-up repeat resolution by threading long reads through
this graph. However, it remains unclear how to address three open

algorithmic problems in assembling HiFi reads: (1) construct-
ing large de Bruijn graphs, (2) error-correcting HiFi reads so that
they become nearly error-free and thus amenable to applying the
de Bruijn graph approach and (3) using the entire read-length for
resolving repeats that are longer than the k-mer size.

The existing genome assemblers are not designed for construct-
ing large de Bruijn graphs because their time/memory requirements
become prohibitive when the k-mer size becomes large—for exam-
ple, simply storing all 5,001-mers of the human genome requires ≅4
TB. For example, the SPAdes assembler5 faces time/memory bottle-
necks assembling mammalian genomes with the k-mer size exceed-
ing 500. To reduce the memory, some assembly algorithms avoid
explicitly storing all k-mers by constructing a perfect hash map5 or
the Burrows–Wheeler transform of all reads10. However, even with
these improvements, the runtime (proportional to the k-mer size)
remains large (Supplementary Note 1).

The repeat graph approach11 and the sparse de Bruijn graph
approach12 construct coarse versions of the de Bruijn graph with
smaller time/memory requirements. Recently, ref. 13 modified the
Flye assembler for constructing the repeat graph of HiFi reads,
and ref. 14 showed how to assemble HiFi reads into a sparse de
Bruijn graph. However, these graphs represent coarse versions of
the de Bruijn graph, thus limiting their capabilities in assembling
the highly repetitive regions such as centromeres (Supplementary
Note 2).

Here we introduce LJA, which includes three modules address-
ing all three challenges in assembling HiFi reads: jumboDBG (con-
structing large de Bruijn graphs), mowerDBG (error-correcting
reads) and multiplexDBG (using the entire read-length for resolv-
ing repeats). jumboDBG combines four algorithmic ideas: the
Bloom filter15, the rolling hash16, the sparse de Bruijn graph12 and
the disjointig generation17. Although each of these ideas was used
in previous bioinformatics studies, jumboDBG is the first approach
that combines them. LJA launches jumboDBG to construct the de

Multiplex de Bruijn graphs enable genome
assembly from long, high-fidelity reads
Anton Bankevich1 ✉, Andrey V. Bzikadze   2, Mikhail Kolmogorov   3, Dmitry Antipov4 and
Pavel A. Pevzner   1 ✉

Although most existing genome assemblers are based on de Bruijn graphs, the construction of these graphs for large genomes
and large k-mer sizes has remained elusive. This algorithmic challenge has become particularly pressing with the emergence of
long, high-fidelity (HiFi) reads that have been recently used to generate a semi-manual telomere-to-telomere assembly of the
human genome. To enable automated assemblies of long, HiFi reads, we present the La Jolla Assembler (LJA), a fast algorithm
using the Bloom filter, sparse de Bruijn graphs and disjointig generation. LJA reduces the error rate in HiFi reads by three orders
of magnitude, constructs the de Bruijn graph for large genomes and large k-mer sizes and transforms it into a multiplex de
Bruijn graph with varying k-mer sizes. Compared to state-of-the-art assemblers, our algorithm not only achieves five-fold fewer
misassemblies but also generates more contiguous assemblies. We demonstrate the utility of LJA via the automated assembly
of a human genome that completely assembled six chromosomes.

NAture BiotechNology | www.nature.com/naturebiotechnology

mailto:abankevich@eng.ucsd.edu
mailto:ppevzner@ucsd.edu
http://orcid.org/0000-0002-7928-7950
http://orcid.org/0000-0002-5489-9045
http://orcid.org/0000-0002-0418-165X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-022-01220-6&domain=pdf
http://www.nature.com/naturebiotechnology

Articles NATure BioTeCHNoLogy

Bruijn graph, launches mowerDBG that uses this graph to correct
nearly all errors in reads, launches jumboDBG again to generate a
much simpler graph of the error-corrected reads and launches mul-
tiplexDBG to transform it into the multiplex de Bruijn graph with
varying k-mer sizes to take advantage of the entire read-lengths.
LJA also includes the LJApolish module that expands the collapsed
homopolymer runs in the resulting assembly.

Although we benchmarked LJA, hifiasm and HiCanu on various
genomes, evaluating the quality of the resulting assemblies is chal-
lenging because neither the complete reference for these genomes
nor an automated pipeline for a reference-grade assembly validation
are available yet18. We thus focused on benchmarking these assem-
blers using the HiFi read-set (referred to as the T2T dataset) from a
haploid human CHM13 cell line assembled by the T2T consortium
(Nurk et al., 2021). This painstakingly validated assembly represents
the only accurate telomere-to-telomere sequence of a large genome
available today. LJA generated the most contiguous assembly of this
dataset (including complete assemblies of six human chromosomes
without any misassemblies and only ten misassemblies for the entire
human genome), reducing the number of assembly errors five-fold
as compared to hifiasm and HiCanu. The accuracy of genome
assemblers becomes critical in the era of population-wide complete
genome sequencing because semi-manual validation of complete
genome assemblies18 is prohibitively time-consuming.

results
Key algorithmic concepts used in the LJA pipeline. The goal of
genome assembly is to reconstruct a genome from its error-prone
fragments (reads). Given a string-set Reads and an integer k, the
(uncompressed) de Bruijn graph UDB(Reads,k) is a directed graph
where each vertex is a k-mer from Reads, and each (k + 1)-mer
a1a2…ak ak+1 in reads corresponds to an edge connecting vertices
a1a2…ak and a2…ak ak+1. The uncompressed de Bruijn graph of a

genome UDB(Genome,k) is defined by considering each chromo-
some in Genome as a single ‘read’. We refer to an error-free read-set
Reads that contains all (k + 1)-mers from a string-set Genome as a
k-complete read-set and note that UDB(Genome,k)=UDB(Reads,k)
for a k-complete read-set.

A vertex with the indegree N and the outdegree M is referred to
as an N-in-M-out vertex. A vertex is non-branching if it is a one-in-
one-out vertex and a junction otherwise. We refer to the set of all
junctions (k-mers) in the graph UDB(Reads,k) as Junctions(Reads,k).
A path between junctions is non-branching if all its intermediate
vertices are non-branching. A set of k-mers from Reads forms a
junction-superset if it contains all junctions in UDB(Reads,k).

The compressed de Bruijn graph DB(Reads,k) is a memory-efficient
version of the uncompressed graph UDB(Reads,k) where each
non-branching path is compressed into an appropriately labeled
single edge (see Supplementary Notes 2 and 3 for the precise defi-
nition and the summary of terms used in this paper). Because
LJA uses compressed de Bruijn graphs, we refer to them simply
as the ‘de Bruijn graphs’ or DB-graphs. The coverage of an edge in
UDB(Reads,k) is number of times the label of this edge occurs in
Reads. The coverage of an edge in DB(Reads,k) is the average cover-
age of all edges in the non-branching path that was compressed into
this edge.

The challenge of constructing a large de Bruijn graph. Because the
compressed DB-graph DB(Genome,k) does not require storing all
k-mers, the total length of all its edge-labels is up to k times smaller
than the total length of all edge-labels in UDB(Genome,k). The
traditional assembly approach constructs UDB(Reads,k) first and
transforms it into DB(Reads,k). Because this approach is impracti-
cal for large genomes and large k-mer sizes, jumboDBG constructs
DB(Reads,k) without constructing UDB(Reads,k).

Even though DB(Reads,k) is more memory-efficient than
UDB(Reads,k), its direct construction also requires prohibitively
large time/memory. jumboDBG thus assembles reads into dis-
jointigs, sequences that are spelled by arbitrary walks through the
(unknown) graph DB(Reads,k). Even in the case of error-free reads,
a disjointig might represent a misassembled concatenate of seg-
ments from various regions of the genome rather than its contigu-
ous substring17. Although switching from reads to misassembled
disjointigs might appear reckless, it is an important step because a
carefully chosen disjointig-set Disjointigs has a much smaller total
disjointig-length than the total read-length while resulting in the
same DB-graph DB(Disjointigs,k) as DB(Reads,k).

Even though constructing DB(Disjointigs,k) is an easier task than
constructing DB(Reads,k), it still faces the time/memory bottleneck.
jumboDBG addresses it by using the Bloom filter, a compact data
structure for storing sets. It stores all (k + 1)-mers from disjointigs
in a Bloom filter formed by multiple independent hash functions,
each mapping a (k + 1)-mer into a bit array. The Bloom filter reports
a true positive for all (k + 1)-mers occurring in disjointigs but might
also report a false positive for some (k + 1)-mers that do not occur
in disjointigs (with a small controlled probability). However, it
never ‘forgets’ any inserted (k + 1)-mer and thus never reports a
false negative.

Outline of the LJA pipeline. Below we outline all steps of the LJA
pipeline using the T2T dataset of HiFi reads that was semi-manually
assembled by the T2T consortium into a sequence T2TGenome by
integrating information generated by multiple sequencing technol-
ogies (CHM13 reference genome version 1.1). All datasets analyzed
in this paper are described in Supplementary Note 4.

Figure 1 illustrates the work of the jumboDBG module (steps
1–7 of the LJA pipeline). Figure 2 illustrates the entire LJA pipeline.

Step 0: Transforming all reads into homopolymer-collapsed reads.
Because errors in the length of homopolymer runs represent the

Junction
superset

Sparse de Bruijn
graph

Compact
disjointig-set

Compressed
de Bruijn graph

Minimizers in
HPC reads

Bloom filter of all
(k+1)-mers in disjointigs

Positions of junctions in
disjointigs

Splits
of disjointigs

1

2

3

4

5B

5A

6

7

Fig. 1 | JumboDBg pipeline. (1) Generating the anchor-set
Anchors = {GA,AC,TC,TA,GT} by finding all minimizers in Reads.
For simplicity, the figure does not reflect that jumboDBG classifies all
k-prefixes and k-suffixes of reads as minimizers. (2) Constructing a
compact sparse de Bruijn graph SDB(Reads,Anchors). (3) Constructing a
compact disjointig-set Disjointigs as edge-labels in SDB(Reads,Anchors).
(4) Generating the Bloom filter for all (k + 1)-mers in disjointigs. Each arrow
directed from a (k + 1)-mer to the Bloom filter illustrates its evaluation
by one of the hash functions. (5) Using the Bloom filter to construct
the junction-superset Junctions+ and (5A) find positions of k-mers from
Junctions+ in disjointigs (5B). For simplicity, although the Bloom filter might
generate some false-positive junctions (for example, TC), we only show the
correct junctions in 5A. (6) Breaking disjointigs into splits. (7) Constructing
the compressed de Bruijn graph DB(Disjointigs,k)=DB(Reads,k).

NAture BiotechNology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

ArticlesNATure BioTeCHNoLogy

dominant source of errors in HiFi reads, LJA collapses each homo-
polymer run X…X in each read into a single nucleotide X, resulting in
a homopolymer-collapsed (HPC) read. The entire LJA pipeline works
with HPC reads, except for the last LJApolish module that expands
each collapsed nucleotide X in the HPC assembly into a run X…X in
such a way that its run-length coincides with the correct run-length
in nearly all cases (the error rate in the run-lengths is below 0.00001).
On average, uncollapsed reads in the T2T dataset have ≅2,000 errors
per megabase of the total read-length. Transforming them into HPC
reads reduces the error rate to ≅620 errors per megabase in the HPC
genome (when comparing HPC reads to the HPC reference genome)
and makes 38% of all HPC reads error-free.

Step 1: Generating the anchor-set by finding all minimizers in the
HPC read-set Reads. Given a hash function defined on k-mers, a
minimizer of a word is defined as a k-mer with a minimal hash in
this word. A minimizer-set of a string is defined as the set of all
minimizers over all its substrings of length width19. We modify the
original concept of a minimizer of a linear string by adding its prefix
and suffix k-mers to the set of its minimizers. A sensible choice of
the parameter width (and a hash function) ensures that each read
is densely covered by minimizers and that overlapping reads share
minimizers, facilitating the assembly. jumboDBG generates the set
of all minimizers in reads that we refer to as the anchor-set Anchors.

Step 2: Constructing a compact sparse de Bruijn graph. Because
the direct construction of DB(Reads,k) faces the time/memory bot-
tleneck, jumboDBG first assembles reads into disjointigs. Although
the Flye assembler17 constructs disjointigs by searching for overlap-
ping reads, it is unclear how to extend this construction to highly
repetitive regions (for example, centromeres) that Flye does not
adequately reconstruct. Instead, jumboDBG constructs a sparse de
Bruijn graph and generates disjointigs in this graph that are also
disjointigs in the much larger (but unknown) de Bruijn graph.

Given a set of k-mers Anchors from a string-set Reads, we
consider each pair a and a’ of consecutive anchors in each read
and generate a substring of the read (called a split) that starts at
the first nucleotide of a and ends at the last nucleotide of a’. The
resulting set of splits (after collapsing identical splits into a single
one) is denoted Splits(Reads,Anchors). The sparse de Bruijn graph
SDB(Reads,Anchors) is defined as a graph with the vertex-set
Anchors and the edge-set Splits(Genome, Anchors). Each string in
Splits(Genome,Anchors) represents the label of an edge connecting
its k-prefix and k-suffix in SDB(Reads,Anchors).

A sparse de Bruijn graph SDB(Reads,Anchors) is compact
if all its vertices (anchors) represent junctions in the graph

DB(Reads,k). jumboDBG transforms the initially constructed
graph SDB(Reads,Anchors) into a compact sparse de Bruijn graph
SDB(Reads,Anchors*) to facilitate the construction of a compact
disjointing-set (see below).

Step 3: Constructing a compact disjointig-set. A disjointig-set is
complete if its disjointigs contains all (k + 1)-mers from Reads. A
disjointig in the sparse de Bruijn graph SDB(Reads,Anchors) is com-
pact if its k-suffix and k-prefix are both junctions in DB(Reads,k).
A complete disjointig-set is compact if each disjointig in this
set is compact. Because the set of all (k + 1)-mers in a complete
disjointig-set coincides with the set of all (k + 1)-mers in reads,
DB(Reads,k)=DB(Disjointigs,k) for a complete disjointig-set. Thus,
the problem of constructing the compressed de Bruijn graph
from reads is reduced to constructing the compressed de Bruijn
graph of a complete disjointig-set. However, not every complete
disjointig-set enables efficient construction of this graph. Below we
show that a compact disjointig-set enables efficient construction of
DB(Disjointigs,k). jumboDBG constructs a compact disjointig-set
as the set of edge-labels in the compact sparse de Bruijn graph
SDB(Reads,Anchors*).

Step 4: Generating the Bloom filter of all (k + 1)-mers in disjointigs.
Even though we have reduced constructing the DB-graph
DB(Reads,k) to constructing DB(Disjointigs,k), even this simpler
problem faces the time/memory bottleneck. To address it, jum-
boDBG constructs the Bloom filter20,21 for storing all (k + 1)-mers in
disjointigs and uses the rolling hash to query them in O(1) instead
of O(k) time.

Step 5: Using the Bloom filter to construct the junction-superset. The
Bloom filter enables rapid construction of small junction-superset
Junctions+ even though the DB-graph of disjointigs has not been
constructed yet. To achieve this goal, jumboDBG uses the Bloom
filter to compute the upper bound on the indegree and outdegree
of each vertex (k-mer) in the unknown DB-graph of disjointigs by
checking which of its 4 + 4 = 8 forward and backward extensions
by a single nucleotide represent (k + 1)-mers present in the Bloom
filter. A k-mer is called a joint if the upper bounds on either its
indegree or outdegree exceed 1. Because each junction is a joint, the
set of all joints forms a junction-superset.

Step 6: Using the junction-superset to break disjointigs into splits.
jumboDBG also uses the Bloom filter to rapidly identify the posi-
tions of all k-mers from Junctions+ in disjointigs and to break dis-
jointigs into splits afterward.

Step 7: Using splits to construct DB(Disjointigs,k)=DB(Reads,k).
An edge-subpartition of an edge (v,w), in a graph ‘substitutes’ it
with two edges by ‘adding’ a vertex u in the ‘middle’ of this edge.
A subpartition of a graph is defined as a result of a series of
edge-subpartitions. As described in the Methods, the string-set
Splits(Disjointigs,Junctions+) represents edge-labels of a subpartition
of the graph DB(Disjointigs,k). jumboDBG compresses all one-in-
one-out vertices in this graph to generate DB(Disjointigs,k)=
DB(Reads,k).

Step 8: Correcting errors in reads with mowerDBG. Supplementary
Note 5 illustrates that jumboDBG generates highly contiguous
assemblies of a k-complete read-set sampled from T2TGenome
for large values of k—for example, k = 5,001. However, assem-
bling real reads is challenging because the DB-graph DB(T2T,k)
of the T2T read-set is much more complex than the DB-graph
DB(T2TGenome,k). mowerDBG uses the DB-graph DB(Reads,k) to
correct errors in the read-set Reads. LJA performs two rounds of
error correction and launches mowerDBG twice, with a small k-mer
size in the first round, resulting in an error-corrected read-set Reads’,
and a large K-mer size in the second round, resulting in a nearly
error-free read-set Reads* (default values k = 501 and K = 5,001).

jumboDBG constructs the graph DB(T2T,k) with 33,230,906
edges in only 2.7 h using 54 Gb of memory. However, over 99%
of edges in this graph are triggered by errors in reads: if reads in

Original
read-set Reads

MowerDBG

JumboDBG JumboDBG LJApolish

MowerDBG MultiplexDBG

DB(Reads,k)

Corrected
read-set Reads’

DB(Reads’,K)

Nearly error-free
read-set Reads*

DB(Reads*,K)

MDB(Reads*,K)

Contigs

Fig. 2 | lJA pipeline. jumboDBG first constructs the de Bruijn graph
DB(Reads,k) with a small k-mer size. mowerDBG uses this graph to
correct errors in reads, resulting in an error-corrected read-set Reads’.
Afterwards, jumboDBG constructs the de Bruijn graph DB(Reads’,K) on
the error-corrected read-set with a large K-mer size. mowerDBG uses this
graph to correct even more errors in reads, resulting in an error-corrected
read-set Reads*. Because error correction in mowerDBG simultaneously
modifies the graph DB(Reads’,K) into the graph DB(Reads*,K), there
is no need to launch jumboDBG again for constructing DB(Reads*,K).
multiplexDBG complements the error-corrected read-set Reads* by virtual
reads and transforms DB(Reads*,K) into the multiplex de Bruijn graph
MDB(Reads*,K). LJApolish uses the set of original reads Reads to expand
HPC contigs formed by non-branching paths in this graph.

NAture BiotechNology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

Articles NATure BioTeCHNoLogy

the T2T dataset were error-free, jumboDBG would construct the
DB-graph of the error-free read-set T2TErrorFree with only 214,517
edges in 0.6 h using 33 Gb of memory. mowerDBG corrects most
errors in reads, resulting in a much smaller DB-graph DB(T2T’,k)
with 297,176 edges on the error-corrected read-set T2T’. jumboDBG
further constructs the DB-graph DB(T2T’,K) using a larger K-mer
size with 79,908 edges. Afterwards, mowerDBG performs the sec-
ond round of error-correction in this graph, resulting in a nearly
error-free read-set Reads* and a DB-graph DB(T2T*,K) with only
6,516 edges that approximates the graph DB(T2TErrorFree,K) with
4,956 edges. We note that, because the read-set T2TErrorFree was
constructed based on the reference T2TGenome, which excluded
the heterozygous regions present in the CHM13 cell line (22, Nurk
et al., 2021), DB(T2T*,K) might have some heterozygous edges
missing in DB(T2TErrorFree,K).

Step 9: Transforming the DB-graph DB(Reads*,K) into the mul-
tiplex de Bruijn graph (Fig. 4). The choice of the k-mer size greatly
affects the complexity of the DB-graph: gradually increasing k
leads to a less tangled but more fragmented DB-graph. This trad-
eoff affects the contiguity of assembly, particularly in the case when
the k-mers coverage by reads is non-uniform, let alone when the
read-set misses some genomic k-mers. Ideally, we would like to vary
the k-mer size, reducing it in low-coverage regions (to avoid frag-
mentation) and increasing it in high-coverage regions (to improve
repeat resolution). The iterative de Bruijn graph approach5,23 is a step
toward addressing this goal by incorporating information about the
de Bruijn graphs for a range of k-mer sizes k1 < k2 < … < kt into the
de Bruijn graph. However, this approach still constructs a graph
with a fixed kt-mer size.

multiplexDBG transforms the DB-graph DB(Reads*,K) into the
multiplex de Bruijn graph MDB(Reads*,K) with vertices labeled
by strings of length varying from K to K+, where K+ is larger

than K (default value K+ = 40,001). It transforms DB(T2T*,5,001)
with 6,516 edges into MDB(T2T*,5,001) with only 1,432 edges and
generates HPC contigs. Note that labels of some vertices of this
graph are longer than all reads in the T2T dataset because multi-
plexDBG adds virtual reads to the read-set (Supplementary Note 6).

Step 10: Expanding HPC contigs. LJApolish expands HPC con-
tigs (edge-labels in the multiplex de Bruijn graph) and results in an
accurate final assembly with only ≅15 single-base errors per million
nucleotides.

Evaluating genome assemblies. Given a string s in a string-set S, we
define L+(s) as the total length of all strings in S with length at least
|s|. The N50 metric for a contig-set S is defined as the length of the
longest contig s in S with L+(s) ≤ 0.5*|S|. See ref. 24 on similar NG50,
NGA50, NGA75 or LGA95 metrics.

We used the standard benchmarking metrics24 as well as the
additional completeness metric aimed at high-quality assemblies.
We denote the length of a string s as |s| and the total length of all
strings in a string-set S as |S|. A contig is correctly assembled if it
has no misassemblies. Completeness of a chromosome assembly
is defined as the length of the longest correctly assembled contig
from this chromosome divided by the chromosome length (in per-
centages). A chromosome is N%-assembled if its completeness is
at least N%.

Benchmarking LJA on the T2T read-set. We benchmarked assem-
blies of the T2T read-set dataset against T2TGenome—the only
complete and carefully validated large genome reference avail-
able today18. Table 1 illustrates that LJA produced the most con-
tiguous assembly (NG50 = 97 Mb) with six 100%-assembled and
nine 95%-assembled chromosomes (compared to NG50 = 90 Mb
and one 95%-assembled chromosome for hifiasm). We classify a

Table 1 | Benchmarking lJA, hifiasm and hicanu on the t2t dataset

idealAssembler(20,000) lJA hifiasm hicanu

total length (Mbp) 3,055 3,050 3,043 3,331

#contigs / #contigs longer than 50 kb 401/401 665/194 448/250 1,447/427

#misassemblies* 0 10 58 47

#local misassemblies* 0 46 54 120

#100%-assembled / #95%-assembled
chromosomes

5/5 6/9 1/1 1/2

#100%-assembled / #95%-assembled
centromeres

5/5 9/9 3/3 2/2

genome fraction (%) 100 99.74 99.28 99.60

duplication ratio 1 1.001 1.003 1.094

mismatches / #indels per 1 Mbp 0/0 6.9/7.8 7.7/5.7 23.3/94.9

longest alignment (Mbp) 160.6 201.1 181.6 142.3

total aligned length (Mbp) 3055 3047 3038 3327

NG50 (Mbp) 93.6 96.7 90.2 69.7

NGA50 (Mbp) 93.6 96.7 75.1 69.7

NGA75 (Mbp) 59.2 44.0 36.4 30.5

The assemblies were generated with hifiasm version 0.15.5-r352 and HiCanu version version 2.3 and benchmarked using QUAST-LG version 5.0.2 with T2TGenome as the reference. Because authors of
the QUAST-LG24 recommend using HPC contigs for identifying misassemblies (Supplementary Note 5), misassemblies were identified by a separate run of QUAST-LG with HPC contigs against the HPC
reference. Analysis of misassemblies reported by QUAST-LG in the 30 longest contigs (for each assembly tool) using the Icarus tool33 confirmed that they all represent structural errors (a large insertion,
deletion or relocation) rather than alignment artifacts. LJA 100%-assembled chromosomes 3, 5, 7, 10, 12 and 20; HiCanu 100%-assembled chromosome 20; and hifiasm 100%-assembled chromosome
5. Because all assemblies might have small variations at the chromosome ends, 99.9%-assembled chromosomes are counted as 100%-assembled chromosomes. ‘Ideal’ refers to the theoretically optimal
assembly of a k-complete read-set obtained by generating contigs as edge-labels of the graph DB(T2TGenome,20,000). NGA50 and NGA75 metrics are reported based on contigs broken at positions
defined by misassemblies in HPC contigs. Note that, even though very few HPC reads in the T2T dataset are longer than 20,000 bp, the LJA assembly of this read-set might improve on the ideal assembly
DB(T2TGenome,20,000) because it uses information about coverage for loop resolution (Supplementary Note 8). The reference length is 3,054,832,041. The number of LJA contigs (665) is smaller than
the number of edges in the constructed multiplex de Bruijn graph (1,432) because removing overlaps between contigs in the final LJA output results in many short contigs (LJA removes contigs that become
shorter than 5 kb).

NAture BiotechNology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

ArticlesNATure BioTeCHNoLogy

contig with length larger than or equal to NG50 (NG75) as NG50-long
(NG75-long) contig. It turned out that 1 (4) out of all 12 NG50-long
contigs assembled by LJA (hifiasm) are misassembled, resulting in
a reduced NGA50 = 81 Mb for hifiasm. LJA (hifiasm) misassem-
bled 1 out of its 24 (9 out of its 23) NG75-long contigs. Figure 3
demonstrates that LJA substantially improves on both hifiasm
and HiCanu with respect to chromosome-by-chromosome and
centromere-by-centromere assemblies.

LJA substantially reduced the number of misassemblies (10)
as compared to hifiasm (58) and HiCanu (47). Although LJA
produced more contigs than hifiasm (665 versus 448), this increased
number does not indicate an inferior assembly but, rather, reflects
the fact that LJA assembled an extra 13 Mb of the genome as com-
pared to hifiasm (99.7% versus 99.3% genome fraction). In fact,
hifiasm produced more contigs longer than 50 Kb than LJA (250
versus 194).

LJA and hifiasm made an order of magnitude fewer mismatches
and indels than HiCanu. Analysis of these errors should take into
account that an assembler covering a larger fraction of a genome
might have additional errors in highly repetitive regions that are
not covered by other assemblers. Although LJA made slightly more
errors than hifiasm (34,293 versus 33,732), it made a smaller num-
ber of errors in regions assembled by both LJA and hifiasm (2,330
LJA errors were made in highly repetitive regions that were not
assembled by hifiasm).

Table 1 also benchmarks the ‘ideal’ assembler on a
k-complete read-set that outputs contigs as the edge-labels of
DB(T2TGenome,20,000). It turned out that LJA assembly is similar
in quality to the theoretically optimal assembly of error-free reads
of length 20,000.

Supplementary Note 5 provides information about benchmark-
ing individual LJA modules and illustrates that the runtime/mem-
ory of jumboDBG is largely defined by the size of the constructed
DB-graph rather than the k-mer size.

Assembling a diploid human genome. Genome assemblers often
collapse two heterozygous alleles (typically represented as bulges in
the DB-graph) into a single copy to increase the contiguity of the
consensus assembly, a mosaic of segments from maternal and pater-
nal chromosomes. Diploid assemblers try to prevent such collapsing
by (1) constructing a phased assembly graph that accurately repre-
sents the heterozygous alleles and (2) using the entire read-lengths
and complementary technologies to increase the contiguity of
paternal/maternal contigs in the phased assembly graph and gener-
ate a haplotype-resolved assembly8,25. Constructing an accurate and
contiguous phased assembly graph is a critical step in both consen-
sus and diploid assembly and the focus of the current efforts of the
T2T project as it scales up from a single haploid to multiple diploid
genomes. Indeed, a fragmented phased graph makes it difficult to
generate consensus and haplotype-resolved assemblies, not to men-
tion that errors in the graph likely trigger errors in these assemblies.

LJA generates a phased DB-graph of a diploid genome that repre-
sents an excellent starting point for generating these assemblies. We
analyzed the phased LJA and hifiasm assemblies using the HG002
read-set from a diploid human genome. LJA generated an assembly
with N50 = 383 kb and total length 5.8 Gb, whereas hifiasm gener-
ated an assembly with N50 = 310 kb and total length 6.7 Gb (before
heterozygosity collapsing) that is ≅2.2 times larger than the human
genome length. Although LJA generated a more contiguous phased
assembly than hifiasm, it is unclear how to evaluate the accuracy of
these assemblies in the absence of a validated complete reference
genome for each haplome.

Although the LJA graph of the diploid read-set is much larger
than the graph of the haploid T2T read-set (42,298 versus 1,440
edges), it has a rather simple ‘bulged’ structure, making it well-suited
for the follow-up consensus and haplotype-resolution steps. Each
bulge represents differing segments of paternal/maternal alleles
(average length ≅150 kb) alternating with identical segments of
paternal/maternal alleles (average length ≅30 kb).

15

10

LG
A9

5

5

0

15

10

LG
A9

5

5

0

100

LjA hifiasm hiCanu

80

C
om

pl
et

en
es

s
(%

)

60

40

20

0
1 3 5 7 9 11 13

Chromosome Chromosome
15 17 19 21 X 1 3 5 7 9 11 13 15 17 19 21 X

Centromere
1 3 5 7 9 11 13 15 17 19 21 X

Fig. 3 | chromosome-by chromosome lgA95 (left) and completeness (center) metrics as well as centromere-by-centromere lgA95 metric (right)
for lJA (blue), hifiasm (green) and hicanu (red) assemblies of the t2t read-set. LGA95 for each chromosome (centromere) is defined as the
minimum number of aligned blocks needed to cover 95% of its length (aligned blocks are obtained by breaking contigs at misassembly breakpoints).
LJA 100%-assembled six chromosomes and resulted in a better assembly (for example, assembly with lower LGA95) than hifiasm and HiCanu for most
chromosomes. Although hifiasm resulted in lower LGA95 than LJA on chromosomes 2 (4 versus 5), 11 (2 versus 3), 16 (3 versus 5), 21 (7 versus 13) and
22 (4 versus 5), it made ten misassemblies in these five chromosomes compared to only one misassembly made by LJA. For example, for chromosome
21 with the biggest gap in the LGA95 values between hifiasm and LJA (7 versus 13), LJA resulted in a higher completeness (82%) than hifiasm (75%).
As another example, LJA resulted in a much larger LGA95 = 22 on centromere 16 than hifiasm (6) and HiCanu (3) but made no errors (both hifiasm and
HiCanu had three misassemblies). LGA95 values for centromeres 13, 15 and 21 (for all assemblers) are undefined because QUAST-LG reports multiple
gaps in these centromeres. Long and highly repetitive rDDNA arrays are the only regions in the human genome that were not assembled by the T2T
consortium. These regions are represented as simulated rDDNA models rather than correct rDDNA sequences in T2TGenome. Because centromeres 13,
15 and 21 include rDDNA models, QUAST-LG reports multiple gaps in their coverage by contigs that sum up to more than 5% of the lengths of these
centromeres.

NAture BiotechNology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

Articles NATure BioTeCHNoLogy

Assembling mouse, maize and fruit fly genomes. We bench-
marked LJA, hifiasm and HiCanu on the MOUSE, MAIZE and FLY
HiFi read-sets from the inbred mouse, maize and fly species. It is
unclear how to compare the reference genomes with HiFi assem-
blies for these datasets because the quality of these assemblies
might exceed the quality of the references. For example, although
Table 2 illustrates that LJA and hifiasm improved on HiCanu with
respect to NG50 metric, this metric does not account for errors
in assemblies and references. For example, hifiasm assembled the
MAIZE dataset with the highest NG50 but made more misassem-
blies (6,081 versus 5,594 for LJA), resulting in a rather low NGA50
(1.4 Mb for both hifiasm and LJA). The large number of misassem-
blies for all inbred datasets suggests that many of them might be

triggered by errors in the reference genome or differences between
maternal/paternal alleles (even after inbreeding). Supplementary
Note 7 illustrates that existing HiFi assemblers generate rather
different results, implying that some of them make many assem-
bly errors. In the absence of an automated validation pipeline, it
remains unclear how to detect these errors in the era of complete
genome sequencing.

Discussion
The development of assembly algorithms started from applications
of the overlap/string graph approach. Even though this approach
becomes slow and error-prone with respect to detecting overlaps in
the highly repetitive regions, the alternative DB-graph approach26,27

a
DB(reads,2) DB(reads,3)

b c

d

Fig. 4 | constructing a multiplex de Bruijn graph. a, Iterative construction of the compressed de Bruijn graph.ransformation of DB(Reads,2) into
DB(Reads,3) for the read-set Reads = {AAccgg,ttccgg}. The first read defines a transition between edges (AA,cc) and (cc,gg), whereas the second
read defines a transition between edges (tt,cc) and (cc,gg). The resulting transition-set defines a transition-graph that coincides with DB(Reads,3).
The read-paths that define the transition-set are depicted as red curves traversing DB(Reads,2). multiplexDBG ’tears apart‘ edges of the DB(Reads,2) and
increases the k-mer length within the vertices of the resulting isolated edges. Afterwards, it introduces new red edges that correspond to connections
induced by transitions, resulting in a path-graph. Compressing non-branching paths in the path-graph (ignoring the edge colors) results in DB(Reads,3).
Because vertex ‘cc’ is simple, graphs DB(Reads,2) and DB(Reads,3) have the same topology. The shown transformation merely substitutes the k-mer
label of this vertex by the (k + 1)-mer label(w)*symbolk+1(out). It preserves the label of the outgoing edge from this vertex and adds a single symbol to the
labels of incoming edges into this vertex. b, Transforming a complex vertex. The read-sets Reads1 = {AAggAg,ttggct} (above) and Reads2 = {AAggAg,
ttggct, AAggct} (below) result in the same graphs DB(Reads1,2) and DB(Reads2,2) but different graphs DB(Reads1,3) and DB(Reads2,3). Because vertex
gg in the graph DB(Reads1,2)=DB(Reads2,2) is complex, the topology of the graphs DB(Reads1,3) and DB(Reads2,3) depends on the read-set. DB(Reads1,3)
consists of two connected components (top), whereas DB(Reads2,3) is a single-component graph because it has an extra edge (labeled Aggc) introduced
by the additional read AAggct. c, Limitation of the de Bruijn graph approach to genome assembly. Reckless resolution of unpaired complex vertices might
disconnect the genome traversal. For a read-set Reads = {AAggAg, AAggct, ttgg}, because the read-path of ttgg ends inside the complex vertex
gg, the vertex tgg (with red outline) represents a dead-end. d, Multiplex de Bruijn graph transformation. The multiplex de Bruijn graph for the same
read-set avoids reckless resolution of complex vertices by freezing unpaired complex vertices.

Table 2 | Benchmarking lJA, hifiasm and hicanu on MouSe, MAiZe and Fly read-sets

Assembler MouSe MAiZe Fly

#contigs total length
(gb)

Ng50
(Mb)

#contigs total length
(gb)

Ng50
(Mb)

#contigs total length
(gb)

Ng50
(Mb)

LJA 1,282 2.71 24 1,310 2.15 26 313 0.22 9.5

hifiasm 658 2.61 21 1,136 2.18 35 933 0.24 10.0

HiCanu 3,334 2.67 15 1,992 2.17 23 6,439 0.32 9.2

Mouse, maize and fruit fly samples represent the C57BL/6J strain of Mus musculus34, the B73 strain of Zea mays34 and Drosophila ananassae35, respectively. We used estimates of the lengths of the mouse,
maize and fly genomes (2.7 Gb, 2.3 Gb and 0.22 Gb, respectively) for NG50 calculation. All assemblers were run with default parameters recommended for diploid genome assembly.

NAture BiotechNology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

ArticlesNATure BioTeCHNoLogy

was often viewed as a theoretical concept rather than a practical
method.

Even after it turned into the most popular method for short-read
assembly, the development of algorithms for assembling long
error-prone reads again started from the overlap/string graph
approach28–30 because the DB-graph approach was viewed as inap-
plicable to error-prone reads31. Indeed, because long k-mers from
the genome typically do not even occur in error-prone reads, it
seemed unlikely that the DB-graph approach might assemble such
reads. However, the development of Flye17 and wtdbg2 (ref. 32) dem-
onstrated, once again, that the DB-graph-based long-read assem-
blers result in accurate and order(s) of magnitude faster algorithms
than the overlap/string graph approach.

Because the DB-graph approach was initially designed for assem-
bling accurate reads, it would seem natural to use it for assembling
long and accurate reads. However, the history repeated itself and
the first HiFi assemblers again relied on the overlap/string graph
approach7,8. We described an alternative approach for assembling
HiFi reads, illustrating that the ‘contest’ between the overlap/string
graph and the de Bruijn graph approach continues. Benchmarking
on the T2T dataset demonstrated that LJA improves on the
state-of-the-art HiFi assemblers with respect to both contiguity
and accuracy. Although it is unclear how to conduct benchmarking
without validated complete reference genomes, LJA results on the
HG002 dataset illustrate that it generates highly contiguous phased
assemblies. Although this paper focuses on phased assemblies, it has
immediate implications for the downstream applications because
phased assemblies represent a stepping stone for both consensus
and haplotype-resolved assemblies. For example, bulge-collapsing
and tip removal in the phased LJA assembly of the HG002 read-set
results in a contiguous consensus assembly with N50 = 54 Mb. We
are now developing the diploidLJA tool for haplotype-resolved
assembly and the nanoLJA tool for combining HiFi and Oxford
Nanopore reads to improve the contiguity of assemblies.

online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41587-022-01220-6.

Received: 27 September 2021; Accepted: 11 January 2022;
Published: xx xx xxxx

references
 1. Nurk, S. et al. The complete sequence of a human genome. bioRxiv https://

doi.org/10.1101/2021.05.26.445798 (2021).
 2. Miller, D. E. et al. Targeted long-read sequencing identifies missing

disease-causing variation. Am. J. Hum. Genet. 108, 1436–1449 (2021).
 3. Wenger, A. M. et al. Accurate circular consensus long-read sequencing

improves variant detection and assembly of a human genome. Nat. Biotechnol.
37, 1155–1162 (2019).

 4. Compeau, P. E., Pevzner, P. A. & Tesler, G. How to apply de Bruijn graphs to
genome assembly. Nat. Biotechnol. 29, 987–991 (2011).

 5. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and
its applications to single cell sequencing. J. Comput. Biol. 19,
455–477 (2012).

 6. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

 7. Nurk, S. et al. HiCanu: accurate assembly of segmental duplications,
satellites, and allelic variants from high-fidelity long reads. Genome Res. 30,
1291–1305 (2020).

 8. Cheng, H. et al. Haplotype-resolved de novo assembly with phased assembly
graphs. Nat. Methods 18, 170–175 (2021).

 9. Myers, E. W. The fragment assembly string graph. Bioinformatics 21,
ii79–ii85 (2005).

 10. Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an
ultra-fast single-node solution for large and complex metagenomics assembly
via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

 11. Pevzner, P., Tang, H. & Tesler, G. De novo repeat classification and fragment
assembly. Genome Res. 14, 1786–1796 (2004).

 12. Ye, C., Ma, Z. S., Cannon, C. H., Pop, M. & Yu, D. W. Exploiting sparseness
in de novo genome assembly. BMC Bioinformatics 13, S1 (2012).

 13. Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly
using repeat graphs. Nat. Methods 17, 1103–1110 (2020).

 14. Rautiainen, M. & Marschall, T. MBG: minimizer-based sparse de Bruijn
graph construction. Bioinformatics 37, 2476–2478 (2021).

 15. Bloom, B. H. Space/time tradeoffs in hash coding with allowable errors.
Commun. ACM 13, 422–426 (1970).

 16. Karp, R. M. & Rabin, M. O. Efficient randomized pattern-matching
algorithms. IBM J. Res. Dev. 31, 249–260 (1987).

 17. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long
error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540 (2019).

 18. Mc Cartney, A. M. et al. Chasing perfection: validation and polishing
strategies for telomere-to-telomere genome assemblies. Preprint at https://
www.biorxiv.org/content/10.1101/2021.07.02.450803v1 (2021).

 19. Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M. & Yorke, J. A. Reducing
storage requirements for biological sequence comparison. Bioinformatics 20,
3363–3369 (2004).

 20. Chikhi, R. & Rizk, G. Space-efficient and exact de Bruijn graph representation
based on a Bloom filter. Algorithms Mol. Biol. 8, 22 (2013).

 21. Minkin, I., Pham, S. & Medvedev, P. TwoPaCo: an efficient algorithm to build
the compacted de Bruijn graph from many complete genomes. Bioinformatics
33, 4024–4032 (2017).

 22. Bzikadze, A. V. & Pevzner, P. A. Automated assembly of centromeres from
ultra-long error-prone reads. Nat. Biotechnol. 38, 1309–1316 (2020).

 23. Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA—a practical
iterative de Bruijn graph de novo assembler. in Research in Computational
Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science
Vol. 6044, 426–440 (2010).

 24. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A.
Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 34,
i142–i150 (2018).

 25. Garg, S. et al. Chromosome-scale, haplotype-resolved assembly of human
genomes. Nat. Biotechnol. 39, 309–312 (2021).

 26. Idury, R. M. & Waterman, M. S. A new algorithm for DNA sequence
assembly. J. Comput. Biol. 2, 291–306 (1995).

 27. Pevzner, P. A., Tang, H. & Waterman, M. S. An Eulerian path approach to
DNA fragment assembly. Proc. Natl Acad. Sci. USA 98, 9748–9753 (2001).

 28. Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from
long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

 29. Chin, C. et al. Phased diploid genome assembly with single-molecule
real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

 30. Koren, S. et al. Hybrid error correction and de novo assembly of
single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012).

 31. Roberts, R. J., Carneiro, M. O. & Schatz, M. C. The advantages of SMRT
sequencing. Genome Biol. 14, 405 (2013).

 32. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat.
Methods 17, 155–158 (2020).

 33. Mikheenko, A., Valin, G., Prjibelski, A., Saveliev, V. & Gurevich, A. Icarus:
visualizer for de novo assembly evaluation. Bioinformatics 32, 3321–3323 (2016).

 34. Hon, T. et al. Highly accurate long-read HiFi sequencing data for five
complex genomes. Sci. Data 7, 399 (2020).

 35. Tvedte, E. S. et al. Comparison of long-read sequencing technologies in
interrogating bacteria and fly genomes. G3 (Bethesda) 11, jkab083 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2022

NAture BiotechNology | www.nature.com/naturebiotechnology

https://doi.org/10.1038/s41587-022-01220-6
https://doi.org/10.1038/s41587-022-01220-6
https://doi.org/10.1101/2021.05.26.445798
https://doi.org/10.1101/2021.05.26.445798
https://www.biorxiv.org/content/10.1101/2021.07.02.450803v1
https://www.biorxiv.org/content/10.1101/2021.07.02.450803v1
http://www.nature.com/naturebiotechnology

Articles NATure BioTeCHNoLogy

Methods
This section is organized as follows. Before constructing the compressed de Bruijn
graph DB(Reads,k), we describe a simpler yet still open problem of constructing the
compressed de Bruijn graph DB(Genome,k) of a large circular string Genome for a
large k-mer size. This problem21 serves as a stepping stone for constructing a much
larger graph DB(Reads,k). After describing the algorithm for solving this problem,
we describe complications that arise in the case of constructing the compressed de
Bruijn graph from a genome with linear chromosomes. Afterwards, we describe
how to modify the algorithm for constructing DB(Genome,k) into the algorithm
for constructing DB(Reads,k). Because this transformation faces the time/memory
bottleneck, we describe how jumboDBG first assembles reads into disjointigs.
Afterwards, we describe steps 8 (error-correcting reads), 9 (constructing
multiplex de Bruijn graph) and 10 (expanding HPC assembly) of the LJA pipeline.
Supplementary Note 9 describes LJA parameters.

Because the algorithm for constructing the de Bruijn graph of a circular
genome does not require construction of disjointigs (step 3), we number its steps
4–7 as 4G–7G to be consistent with the previously described steps of jumboDB:

Step 4G: Generating the Bloom filter for all (k + 1)-mers in Genome
Step 5G: Using the Bloom filter to construct a junction-superset Junctions+ of

Genome
Step 6G: Using the set Junctions+ to break Genome into splits
Step 7G: Using splits to construct DB(Genome,k)

Sparse de Bruijn graphs. Given a set of k-mers Anchors from a string-set
Genome, the sparse de Bruijn graph SDB(Genome,Anchors) is a graph with
the vertex-set Anchors and the edge-set Splits(Genome,Anchors) (each split in
Splits(Genome,Anchors) represents a label of an edge connecting its k-prefix with
its k-suffix). Two vertices in this graph might be connected by multiple edges
with different labels corresponding to different splits with the same k-prefixes and
k-suffixes. A straightforward algorithm for constructing SDB(Genome,Anchors)
takes O(|Genome|·|Anchors|·k) time.

A string-set Genome corresponds to a path-set that traverses each edge in the
de Bruijn DB(Genome,k) at least once and spells Genome. We refer to this path-set
as the genome traversal.

When the set of anchors is equal to the set of junctions
Junctions = Junctions(Genome,k), each vertex of DB(Genome,k) is an anchor,
and each edge corresponds to two consecutive anchors in the genome traversal.
Therefore, the sparse de Bruijn graph SDB(Genome,Junctions) coincides with
DB(Genome,k). Moreover, if Junctions+ is a superset of all junctions, that contains
all junctions as well as some false junctions (that is, non-branching k-mers from
Genome), SDB(Genome,Junctions+) is a subpartition of DB(Genome,k).

If the junction-set Junctions = Junctions(Genome,k) was known,
construction of DB(Genome,k) would be a simple task because it coincides with
SDB(Genome,Junctions). Moreover, even if the junction-set is unknown but a
junction-superset Junctions+ (with a small number of false junctions) is known,
one can construct DB(Genome,k) by constructing SDB(Genome,Junctions+) and
compressing all its non-branching paths.

Step 4G: Generating the Bloom filter for all (k + 1)-mers in Genome. In the case
of assembling reads, jumboDBG stores all (k + 1)-mers from disjointigs in a Bloom
filter Bloom(Disjointigs,k,BloomNumber,BloomSize) formed by BloomNumber
different independent hash functions, each mapping a (k + 1)-mer into a bit
array of size BloomSize. In the case of a circular genome, it constructs the Bloom
filter in the same way by assuming that this genome forms a single disjointig.
Storing all (k + 1)-mers in a Bloom filter allows one to quickly query whether an
arbitrary (k + 1)-mer occurs in disjointigs and thus speed up the de Bruijn graph
construction20. Given hash functions h1,h2,…,hBloomNumber and a k-mer a, one can
quickly check whether all bits h1(a),h2(a),..,hBloomNumber of the Bloom filter are equal
to 1, an indication that the k-mer a might have been stored in the Bloom filter.
Supplementary Note 9 describes how jumboDBG sets the parameters of the
Bloom filter.

Step 5G: Using the Bloom filter to construct the junction-superset Junctions+ of
Genome. To generate a junction-superset Junctions+ with a small number of false
junctions, jumboDBG uses the Bloom filter to compute the upper bound on the
indegree and outdegree of each vertex in UDB(Genome,k) as described in
the Results.

A vertex in a graph is complex if both its indegree and outdegree exceed 1 and
simple otherwise. A junction is a dead-end if it has no incoming or no outgoing
edges and a crossroad otherwise. In the case of a genome with linear chromosomes,
the Bloom filter might overestimate the indegree and/or outdegree of some
dead-end junctions—for example, to misclassify a zero-in-one-out junction as a
simple vertex. However, all crossroad junctions will be correctly identified, thus
generating a junction-superset (in the case of a circular genome that does not have
dead-end junctions), constructing a subpartition of DB(Genome,k) and further
transforming it into DB(Genome,k).

Steps 6G and 7G: Using the set Junctions+ to break Genome into splits and using
splits to construct DB(Genome,k). To construct SDB(Genome,Junctions+), one can
generate a Bloom filter for computing a junction-superset Junctions+ and check
which k-mers from Genome coincides with a k-mer from Junctions+. Both these
tasks require computing hashes of each k-mer, a procedure that usually takes O(k)

time and becomes slow when k is large. For example, constructing a hashmap of
Junctions+ results in a prohibitively slow algorithm for constructing SDB(Genome,J
unctions+) with O(|Genome|·k) runtime.

To compute the hash function in O(1) rather than O(k) time, jumboDBG uses
a 128-bit polynomial rolling hash of k-mers from the genome to rapidly check
whether two k-mers (one from Genome and one from Junctions+) are equal and
to reduce the time to construct the compressed de Bruijn graph to O(|Genome|).
Similarly, to speed up the construction of Junctions+, instead of storing k-mers,
jumboDBG stores their rolling hashes in the Bloom filter, thus reducing the
runtime from O(|Genome|·k) to O(|Genome|). Therefore, it constructs the
compressed de Bruijn graph of a circular genome in O(|Genome|) time that does
not depend on the k-mer size.

Constructing the compressed de Bruijn graph from reads. The described
algorithm for constructing the de Bruijn graph of a circular genome can be applied
to any string-set Genome, resulting in a graph that we refer to as DB*(Genome,k).
However, although DB*(Genome,k)=DB(Genome,k) for a genome formed by
circular chromosomes, it is not the case for a genome with linear chromosomes (or
a genome represented by a k-complete error-free read-set).

We say that a string-set Genome bridges an edge of the compressed de Bruijn
graph DB(Genome,k) if the label of this edge represents a substring of Genome.
A genome is called bridging (with respect to a given k-mer size) if it bridges all
edges of DB(Genome,k) and non-bridging otherwise. For example, a genome
formed by ‘chromosomes’ Genome = {ATGC,GCACC} is non-bridging because
DB(Genome,2) consists of a single edge with label ATGCACC that does not
represent a substring of Genome.

Although DB*(Genome,k)=DB(Genome,k) in the case of a bridging
genome, DB*(Genome,k) does not necessarily coincide with DB(Genome,k)
for a non-bridging genome—for example, a genome with linear chromosomes
that does not bridge all edges of DB(Genome,k). However, after extending the
junction-superset by k-prefixes and k-suffixes of all linear chromosomes, the same
algorithm will construct the graph that represents a subpartition of DB(Genome,k).
Although this subpartition can be further transformed into DB(Genome,k) by
compressing all non-branching paths, the resulting algorithm becomes slow when
the number of linear chromosomes is large, resulting in a prohibitively large
junction-superset. This increase becomes problematic when one constructs the
compressed de Bruijn graph DB(Reads,k) because each read represents a linear
‘mini-chromosome’. Even more problematic is the accompanying increase in the
number of calls to the hash functions that scales proportionally to the coverage of
the genome by reads. An additional difficulty is that, in the absence of the genome,
it is unclear how to select the appropriate size of the Bloom filter that keeps the
false-positive rate low: selecting it to be proportional to the total read-length (as
described in Supplementary Note 9) results in the prohibitively large memory.
Even if the genome size is known, it is unclear how to select BloomSize because the
number of different k-mers in reads affects the false-positive rate.

jumboDBG addresses these problems by assembling reads into compact
disjointigs that form a bridging genome for the graph DB(Reads,k) and
constructing the compressed de Bruijn graph DB(Disjointigs,k)=DB(Reads,k)
from the resulting disjointig-set Disjointigs instead of the read-set Reads. LJA sets
the parameter BloomSize to be proportional to the total disjointig-length (that is
typically an order of magnitude smaller than the total read-length), thus greatly
reducing the memory footprint.

Step 3: Constructing a compact disjointig-set from a read-set. We defined the
concepts of complete and compact disjointig-sets in the Results. Similarly to a
disjointig of a read-set, a disjointig of a genome is defined as a string spelled by
an arbitrary path in DB(Genome,k). If a disjointig-set Disjointigs is complete,
then DB(Genome,k)=DB(Disjointigs,k). However, the graph DB*(Disjointigs,k)
constructed by jumboDBG might differ from DB(Genome,k) because it does not
include edges of DB(Genome,k) that are not bridged by Disjointigs. However, if a
disjointig-set Disjointigs is compact, it forms a bridging genome, implying that DB*
(Disjointigs,k)=DB(Genome,k).

jumboDBG constructs a compact disjointig-set as a set of edge-labels in
the compact sparse de Bruijn graph SDB(Reads,Anchors*). Traditionally, the
anchor-set Anchors for constructing SDB(Reads,Anchors) is constructed as a set
of all minimizers across all reads. However, if the k-prefix and/or the k-suffix of
a read are not anchors, they might be missing in SDB(Reads,Anchors) because
only segments between anchors are added to this graph. As described in the
Results, jumboDBG modifies the concept of a minimizer of a linear string by
adding its k-prefix and k-suffix to the set of its minimizers, resulting in the set
Anchors = Anchors(Reads,width,k). jumboDBG constructs the sparse de Bruijn
graph SDB(Reads,Anchors), transforms it into a compact sparse de Bruijn graph
SDB(Reads,Anchors*) as described in Supplementary Note 10 and generates a
compact disjointig-set as labels of all non-branching paths in this graph.

Step 8. Correcting errors in reads and constructing the graph DB(Reads*,K) on
the error-corrected read-set Reads* using a larger K-mer size. Because an error in
a single position of a read triggers an error in each k-mer covering this position,
and because a typical HiFi read has one error per 500 nucleotides on average,
the fraction of correct k-mers (among all k-mers in reads) becomes rather low
when k exceeds 500, resulting in a complex de Bruijn graph of reads that does not

NAture BiotechNology | www.nature.com/naturebiotechnology

http://www.nature.com/naturebiotechnology

ArticlesNATure BioTeCHNoLogy

adequately represent the genome. Ideally, we would like to construct the de Bruijn
graph using as large a k as possible—for example, k = 15,000, slightly below the
typical read-length in the T2T dataset. However, this approach results in a highly
fragmented de Bruijn graph because reads in this dataset do not span a large
fraction of genomic 15,000-mers. Although reducing k to, say, 5,000 addresses
this complication (nearly all genomic 5,000-mers are spanned by reads), most
5,000-mers in reads are erroneous, preventing their assembly.

LJA attempts to minimize the effect of (1) errors in reads and (2) incomplete
coverage of genomic k-mers by constructing and error-correcting the de Bruijn
graphs with a small k-mer size and a large K-mer size with default values k = 501
and K = 5,001. As described in the Results, this two-round error-correction results
in a nearly error-free read-set Reads* (Fig. 2).

mowerDBG uses the de Bruijn graph of HPC reads for detecting errors in
these reads. Because ≅69% of 501-mers in HPC reads are correct, the correct
501-mers have high coverage, in contrast to low-coverage erroneous 501-mers
that form bulges and tips (with the exception of k-mers that contain some
tandem dinucleotide repeats discussed in Supplementary Note 11). Afterwards,
mowerDBG uses the path-rerouting and bulge-collapsing error-correction
approaches to simultaneously correct reads and the graph.

Even though the previous paragraph might create an impression that errors
in HiFi reads can be corrected by simply applying error-correcting approaches
developed for short reads (for example, from SPAdes assembler), correction of
HiFi reads faces unique challenges that we outline below. First, our goal is to
correct reads (rather than to correct the de Bruijn graph as in SPAdes) because
we need to rescue correct k-mers for the second round of error correction with
a large K-mer size. Second, we need to perform nearly perfect error correction
even in highly repetitive regions (for example, centromeres) that short-read
assemblers do not even try to assemble. Third, in difference from short-read
assembly, the target k-mer size (501) is a small fraction of a typical read-length
(15,000). As a result, analyzing a bulge in a highly repetitive region requires
not only analysis of the graph structure (like in SPAdes) but also analysis of all
read-paths traversing this bulge.

To address these complications, mowerDBG complements path-rerouting and
bulge-collapsing by additional steps referred to as correcting dimers and correcting
pseudo-correct reads. Supplementary Note 11 describes the mowerDBG algorithm.

Step 9: Transforming the de Bruijn graph into the multiplex de Bruijn graph.
Below we describe a graph transformation algorithm for transforming the graph
DB(Reads,k) into DB(Reads,k+) for k+>k by iteratively increasing the k-mer size
by 1 at each iteration. Although launching jumboDBG to construct DB(Reads,k),
followed by these transformations, takes more time than simply launching
jumboDBG to construct DB(Reads,k+), we use it as a stepping stone toward the
multiplex de Bruijn graph construction.

Below we consider graphs, where each edge is labeled by a string and each
vertex w is assigned an integer vertexSize(w) ≥ k. We limit attention to graphs
where suffixes of length vertexSize(w) for all incoming edges into w coincide with
prefixes of length vertexSize(w) for all outgoing edges from w. We refer to the
string of length vertexSize(w) that represents these prefixes/suffixes as the label of
the vertex w. We consider graphs with specified edge-labels (vertex-labels can be
inferred from these edge-labels) and assume that different vertices have different
vertex-labels. We will start by analyzing graphs with the same vertex size for all
vertices and will later transition to the multiplex de Bruijn graphs that have vertices
of varying sizes.

Transition-graph. Let Transitions be an arbitrary set of pairs of consecutive edges
(v,w) and (w,u) in an edge-labeled graph G. We define the transition-graph
G(Transitions) as follows. Every edge e in G corresponds to two vertices estart and
eend in G(Transitions) that are connected by a blue edge that inherits the label of the
edge e in G (Fig. 4a). We set vertexSize(estart)=vertexSize(eend)=k + 1 (vertex-labels
are uniquely defined by the (k + 1)-suffixes/prefixes of the incoming/outgoing edges
in each vertex). If an edge e in G is labeled by a (k + 1)-mer, the corresponding
blue edge in G(Transitions) is collapsed into a single vertex estart = eend. In addition
to blue edges, each pair of edges in = (v,w) and out = (w,u) in Transitions adds a
red transition edge between inend and outstart to the transition graph. The label of
this edge is defined as a (k + 2)-mer formed by the concatenate symbol-(k+1)(in)*lab
el(w)*symbol(k+1)(out), where symboli(e) stands for the i-th symbol of label(e), and
symbol-i(e) stands for the i-th symbol from the end of label(e).

Path-graph. We say that a path traverses a vertex w in a graph if it both enters
and exits this vertex. Given a path-set Paths in a graph, we denote the set of all
paths containing an edge (v,w) as Paths(v,w) and the set of all paths traversing a
vertex w as Paths(w). We define the set Transitions(Paths) as the set of all pairs
of consecutive edges in all paths from Paths. A path-graph G(Paths) of a path-set
Paths is defined as the transition-graph G(Transitions(Paths)).

Let Paths be the set of all read-paths in the compressed de Bruijn graph
G = DB(Reads,k). A straightforward approach to constructing the graph
G(Paths), which recomputes labels from scratch at each iteration, nearly doubles
the path lengths at each iteration and thus faces the time/memory bottleneck.
multiplexDBG avoids this time/memory bottleneck by modifying rather than
recomputing the edge labels from scratch, as described in Supplementary Note 13.

Multiplex de Bruijn graph transformation. Given a path-set Paths in a graph G,
we call edges (v,w) and (w,u) in G paired if the transition-set Transitions(Paths)
contain this pair of edges. A vertex w in G is paired if each edge incident to w is
paired with at least one other edge incident to w and unpaired otherwise.

The important property of DB(Genome,k) is that there exists a genome traversal
of this graph. Given a genome traversal of the graph DB(Reads,k), we want to
preserve it in DB(Reads,k + 1) after the graph transformation. However, it is not
necessarily the case because the transformation of DB(Reads,k) into DB(Reads,k + 1)
might create dead-ends (each unpaired vertex in DB(Reads,k) results in a dead-end
in DB(Reads,k + 1)), thus ‘losing’ the genome traversal that existed in DB(Reads,k)
(Fig. 4c). Below we describe a single iteration of the algorithm for transforming
DB(Reads,k) into the multiplex de Bruijn graph MDB(Reads,k) that avoids creating
dead-ends whenever possible by introducing vertices of sizes (k + 1) in this graph.

multiplexDBG transforms each paired vertex of DB(Reads,k) using the graph
transformation algorithm and ‘freezes’ each unpaired vertex by preserving its
k-mer label and the local topology. It also freezes some vertices adjacent to the
already frozen vertices even if these vertices are simple. Specifically, if a frozen
vertex u is connected with a non-frozen vertex v by an edge of length VertexSize(v)
+ 1, multiplexDBG freezes v (Fig. 4d). The motivation for freezing v is that, if
we did not freeze it, we would need to remove the edge connecting u and v in
MDB(Reads,k), disrupting the topology of the graph. multiplexDBG continues the
graph transformations for all paired vertices (while freezing unpaired vertices) with
gradually increasing k-mer sizes from k to K+, resulting in the multiplex de Bruijn
graph MDB(Reads,k) with k-mer varying in sizes from k to K+. Supplementary
Note 14 illustrates that multiplex transformations might be overly optimistic (by
transforming vertices that should have been frozen) and overly pessimistic (by
freezing vertices that should have been transformed).

Step 10: Expanding HPC contigs. Although LJA enables an accurate LJA
assembly of HPC reads into HPC contigs (edge-labels in the multiplex de Bruijn
graph), these contigs have to be expanded (de-collapsed) using information about
homopolymer runs in the original reads. Supplementary Note 15 describes how
LJApolish expands HPC contigs.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
All assemblies generated by LJA are available at https://zenodo.org/
record/5552696#.YV3MkVNBxH4. All described datasets are publicly available
through the corresponding repositories. All HiFi data were obtained from the
National Center for Biotechnology Information Sequence Read Archive (SRA).
The SRA access codes for all datasets are specified in Supplementary Note 2
‘Information about datasets’. The CHM13 reference (version 0.9) generated by the
T2T consortium (referred to as T2TGenome) can be found at https://s3.amazonaws.
com/nanopore-human-wgs/chm13/assemblies/chm13.draft_v0.9.fasta.gz.

code availability
The LJA code uses the open-source libraries spoa (version 4.0.5) and ksw2 (version
4e0a1cc) and is available at https://github.com/AntonBankevich/LJA. All software
tools used in the analysis and their versions and parameters are specified in the text
of the paper and in Supplementary Note 9 ‘LJA parameters’.

Acknowledgements
A. Bankevich, A. Bzikadze and P.A.P. were supported by National Science Foundation
EAGER award 2032783. D.A. was supported by Saint Petersburg State University
(grant ID PURE 73023672). We thank A. Korobeynikov and A. Mikheenko for useful
suggestions on assembling HiFi reads using SPAdes and benchmarking.

Author contributions
All authors contributed to developing the LJA algorithms and writing the paper.
A. Bankevich (jumboDBG and mowerDBG), A. Bzikadze (multiplexDBG) and D.A.
(LJApolish) implemented the LJA algorithm. A. Bankevich benchmarked LJA and other
assembly tools. A. Bankevich and P.A.P. directed the work.

competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41587-022-01220-6.

Correspondence and requests for materials should be addressed to
Anton Bankevich or Pavel A. Pevzner.

Peer review information Nature Biotechnology thanks Ergude Bao and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NAture BiotechNology | www.nature.com/naturebiotechnology

https://zenodo.org/record/5552696#.YV3MkVNBxH4
https://zenodo.org/record/5552696#.YV3MkVNBxH4
https://s3.amazonaws.com/nanopore-human-wgs/chm13/assemblies/chm13.draft_v0.9.fasta.gz
https://s3.amazonaws.com/nanopore-human-wgs/chm13/assemblies/chm13.draft_v0.9.fasta.gz
https://github.com/AntonBankevich/LJA
https://doi.org/10.1038/s41587-022-01220-6
http://www.nature.com/reprints
http://www.nature.com/naturebiotechnology

nature research Corresponding author(s): Pavel Pevzner

Last updated by author(s): _20_2 _1 _/9 _/2_9 __________ _

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

D � The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

� D A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

"'71 D The statistical test(s) used AND whether they are one- or two-sided
IL:,J Only common tests should be described solely by name; describe mare camp/ex techniques in the Methods section.

� D A description of all covariates tested

� D A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

D �
A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

"'71 D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
IL:,J Give P values as exact values whenever suitable.

� D For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

� D For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

� D Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection no software was used for data collection

Data analysis All software tools used in the analysis and their versions/parameters are specified in the text of the paper and the Supplementary Note "LJA
Parameters". The developed software is deposited to github as specified in the Code Availability section .spoa and ksw2 software libraries have been
incorporated in the LJA codebase as described in the manuscript

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All information about data is provided in "Data Availability" statement

All Hi Fi data were obtained from the NCBI Sequence Read Archive. The SRA access codes for all datasets are specified in Supplementary Note 2 "Information about
datasets." The CHM13 reference (v0.9) generated by the T2T consortium (referred to as T2TGenome) can be found at https://s3.amazonaws.com/nanopore-
human-wgs/chm13/assemblies/chm13.draft_v0.9.fasta.gz.

)

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

r8J Life sciences D Behavioural & social sciences D Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size sample size is not applicable to this algorithmic development

Data exclusions no data were excluded in this study

Replication replication is not applicable to this algorithmic study

Randomization no randomization was performed in this algorithmic study

Blinding no blinding was performed in this algorithmic study

Reporting for specific materials, systems and methods

J

)
J

)
J

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a Involved in the study

r8J D Antibodies

r8J D Eukaryotic cell lines

r8J D Palaeontology and archaeology

r8J D Animals and other organisms

r8J D Human research participants

r8J D Clinical data

r8J D Dual use research of concern

Methods

n/a Involved in the study

r8J □ ChlP-seq

r8J D Flow cytometry

r8J D MRI-based neuroimaging

	Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads
	Results
	Key algorithmic concepts used in the LJA pipeline.
	The challenge of constructing a large de Bruijn graph

	Outline of the LJA pipeline.
	Evaluating genome assemblies.
	Benchmarking LJA on the T2T read-set.
	Assembling a diploid human genome.
	Assembling mouse, maize and fruit fly genomes.

	Discussion
	Online content
	Fig. 1 JumboDBG pipeline.
	Fig. 2 LJA pipeline.
	Fig. 3 Chromosome-by chromosome LGA95 (left) and completeness (center) metrics as well as centromere-by-centromere LGA95 metric (right) for LJA (blue), hifiasm (green) and HiCanu (red) assemblies of the T2T read-set.
	Fig. 4 Constructing a multiplex de Bruijn graph.
	Table 1 Benchmarking LJA, hifiasm and HiCanu on the T2T dataset.
	Table 2 Benchmarking LJA, hifiasm and HiCanu on MOUSE, MAIZE and FLY read-sets.

