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Public databases contain a planetary collection of nucleic acid sequences, but their

systematic exploration has been inhibited by a lack of efficient methods for searching
this corpus, which (at the time of writing) exceeds 20 petabases and is growing
exponentially’. Here we developed a cloud computing infrastructure, Serratus, to
enable ultra-high-throughput sequence alignment at the petabase scale. We searched
5.7 million biologically diverse samples (10.2 petabases) for the hallmark gene
RNA-dependent RNA polymerase and identified well over 10° novel RNA viruses,
thereby expanding the number of known species by roughly an order of magnitude.
We characterized novel viruses related to coronaviruses, hepatitis delta virus and
huge phages, respectively, and analysed their environmental reservoirs. To catalyse
the ongoing revolution of viral discovery, we established a free and comprehensive
database of these data and tools. Expanding the known sequence diversity of viruses
canreveal the evolutionary origins of emerging pathogens and improve pathogen
surveillance for the anticipation and mitigation of future pandemics.

Viral zoonotic disease has had amajorimpact on human health over the
past century, with notable examples including the 1918 Spanish influ-
enza, AIDS, SARS, Ebola and COVID-19. There are an estimated 3 x 10°
mammalianvirus species from whichinfectious diseasesinhumans may
arise?, of which only afraction are known at present. Global surveillance
of virus diversity is required for improved prediction and prevention
of future epidemics, and is the focus of international consortia and
hundreds of research laboratories®*.

Pioneering works expanding the virome of the Earth have each
uncovered thousands of novel viruses, with the rate of virus dis-
covery increasing exponentially and driven largely by the increased
availability of high-throughput sequencing® ™. Sequence analysis
remains computationally expensive, in particular the assembly of
short reads into contigs, which limits the breadth of samples ana-
lysed. Here we propose an alternative alignment-based strategy that
is considerably cheaper than assembly and enables processing of
massive datasets.

Petabases (1 x 10" bases) of sequencing data are freely available in
public databases such as the Sequence Read Archive (SRA)!, in which
viral nucleic acids are often captured incidental to the goals of the
original studies®. To catalyse global virus discovery, we developed the
Serratus cloud computing infrastructure for ultra-high-throughput

sequence alignment, screening 5.7 million ecologically diverse
sequencing libraries or 10.2 petabases of data.

Identification of Earth’s virome is a fundamental step in preparing
for the next pandemic. We lay the foundations for future research
by enabling direct access to 883,502 RNA-dependent RNA polymer-
ase (RdRP)-containing sequences, which include the RdARP from
131,957 novel RNA viruses (sequences with greater than 10% divergence
fromaknown RdRP), including 9 novel coronaviruses. Altogether this
captures the collective efforts of over adecade of sequencing studies
inafree repository, available at https://serratus.io.

Accessing the planetary virome
Serratus is a free, open-source cloud-computing infrastructure
optimized for petabase-scale sequence alignment against a set of
query sequences. Using Serratus, we aligned more than one million
short-read sequencing datasets per day for less than 1 US cent per
dataset (Extended DataFig.1). We used a widely available commercial
computingservicetodeploy up to0 22,250 virtual CPUs simultaneously
(see Methods), leveraging SRA data mirrored onto cloud platforms as
part of the NIH STRIDES initiative®,

Our search space spans data deposited over13 years fromevery con-
tinent and ocean, and all kingdoms of life (Fig.1). We applied Serratus
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Fig.1|Searchingthe planetary virome. a, Total bases searched from the
5,686,715SRA sequencing runs analysed in the viral RARP search grouped by
sample taxonomy, where available (see Extended DataFigs. 1,3, Supplementary
Table1).Atotal of 8,871 out 0f 15,016 (59%) of known RARP sOTUs were
observedinthe SRA,and 131,957 unique and novel RARP sOTUs were identified
(see Extended DataFig.2).sOTUsidentified in multiple taxonomic groups are
counted ineachgroup separately; numbers shownindicate the number of
novel sOTUsin each group. WGS, whole-genome sequencing. b, Release dates
oftherunsincludedinthe analysis reflecting the growth rate of available data.
c,Samplelocations for 635,656 RARP-containing contigs (27.8% of samples
lacked geographical metadata). The high density of RARP seenin North
America, western Europe and eastern Asiareflects the substantial acquisition
bias for samples originating from these regions. Interactive RARP map is
available at https://serratus.io/geo.

in two of many possible configurations. First, to identify libraries
that contain known or closely related viruses, we searched 3,837,755
(around May 2020) public RNA sequencing (RNA-seq), meta-genome,
meta-transcriptome and meta-virome datasets (termed sequencing
runs') against a nucleotide pangenome of all coronavirus sequences
and RefSeq vertebrate viruses. We then aligned 5,686,715 runs (January
2021) against all known viral RARP amino acid sequences using a spe-
cially optimized version of DIAMOND v2 (ref. ™, Methods); this search
was completed within11days, at a cost of US$23,980 (Fig.1a, Methods).

Previous approaches for identifying sequences across the entire
SRA rely on pre-computed indexes™' that require exact substring
or hash-based matches, which limits their sensitivity to diverged
sequences (Extended DataFig. 1f). Pre-assembled reads (for example,
the NCBI Transcriptome Shotgun Assembly database) enable efficient
alignment-based searches®, but are at present available for only asmall
fraction of the SRA. Serratus aligns a query of up to hundreds of mega-
bytes against unassembled libraries, achieving greater sensitivity to
diverged viruses compared to substring (k-mer) indexes while using
far fewer computational resources than de novo assembly (Fig. 1g,
Methods).

Asketch of RARP

Viral RARP is a hallmark gene of RNA viruses that lack a DNA stage
of replication”. We identified RARP by a well-conserved amino acid
sub-sequence that we call the ‘palmprint’. Palmprints are delineated by
three essential motifs that together formthe catalytic coreinthe RARP
structure™® (Fig. 2). We constructed species-like operational taxonomic
units (sOTUs) by clustering palmprints at athreshold of 90% amino acid
identity, chosen to approximate taxonomic species’s.

Atotal 0f 3,376,880 (59.38%) sequencing runs contained one or more
reads that mapped to the RARP query (E-value <1 x107*). We assem-
bled RARP aligned reads from each library (and their mate-pairs when
available), whichyielded 4,261,616 ‘microassembly’ contigs. Of these,
881,167 (20.7%) contained a high-confidence palmprint identified by
Palmscan (false discovery rate = 0.001)'®, representing 260,808 unique

palmprints. Applying Palmscan to reference databases'”", we obtained
45,824 unique palmprints, which clustered into 15,016 known sOTUs.
Ifanewlyacquired palmprintaligned toaknown palmprint atanidentity
of 90% or greater, it was assigned membership to that reference sOTU;
otherwise, it was designated as novel. We clustered novel palmprints
at 90% identity and obtained 131,957 novel sOTUs, representing an
increase in the number of known RNA viruses by a factor of 9.8. Cluster-
ing novel palmprints at genus-like 75% and family-like 40% thresholds
yielded 78,485 and 3,599 novel OTUs, which representincreases of 8.0x
and 1.9, respectively (Fig. 2b).

We extracted host, geospatial and temporal metadata for each bio-
logical sample when available (Fig. 1c), noting that the majority (88%) of
novel RARP sOTUs were observed from metagenomic or environmental
runsinwhichaccurate hostinferenceis challenging. Mapping observa-
tions of virus marker genes across time and space suggests ecological
niches for these viruses, and improved characterization of sequence
diversity canimprove PCR primer design for in situ virusidentification.

We estimate that around 1% of sOTUs are endogenous virus elements
(EVEs); that s, viral RARPs that have reverse-transcribed into a host
germline. We did not attempt to systematically distinguish EVEs from
viral RARPs, noting that EVEs with intact catalytic motifs are likely to
be recent insertions that can serve as a representative sequence for
related exogenous viruses. Most (60.5%) recovered palmprints were
found in exactly one run (singletons), and are observed within the
expected frequency range predicted by extrapolating from more abun-
dant sequences (Fig. 2b).

The abundance distribution of distinct palmprints is consistent
with log-log-linear for each year from 2015 to 2020 (Extended Data
Fig.2e),and over time, singletons are confirmed by subsequent runs at
anapproximately constant rate (Extended Data Fig. 2g). The majority
of novel viruses will be singletons until the diversity represented by
the search query and the fraction of the planetary virome sampled in
the SRA both approach saturation. Extrapolating one year forward,
by when the SRA is expected to have doubled in size, we predict that
430,000 (95% confidence interval [330,000, 561,000]) additional
unique palmprints could be identified by running Serratus with its
current query (Fig. 2b).

RNA viruses have highly divergent sequences, even within the
conserved RARPY. Amino acid sequence alignment can recover the
majority of RARP short reads above 60% identity, but sensitivity falls as
sequences diverge further (Extended Data Fig. 2f). Subsequent microas-
sembly fragmentation caninpartaccount for the decreased abundance
of novel sOTUs below 60% identity (Fig. 2b); thus, the sensitivity to
highly diverged (less than 50% identity) RARP sequences s limited in the
present study. Saturation of virus discovery within the SRA is far from
complete, even if data-growth rates are ignored. Intensive searches
for so-called highly diverged or ‘dark’ viruses®, in combination with
iterative reanalysis (conceptually similar to PSI-BLAST?), are likely to
yield further expansion of the known virome.

The totalnumber of virus species is estimated to be 108t0 10" (ref.??),
so our data captured at most 0.1% of the global virome. However, if
exponential data growth combined with increased search sensitivity
continues, we are at the cusp of identifying anotable fraction of Earth’s
total genetic diversity with tools such as Serratus.

Expanding known Coronaviridae
The SARS-CoV-2 pandemic has severely affected human society. We
further exemplify the potential of Serratus for virus discovery with the
Coronaviridae (CoV) family, including a recently proposed subfamily?
that contains a CoV-like virus, Microhyla alphaletovirus 1(MLeV), inthe
frog Microhylafissipes, and Pacific salmonnidovirus (PsNV) described
in the endangered Oncorhynchus tshawytscha®.

First, weidentified 52,772 runs that contain 10 or more CoV-aligned
reads or 2 or more CoV k-mers (32-mer,’®). These runs were
de-novo-assembled with a new version of synteny-informed SPAdes
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Fig.2|RNA-dependent RNA polymeraseinthe SRA. a, The RARP palmprintis
the proteinsequence spanning three well-conserved sequence motifs (A, Band
C), including intervening variable regions, exemplified within the full-length
poliovirus RARP structure with essential aspartic acid residues (asterisks)
(Protein Data Bank code: 1RA6*). Conservation was calculated from RARP
alignmentinaprevious study', trimmed to the poliovirus sequence; motif
sequence logos are shown below. aa, amino acids. b, Per-phylum histogram of
aminoacididentity of novel sOTUs aligned to the NCBI non-redundant protein
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called coronaSPAdes®. This yielded 11,120 identifiable CoV contigs
that we annotated for acomprehensive assemblage of Coronaviridae
in the SRA (see Methods for discussion). With these training data we
defined ascoring functionto predict the subsequent success of assem-
bly (Extended DataFig. 3b).

CoV and neighbouring palmprints comprise 70 sOTUs, 44 of which
are described in public databases. Seventeen CoV sOTUs contained
partial RARP (inclusive of full palmprint) from an amplicon-based virus
discovery study for which the data had not been publicly deposited at
the time of writing?. The remaining nine sOTUs are novel viruses, with
protein domains consistent with a CoV or CoV-like genome organiza-
tion (Extended Data Fig. 4).

We operationally designate MLeV, PsNV and the nine novel viruses
broadly as group E, noting that all were found in samples from
non-mammalian aquatic vertebrates (Fig. 3). Notably, Ambystoma
mexicanum (axolotl) nidovirus (AmexNV) was assembled in18 runs, 11
of which yielded common contigs of approximately 19 kb. Easing the
criteria of requiring an RARP match in a contig, 28 out of 44 (63.6%)
of the runs from the associated studies were AmexNV-positive?” 2,
Consistent assembly break pointsin AmexNV, PsNV and similar viruses
suggest that the viral genomes of this clade of CoV-like viruses are
organized in atleast two segments, one containing ORFlab with RdRP,
andashorter segment containing alamin-associated domain protein,
spike and N” accessory genes (Fig. 3). An assembly gap with common
break points is present in the published PsNV genome?*. Together,
these seven monophyletic species possibly represent a distinct clade
of segmented CoV-like nidoviruses, although molecular validation of
this hypothesis is required.

While our manuscript was under review, public transcriptome screen-
ing by Miller et al.”” identified three group-E CoV sequences that are
notincluded in our sOTU analysis. One CoV" library had failed at the
alignmentstep, and microassembly from two othersyielded incomplete
palmprint sub-sequences and therefore lacked the required specificity
for the systematic palmprint classification. A high-sensitivity reanalysis
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database. Extended Data Figure 3c shows the per-order distribution. Inset,
Preston plotand linear regression of palmprint abundancesindicates that
singleton palmprints (thatis, observed in exactly one run) occur within 95%
confidenceintervals of the value predicted by extrapolation from high-
abundance palmprints (linear regression applied to log-transformed data),
and this distributionis consistent through time (Extended DataFig. 2).

NA, notapplicable; uncl, unclassified.

of microassemblies for any group-E RARP sequence fragment captured
the two CoV sequences that we missed from the Miller et al. study®’, and
found another approximately 25 putative-novel CoV species from 53
fragmented contigs (Supplementary Table 1e).

In addition to identifying genetic diversity within CoV, we
cross-referenced CoV' library metadata to identify possible zoonoses
andvectors of transmission. Discordant libraries—ones in whicha CoV
isidentified and the viral expected host* does not match the sequenc-
ing library source taxa—were rare, accounting for only 0.92% of cases
(Supplementary Table If).

Animportant limitation for these analyses is that the nucleic acid
reads donot prove that viral infection has occurred in the nominal host
species. For example, we identified five libraries in which a porcine,
avian, or bat coronavirus was found in plant samples. The parsimonious
explanation is that CoV was present in faeces or fertilizer originating
fromamammalian or avian host applied to these plants. However, this
exemplifies a merit of exhaustive search in identifying transmission
vectors and for monitoring the geotemporal distribution of viruses.

Rapid expansioninto the viral unknowns

The global mortality from viral hepatitis exceeds that of HIV/AIDS,
tuberculosis or malaria®. Hepatitis delta virus (HDV) has a small cir-
cular RNA genome (around 1,700 nucleotides (nt)) that folds into a
rod-like shape and encodes three genes: a delta antigen protein, and
two self-cleaving delta ribozymes (drbz)®.

Before 2018, HDV was the sole known member of its genus; 13
drbz-containing members have since been characterized®, and
recently asecond class of ribozyme (known as hammerhead or hhrbz)
characteristic of plant viroids was identified in delta-like viruses that
werefer toas epsilon viruses®. By sequence search for the delta antigen
proteinand ribozymes, weidentified 14 delta viruses, 39 epsilon viruses
and 311 enigmatic sequences with delta-virus-like synteny that we term
zeta viruses (Fig. 4, Extended Data Fig. 5). The evolutionary histories
of these mammalian delta viruses are explored further elsewhere®.



a AmexNV b
Putative aCoV
genome 143 PtetNV
segmentation 86 700 HkudNV
62 o1 StypNV
TparNV
60 84 Pacific salmon nidovirus
AcaNV BCoV
i 1
100 SilNv Nidovirales 1CoV
Nido 20 MalbNV 3CoV
i R
29 Microhyla letovirus
o/B/y/3-CoV
[ CoV_Methyltr_1  NendoU_nidovirus
P-loop_NTPase ‘ CoV_Methyltr_2 (CoV S2)
(CoV_NSP3_C) RARP_1 | | Spike_torovirin  CoV_M g
NSP8_sf_CoV I B | | LAP1C [ | 5
= ORF1B a ORF3 14
ORF1A ORF2 N’ ORFs
Tr S contig (12,448 nt) r

R contig (19,124 nt)

PtetNV
HkudNV

StyphNV

TparNV
PsNV

AcaNV
SiINV

MalbNV

HtraNV
MLeV

Fig.3|Expanding Coronaviridae. a, Phylogram for group-E sequences. Six
viruses were similar to PsNV in Ambystoma mexicanum (axolotl; AmexNV),
Puntigrustetrazona (tiger barb; PtetNV), Hippocampus kuda (seahorse;
HkudNV), Syngnathus typhle (broad-nosed pipefish; StypNV), Takifugu
pardalis (fugu fish; TparNV) and the Acanthemblemaria sp. (blenny; AcaNV).
More-distant membersidentified were in Hypomesus transpacificus (the
endangered deltasmelt; HtraNV), Silurus sp. (catfish; SiINV) and Monopterus
albus (asianswamp eel; MalbNV). b, Unrooted phylogram for Coronaviridae

The zetavirus circular genomes are highly compressed, ranging from
324 t0789 ntand predicted to fold into rod-like structures. They contain
ahhrbzineach orientationand encode two openreading frames (ORFs),
one sense and one anti-sense. Both ORFs generally lack stop codons
and encompass the entire genome, potentially producing an endless
tandem repeat of antigen. The atypical coiled-coil domain of the HDV
antigen*’is conserved in the antigens of new delta and epsilon viruses,
whereas epsilon and zeta genomes show analogous hhrbzs (Extended
DataFig. 6), suggesting that these sequences share common ancestry.
These abundant elements may help to solve along-standing question
aboutthe origins of circular RNA subviral agentsin higher eukaryotes
(Extended Data Fig. 6), historically regarded as molecular fossils of a
prebiotic RNA world*.

To evaluate the feasibility of applying Serratus in the context of
microbiome research, we sought to locate bacteriophages that are
related to recently reported huge phages*, searching for terminase
amino acid sequences. Targeted assembly of 287 high-scoring runs
returned 252 terminase-containing contigs of greater than 140 kb.
Phylogenetics of these sequences resolved new groups of phages
withlarge genomes (Fig. 4e). Although most phages were fromasin-
gle animal genus, we identified closely related phages that crossed
animal orders, including related phages ina human from Bangladesh
(ERR866585) and in groups of cats (PRJEB9357) and dogs (PRJEB34360)
from England, sampled five years apart. Similarly, we recovered two

annotated withgenera (Greek letters) and group-E CoV-like nidoviruses (see
also Extended Data Fig.4). Maximum likelihood tree generated by clustering
the RARP amino acid sequences at 97% identity to show sub-species variability.
¢, Genome structure of AmexNV and the contigs recovered from group-E
CoV-like viruses annotated with HMM matches. AmexNV contigs contain an
identical 129-nt trailing sequence (Tr). All the putatively segmented CoV-like
aremonophyletic with PsNV. Agap in the PsNV reference sequence®*is shown
withcircles, overlapping the common contig ends seenin these viruses.

approximately 554-kb Lak megaphage genomes (among the largest
animal microbiome phages reported so far) that are extremely closely
related to sequences previously reported from pigs, baboons and
humans® (Extended Data Fig. 7). These two genomes were circular-
ized and manually curated to completion. The large carrying capacity
of such phages and broad distribution underlines their potential for
extensive lateral gene transfer amongst animal microbiomes and
modification of host bacterial function. These sequences substantially
expand the inventory of phages with genomes whose length range
overlaps with those of bacteria.

Discussion

Since the completion of the human genome, the growth of DNA
sequencing databases has outpaced Moore’s Law. Serratus provides
rapid and focused access to genomic sequences captured over more
than a decade by the global research community, which would other-
wise be inaccessible in practice. This work and further extensions of
petabase-scale genomics®'*** are shaping a new era in computational
biology, enabling expansive gene discovery, pathogen surveillance and
pangenomic evolutionary analyses.

Optimal translation of such massive datasets into meaningful bio-
medical advances requires free and open collaboration among sci-
entists*. The current pandemic underscores the need for prompt,
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unrestricted and transparent data sharing. With these goals in mind,
we deposited 7.3 terabytes of virus alignments and assemblies into an
open-access database that can be explored via a graphical web inter-
face at https://serratus.io or programmatically through the Tantalus
R package and its PostgreSQL interface.

The ‘metagenomics revolution’ of virus discovery is accelerating”™".
Innovative fields such as high-throughput viromics*® can leverage vast
collections of virus sequences to inform policies that predict and miti-
gate emerging pandemics*. Combining ecoinformatics with virus,
host and geotemporal metadata offers a proof-of-concept foraglobal
pathogen surveillance network, arising as aby-product of centralized
and open data sharing.

Human population growth and encroachment on animal habitats
is bringing more species into proximity, leading to an increased rate
of zoonosis? and accelerating the Anthropocene mass extinction*s.
While Serratus enhances our capability to chronicle the full genetic
diversity of our planet, the genetic diversity of the biosphere is dimin-
ishing. Thus, investment in the collection and curation of biologically
diverse samples, with an emphasis on geographically underrepresented
regions, has never been more pressing—if not for the conservation of
endangered species, then to better conserve our own.

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-021-04332-2.
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Methods

Serratus alignment architecture

Serratus (v0.3.0) (https://github.com/ababaian/serratus) is an open-
source cloud-infrastructure designed for ultra-high-throughput
sequencealignmentagainstaquery sequence or pangenome (Extended
Data Fig. 1). Serratus compute costs are dependent on search param-
eters (expanded discussion available: https://github.com/ababaian/
serratus/wiki/pangenome_design). The nucleotide vertebrate viral
pangenome search (bowtie2, database size: 79.8 MB) reached process-
ing rates of 1.29 million SRA runs in 24 h at a cost of US$0.0062 per
dataset (Extended DataFig.1). The translated-nucleotide RARP search
(DIAMOND™; database size: 7.1 MB) reached processing rates exceed-
ing 0.5 million SRA runsin12 hat a cost of US$0.0042 per dataset. All
5,686,715 runs analysed in the RARP search were completed within 11
days for a total cost of US$23,980 or around US$2,350 per petabase.
For adetailed breakdown of Serratus project costs and recommenda-
tions for managing cloud-computing costs, see Serratus wiki: https://
github.com/ababaian/serratus/wiki/budget. Tutorials on how to find
particular novel viruses using Serratus data are available at https://
github.com/ababaian/serratus /wiki/Find_novel_viruses.

Computing cluster architecture

The processing of each sequencinglibraryis splitinto three modules:
‘dI'(download), ‘align’and ‘merge’. The dlmodule acquires compressed
data (.sraformat) via prefetch (v2.10.4), from the Amazon Web Services
(AWS) Simple Storage Service (S3) mirror of the SRA, decompresses
to FASTQ with fastq-dump (v2.10.4) and splits the data into chunks of
1 million reads or read-pairs (‘fg-blocks’) into a temporary S3 cache
bucket. To mitigate excessive disk usage caused by a few large data-
sets, a total limit of 100 million reads per dataset was imposed. The
align modulereadsindividual fq-blocks and aligns to anindexed data-
base of user-provided query sequences using either bowtie2 (v2.4.1,
--very-sensitive-local)™ for nucleotide search, or DIAMOND (v2.0.6
development version, --mmap-target-index --target-indexed --masking
0 --mid-sensitive -s 1-c1 -p1-k1-b 0.75)* for translated-protein search.
Finally, the merge module concatenates the aligned blocksinto asingle
output file (.bam for nucleotide, or .pro for protein) and generates
alignment statistics with a Python script (see details about Summarizer
in‘Generating viral summary reports’ below).

Computing resource allocation

Each componentis launched from a separate AWS autoscaling group
with its own launch template, allowing the user to tailor instance
requirements per task. This enabled us to minimize the use of costly
block storage during compute-bound tasks such as alignment.
We used the following Spotinstance types; dl: 250 GB SSD block storage,
8virtual CPUs (vCPUs), 32 GB RAM (r5.xlarge) around 1,300 instances;
align:10 GB SSD block storage, 8 vCPUs, 8 GB RAM (c5.xlarge) around
4,300instances; merge: 150 GBSSD block storage, 4 vCPUs, 4 GB RAM
(c5.large) around 60 instances. Users should note that it may be nec-
essary to submit a service ticket to access more than the default EC2
instance limit.

AWS Elastic Compute Cloud (EC2) instances have higher network
bandwidth (up to1.25 GB s™) thanblock storage bandwidth (250 MB s™).
To exploit this, we used S3 buckets as a data buffering and streaming
system to transfer data between instances following methods devel-
opedinaprevious cloud architecture (https://github.com/FredHutch/
sra-pipeline). This, combined with splitting of FASTQ filesinto individ-
ualblocks, effectively eliminated file input/output (i/0) as abottleneck,
as the available i/o is multiplied per running instance (conceptually
analogous to a RAIDO configuration or a Hadoop distributed file sys-
tem*).

Using S3 as a buffer also allowed us to decouple the input and out-
put of each module. S3 storage is cheap enough that in the event of

unexpected issues (for example, exceeding EC2 quotas) we could
resolve system problemsinreal time and resume data processing. For
example, shutting down the align modules to hotfix agenomeindexing
problem without having to re-run the dl modules, or if an alignment
instance is killed by a Spot termination, only that block needs to be
reprocessed instead of the entire sequencing run.

Work queue and scheduling

The Serratus scheduler node controls the number of desired instances
tobecreated for each component of the workflow, based on the avail-
able work queue. We implemented a pull-based work queue. After
boot-up, each instance launches a number of ‘worker’ threads equal
to the number of CPUs available. Each worker independently man-
ages itselfviaaboot script, and queries the ‘scheduler’ for available
tasks. Upon completion of the task, the worker updates the scheduler
of the result: success, or fail, and queries for a new task. Under ideal
conditions, this allows for a worst-case response rate in the hundreds
of milliseconds, keeping cluster throughput high. Each task typically
lasts several minutes depending on the pangenome.

The scheduleritselfwasimplemented using Postgres (for persistence
and concurrency) and Flask (to pool connections and translate REST
queries into SQL). The Flask layer allowed us to scale the cluster past
the number of simultaneous sessions manageable by asingle Postgres
instance. The work queue can also be managed manually by the user,
to perform operations such as re-attempting the downloading of an
SRA accession after a failure or to pause an operation while debug-
ging. Upto300,000 SRA jobs canbe processed in the work queue per
batch process.

The system is designed to be fully self-scaling. An ‘autoscaling con-
troller’ was implemented, which scales-in or scales-out the desired
number ofinstances per task every five minutes on the basis of the work
queue. As a backstop, when all workers on an instance fail to receive
work instructions from the scheduler, the instance self shuts-down.
Finally a ‘job cleaner’ component checks the active jobs against cur-
rently runninginstances. If aninstance has disappeared owing to SPOT
termination or manual shutdown, it resets the job allowing it to be
processed up by the next available instance.

To monitor cluster performance in real-time, we used Prometheus
(v2.5.0) and node exporter to retrieve CPU, disk, memory and network-
ingstatistics fromeachinstance, to expose performance information
about the work queue, and Python exporter to exportinformation from
the Flask server. This allowed us to identify and diagnose performance
problems within minutes to avoid costly overruns.

Generating viral summary reports

We define a viral pangenome as the entire collection of reference
sequences belonging to a taxonomic viral family, which may contain
both full-length genomes and sequence fragments such as those
obtained by RARP amplicon sequencing.

We developed aSummarizer module writtenin Pythonto providea
compact, human- and machine-readable synopsis of the alignments
generated for each SRA dataset. The method was implemented in Ser-
ratus_summarizer.py for nucleotide alignment and Serratus_psum-
marizer.py for amino acid alignments. Reports generated by the
Summarizer are text files with three sections described in detail online
(https://github.com/ababaian/serratus/wiki/.summary-Reports). In
brief, each contains a header section with alignment metadata and
one-line summaries for each virus family pangenome, reference
sequence and gene, respectively, with gene summaries provided for
protein alignments only.

For each summary line we include descriptive statistics gathered
from the alignment data such as the number of aligned reads, esti-
mated read depth, mean alignmentidentity and coverage; that s, the
distribution of reads across each reference sequence or pangenome.
Coverage is measured by dividing a reference sequence into 25 equal
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bins and depicted as an ASCII text string of 25 symbols, one per bin;
for example oaooomoUU:0WWUUWOWamWAAUW. Each symbol rep-
resents log,(n +1), where n is the number of reads aligned to a binin
thisorder_..uwaomUWAOM".Thus,‘_ indicatesnoreads, " exactly one
read,  tworeads, ‘U’ 3-4 reads, ‘w’ 5-7 reads and so on; “~’ represents
>21*=8,192 reads in the bin. For a pangenome, alignments to its refer-
ence sequences are projected onto a corresponding set of 25 bins. For
acomplete genome, the projected pangenome bin number1, 2, ..., 25
is the same as the reference sequence bin number. For a fragment, a
binis projected onto the pangenome bin implied by the alignment of
the fragmenttoacomplete genome. For example, if the start of a frag-
ment aligns halfway into a complete genome, bin 1 of the fragment is
projected to bin floor(25/2) =12 of the pangenome. The introduction
of pangenome bins was motivated by the observation that bowtie2
selectsanalignmentatrandom when there are two or more top-scoring
alignments, whichtends to distribute coverage over several reference
sequences whenasingle viral genomeis presentinthe reads. Coverage
of asingle reference genome may therefore be fragmented, and binning
toapangenome better assesses coverage over aputative viralgenomein
thereads whileretaining pangenome sequence diversity for detection.

Identification of viral families within a sequencing dataset

The Summarizer implements a binary classifier predicting the pres-
ence or absence of each virus family in the query on the basis of
pangenome-aligned short reads. For a given family F, the classifier
reports a score in the range [0,100] with the goal of assigning a high
scoretoadatasetifit contains Fand alowscoreifit does not. Setting a
threshold onthe score divides datasets into disjoint subsets represent-
ing predicted positive and negative detections of family F. The choice
ofthreshold implies a trade-off between false positives and false nega-
tives. Sorting by decreasing score ranks datasets in decreasing order
of confidence that Fis present in the reads.

Naively, a natural measure of the presence of a virus family is the
number of alignments toits reference sequences. However, alignments
may be induced by non-homologous sequence similarity, for example
low-complexity sequence.

The score for a family was therefore designed to reflect the overall
coverage of a pangenome because coverage across all or most of a
pangenome is more likely to reflect true homology; that s, the presence
ofarelated virus. Ideally, coverage would be measured individually for
each base in the reference sequence, but this could add undesirable
overhead in compute time and memory for a process that is executed
in the Linux alignment pipe (FASTQ decompression - aligner > Sum-
marizer - alignment file compression). Coverage was therefore meas-
ured by binning as described above, which can be implemented with
minimal overhead.

Avirusthatis presentinthe reads with coverage toolowtoenablean
assembly may have less practical value than an assembled genome. Also,
genomes withlower identity to previously known sequences will tend
to contain more novel biological information than genomes with high
identity but highly diverged genomes will tend to have fewer aligned
reads. With these considerations in mind, the classifier was designed
to give higher scores when coverage s high, read depthis high and/or
identity islow. This was accomplished as follows. Let Hbe the number
ofbinswithatleast 8 alignmentsto F,and L be the number of bins with
from1to7alignments. Let Sbe the mean alignment percentage identity,
and define the identity weight w = (5/100) >, which is designed to give
higher weight to lower identities, noting that wis close to 1wheniden-
tity is close to100% and increases rapidly at lower identities. The clas-
sification score for family Fis calculated as Z. = max(w(4H + L)),100). By
construction, Z-has amaximum of 100 when coverage is consistently
high across a pangenome, and is also high when identity is low and
coverage is moderate, which may reflect high read depth but many
false negative alignments due to low identity. Thus, Z; is greater than
zerowhenthereisatleast one alignment to Fand assigns higher scores

to SRA datasets that are more likely to support successful assembly of
avirus belonging to F.

Sensitivity to novel viruses as a function of identity

We aimed to assess the sensitivity of our pipeline as a function of
sequence identity by asking what fraction of novel viruses is detected
atincreasingly low identities compared to the reference sequences used
for the search. Several variables other than identity affect sensitivity,
including read length, whether reads are mate-paired, sequencing
errorrate, coverage biasand the presence of other similar viruses that
may cause some variants to be unreported in the contigs. Coverage
bias can render a virus with high average read depth undetectable,
in particular if the query is RARP-only and the RARP gene has low
coverage or is absent from the reads. Successful detection might be
defined in different ways, depending on the goals of the search; for
example, a single local alignment of a reference to a read (maximiz-
ing sensitivity, but not always useful in practice); a microassembled
palmprint; a full assembly contig that contains a complete palmprint
or otherwise classifiable fragment of a marker gene; or an assembly
of acomplete genome. We assessed alignment sensitivity of bowtie2
--very-sensitive-local and Serratus-optimized DIAMOND™ as a function
ofidentity by simulating typical examplesinarepresentative scenario:
unpaired reads of length 100 with a base call error rate of 1%. We manu-
ally selected test-reference pairs of RefSeq complete Ribovirus genomes
atRdRP aminoacid identities100%, 95% ... 20%, generating simulated
length-100 reads at uniformly distributed random locationsin the test
genome with a mean coverage of 1,000x. For bowtie2, the complete
reference genome was used as areference; for DIAMOND the reference
was the translated amino acid sequence of the RARP gene (400 amino
acids), which was identified by aligning to the ‘wolf18’ dataset. These
choices model the coronavirus pangenome used as a bowtie2 query
andtherdrpl proteinreference used asa DIAMOND query, respectively.
Sensitivity was assessed as the fraction of reads aligned to the reference.
With bowtie2, the number of unmapped reads reflects a combina-
tion of lack of alignment sensitivity and divergence in gene content as
some regions of the genome may lack homology to the reference. With
DIAMOND, the number of unmapped reads reflects acombination of
lack of alignment sensitivity and the fraction of the genome that is not
RdRP, which varies by genome length 1g. They show that the fraction
of aligned reads by bowtie2 drops to around 2% to 4% at 90% RARP
amino acid identity, and maps no reads for most of the lower identity
test-reference pairs. DIAMOND maps around 5% to 10% of reads down
to 50% RARP amino acid identity, then less than 1% at lower identities;
around 30% to 35% is the lower limit of practical detection.

Defining viral pangenomes and the SRA search space
Nucleotide search pangenomes. To create a collection of viral
pangenomes, a comprehensive set of complete and partial genomes
representing the genetic diversity of each viral family, we used two
approaches.

For Coronaviridae, we combined all RefSeq (n = 64) and GenBank
(n=37,451) records matching the NCBI Nucleotide® server query
“txid11118[Organism:exp]” (date accessed: 1 June 2020). Sequences
of fewer than 200 nt were excluded as well as sequences identified
to contain non-CoV contaminants during preliminary testing (such
as plasmid DNA or ribosomal RNA fragments). Remaining sequences
were clustered at 99% identity with UCLUST (USEARCH: v11.0.667)** and
masked by Dustmasker (ncbi-blast:2.10.0) (-window 30 and --window
64)>. The final query contained 10,101 CoV sequences (accessions
in Supplementary Table 1a; masked coordinates in Supplementary
Table 1b). SeqKit (v0.15) was used for working with fasta files*.

For all other vertebrate viral family pangenomes, RefSeq sequences
(n=2,849) were downloaded from the NCBINucleotide server with the
query "Viruses[Organism] AND srcdb refseq[PROP] NOT wgs[PROP]
NOT cellular organisms[ORGN] NOT AC 000001:AC 999999[PACC]
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AND ("vhost human"[Filter] AND "vhost vertebrates"[Filter])" (date
accessed: 17 May 2020). Retroviruses (n = 80) were excluded as prelimi-
nary testing yielded excessive numbers of alignments to transcribed
endogenousretroviruses. Each sequence was annotated with its taxo-
nomic family according toits RefSeqrecord; those for which no family
was assigned by RefSeq (n = 81) were designated as ‘unknown’.

The collection of these pangenomes was termed ‘cov3m’, and was
the nucleotide sequence reference used for this study.

Amino acid viral RARP search panproteome. For the translated-
nucleotide search of viral RNA-dependent RNA polymerase (RdRP;
hereinafter viral RARPisimplied) we combined sequences from several
sources. (1) The ‘wolf18’ collectionis a curated snapshot (around 2018)
of RARP from GenBank (ref. accessed: ftp://ftp.ncbi.nlm.nih.gov/pub/
wolf/_suppl/rnavirl8/RNAvirome.S2.afa). (2) The ‘wolf20’ collection
is RARPs from assembled from marine metagenomes (ref.” accessed:
ftp://ftp.ncbi.nlm.nih.gov/pub/wolf/_suppl/yangshan/gb_rdrp.afa).
(3) All viral GenBank protein sequences were aligned with DIAMOND
--ultra-sensitive** against the combined wolf18 and wolf20 sequences
(E-value <1x107%). These produced local alignments that contained
truncated RdRP, so each RARP-containing GenBank sequence was then
re-aligned to the wolf18 and wolf20 collection to ‘trim’ them to ‘wolf”
RARPboundaries. (4) The above algorithm was also applied to all viral
GenBank nucleotide records to capture additional RARP not annotated
as such by GenBank. A region of HCV capsid protein shares similarity
to HCV RdRP; sequences annotated as HCV capsid were therefore re-
moved. Eight novel coronavirus RARP sequences identified in a pilot
experiment were added manually. The combined RARP sequences
from the above collections were clustered (UCLUST) at 90% amino
acid identity and the resulting representative sequences (centroids,
n=14,653) used as the rdrplsearch query.

Inaddition, we added delta virus antigen proteins from NC 001653,
M21012, X60193, L22063, AF018077, A)584848, A)584847, A)584844,
AJ584849,MT649207, MT649208, MT649206, NC 040845, NC 040729,
MNO031240, MN031239, MK962760, MK962759 and eight additional
homologues we identified in a pilot experiment.

SRA search space and queries. To run Serratus, a target list of SRA
run accessions is required. We defined 11 (not-mutually exclusive)
queries as our search space, which were named human, mouse, mam-
mal, vertebrate, invertebrate, eukaryotes, prokaryotes/others, bat
(including genomic sequences), virome, metagenome and mamma-
lian genome (Supplementary Table 1c). Our search was restricted to
llluminasequencing technologies and to RNA-seq, meta-genomic and
meta-transcriptome library types for these organisms (except for the
mammalian genome query, which was genome or exome). Before
each Serratus deployment, target lists were depleted of accessions
already analysed. Reprocessing of a failed accession was attempted
at least twice. In total, we aligned 3,837,755/4,059,695 (94.5%) of the
runs in our nucleotide-pangenome search (around May 2020) and
5,686,715/5,780,800 (98.37%) of the runs in our translated-nucleotide
RdRP search (around January 2021).

User interfaces for the Serratus databases

Weimplemented an on-going, multi-tiered release policy for code and
datagenerated by this study, as follows. All code, electronic notebooks
and raw data are immediately available at https://github.com/ababa-
ian/serratus and on the s3://serratus-public bucket, respectively. Upon
completion of a project milestone, a structured data release isissued
containing raw data into our viral data warehouse s3://lovelywater/.
For example, the .bam nucleotide alignment files from 3.84 million
SRA runs are stored in s3://lovelywater/bam/X.bam; and the protein
.summary files areins3://lovelywater/psummary/X.psummary, where
XisaSRArunaccession. Thesestructured releases enable downstream
and third-party programmatic access to the data.

Summary files for every searched SRA dataset are parsed into a pub-
licly accessible AWS Relational Database (RDS) instance that can be
queried remotely via any PostgreSQL client. This enables users and
programs to perform complex operations such as retrieving summaries
and metadata for all SRA runs matching a given reference sequence
with above a given classifier score threshold. For example, one can
query for all records containing at least 20 aligned reads to hepatitis
delta virus (NC 001653.2) and the associated host taxonomy for the
corresponding SRA datasets:

SELECT sequence_accession, run_id, tax_id, n_readsFROM nsequence
JOINsrarun ON (nsequence.run_id =srarun.run) WHERE n_reads >=20

For users unfamiliar with SQL, we developed Tantalus (https://github.
com/serratus-bio/tantalus, an R programming-language package that
directly interfaces the Serratus PostgreSQL database to retrieve sum-
mary information as data-frames. Tantalus also offers functions to
explore and visualize the data.

Finally, the Serratus data can be explored via agraphical web inter-
face by accession, virus or viral family at https://serratus.io/explorer.
Under the hood, we developed a REST APIto query the database from
the website. The website uses React+D3.js to serve graphical reports
with an overview of viral families found in each SRA accession match-
ing auser query.

All four data access interfaces are under ongoing development,
receiving community feedback via their respective GitHub issue track-
ersto facilitate the translation of this data collection into an effective
viral discovery resource. Documentation for data access methods is
available at https://serratus.io/access.

Geocoding BioSamples. To generate the map in Fig. 1c, we parsed
and extracted geographical information fromall 16 million BioSample
XML submissions”. Geographic information is either in the form of
coordinates (latitude and longitude) or freeform text (for example,
‘France’, ‘Great Lakes’). For each BioSample, coordinate extraction
was attempted using regular expressions. If that failed, text extraction
was attempted using amanually curated list of keywords that capture
BioSample attribute names that are likely to contain geographical in-
formation. If that failed, then we were unable to extract geographical
information for that BioSample. Geocoding the text to coordinates
was done using Amazon Location Service on a reduced set of distinct
filtered text values (52,028 distinct values from 2,760,241 BioSamples
with potential geographical text). BioSamples with geocoded coor-
dinates were combined with BioSamples with submitted coordinate
information to form a set of 5,325,523 geospatial BioSamples. This is
then cross-referenced with our subset of SRA accessions with an RARP
match to generate the figure.

Allintermediate and resulting data from this step are stored on the
SQL database described above. Development work is public at https://
github.com/serratus-bio/biosample-sql.

Viral alignment, assembly and annotation

Uponidentification of CoV reads in a run from alignment, we assem-
bled 52,772 runs containing at least 10 reads that aligned to our CoV
pangenome or at least 2 reads with CoV-positive k-mers'. A total of
11,120 of the resulting assemblies contained identifiable CoV contigs,
of which only 4,179 (37.58%) contained full-length CoV RdRP (Sup-
plementary Table 1d). The discrepancy between alignment-positive,
assembly-positive and RARP-positive libraries arises owing to random
sampling of viral reads and assembly fragmentation. In this respect,
alignment or k-mer based methods are more sensitive than assembly
indetecting forthe presence of low-abundance viruses (genome cover-
age <1) with highidentity to areference sequence. Scoring libraries for
genome coverage and depthis agood predictor of ultimate assembly
success (Extended Data Fig. 3); thus, it can be used to efficiently pri-
oritize computationally expensive assembly in the future, as has been
previously demonstrated for large-scale SRA alignment analyses®.
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DIAMOND optimization and output. To optimize DIAMOND" for small
(<10 MB) databases such as the RARP search database, we built a proba-
bilistic hash set that stores 8-bit hash values for the database seeds, us-
ing SIMD instructions for fast probing. This indexisloaded asamemory
mapped file to be shared among processes and allows us to filter the
query reads for seeds contained in the database, thus omitting the full
construction of the query seed table. We also eliminated the overhead
of building seed distribution histograms that is normally required to
allocate memory and construct the query table inasingle pass over the
datausingadeque-like datastructure.Inaddition, query reads were not
masked for simple repeats, as the search database is already masked.
These features are available starting from DIAMOND v2.0.8 with the
command line flags --target-indexed --masking 0. In abenchmark of
4 sets of 1 million reads from a bat metagenome (ERR2756788), the
implemented optimization produced aspeed-up of x1.47 and reduced
memory use by 64%, compared to the public unmodified DIAMOND
v2.0.6, using our optimized set of parameters inboth cases (see 1.1.1).
Together, the optimized parameters and implementation reduced
DIAMOND runtime against RARP searchfrom197.96 s (s.d. = 0.18 s), to
21.29 s (s.d. =0.23 s) per millionreads, aspeed-up of afactor of 9.3. This
effectively reduced the computational cost of translated-nucleotide
search for Serratus from US$0.03 to US$0.0042 per library.

DIAMOND output files (we label .pro) were specified with the com-
mand-f6 gseqid gstart gend gqlen gstrand sseqid sstart send slen pident
evalue cigar gseq_translated full_gseq full_gseq_mate.

coronaSPAdes. RNA viral genome assembly faces several distinct
challenges stemming from technical and biological bias in sequencing
data. During library preparation, reverse transcription introduces 50
end coverage bias, and GC-content skew and secondary structures
lead to unequal PCR amplification®. Technical bias is confounded by
biological complexity suchasintra-sample sequence variation due to
transcriptisoforms and/or to the presence of multiple strains.

To address the assembly challenges specific to RNA viruses, we
developed coronaSPAdes (v3.15.3), which is described in detail in a
companion manuscript®. In brief, rnaviralSPAdes and the more spe-
cialized variant, coronaSPAdes, combines algorithms and methods
fromseveral previous approaches based on metaSPAdes®®, rnaSPAdes®
and metaviralSPAdes®? witha HMMPathExtension step. coronaSPAdes
constructs an assembly graph from an RNA-seq dataset (transcrip-
tome, meta-transcriptome, and meta-virome are supported), removing
expected sequencingartifacts such aslow complexity (poly-A/poly-T)
tips, edges, single-strand chimeric loops or double-strand hairpins®
and subspecies-bases variation®.

To deal with possible misassemblies and high-covered sequenc-
ing artefacts, a secondary HMMPathExtension step is performed to
leverage orthogonal information about the expected viral genome.
Protein domains are identified on allassembly graphs using aset of viral
hidden Markov models (HMMs), and similar to biosyntheticSPAdes®?,
HMMPathExtension attempts to find paths onthe assembly graph that
pass through significant HMM matches in order.

coronaSPAdes is bundled with the Pfam SARS-CoV-2 set of HMMs*®*,
although these may be substituted by the user. This latter feature of
coronaSPAdes was used for HDV assembly, in which the HMM model
of HDAg, the hepatitis delta antigen, was used instead of the Pfam
SARS-CoV-2 set. Note that despite the name, the HMMs from this set
are quite general, modelling domains foundinall coronavirus generain
addition to RARP, which is found in many RNA virus families. Hits from
these HMMs cover most bases in most known coronavirus genomes,
enabling the recovery of strain mixtures and splice variants.

Microassembly of RdRP-aligned reads. Reads aligned by DIAMOND™
inthetranslated-nucleotide RARP searchare storedin the.proalignment
file. All sets of mapped reads (3,379,127 runs) were extracted, and each

non-empty set was assembled with rnaviralSPAdes (v3.15.3) using de-
fault parameters. This process is referred to as ‘microassembly’, as a col-
lection of DIAMOND hits is orders of magnitude smaller than the original
SRA accession (40 + 534 KB compressed size, ranging fromasingle read
up to 53 MB). Then bowtie2* (default parameters) was used to align the
DIAMOND read hits of anaccession back to the microassembled contigs
of that accession. Palmscan (v1.0.0, -rdrp -hicon)'® was run on microas-
sembled contigs, resulting in high-confidence palmprints for 337,344
contigs. Finally mosdepth (v0.3.1)%* was used to calculate a coverage
pileup for each palmprint hit region within microassembled contigs.

Classification of assembled RdRP sequences. Our methods for RARP
classification are described and validated in a companion paper*.
Inbrief, we defined abarcode sequence, the polymerase palmprint (PP),
asanapproximately 100-amino-acid segment of the RARP palm subdo-
main delineated by well-conserved catalytic motifs. Weimplemented
analgorithm, Palmscan, to identify palmprint sequences and discrimi-
nate RARPs from reverse transcriptases. The combined set of RARP
palmprints from public databases and our assemblies was classified by
clusteringinto operational taxonomic units (OTUs) at 90%, 75% and 40%
identity, giving species-like, genus-like and family-like clusters (sOTUs,
gOTUs and fOTUs), respectively. Tentative taxonomy of novel OTUs
was assigned by aligning to palmprints of named viruses and taking a
consensus of the top hits above the identity threshold for each rank.

Quality control of assembled RARP sequences. Our goal was to
identity novel viral RARP sequences and novel sOTUs in SRA libraries.
From this perspective, we considered the following to be erroneous
to varying degrees: sequences that are (a) not polymerases; (b) not
viral; (c) with differences due to experimental artefacts; or (d) with
sufficient differences to cause a spurious inference of a novel sOTU.
We categorized potential sources of such errors and implemented
quality control procedures to identify and mitigate them, as follows.
Point errors are single-letter substitution and indel errors that may
be caused by PCR or sequencing per se. Random point errors are not
reproduced in multiple non-PCR duplicate reads and are unlikely to
assemble because such errors almost alwaysinduce identifiable struc-
turesinthe assembly graph (tips and bubbles) that are pruned during
graph simplification. In rare cases, a contig may contain a read with
random point errors. Such contigs will have low coverage of around],
and we therefore recorded coverage as a quality control metric and
assessed whether low-coverage assemblies were anomalous compared
to high-coverage assemblies by measures such as the frequencies with
which they are reproduced in multiple libraries compared to exactly
one library, finding no noticeable difference when coverage is low.
Chimeras of polymerases from different species could arise from PCR
amplification or assembly. We used the UCHIME2 (usearch v8.0.1623)
algorithm®® to screen assembled palmprint sequences, finding no
high-scoring putative chimeras. Mosaic sequences formed by joining
apolymerase to unrelated sequence would either have anintact palm-
print, in which case the mosaic would be irrelevant to our analysis, or
would berejected by Palmscan owing to the lack of delimiting motif's.
Reverse transcriptases are homologous to RARP. Retroviral insertions
into host genomes induce ubiquitous sequence similarity between
host genomes and viral RARP. Palmscan was designed to discriminate
RdRPfromsequences of reverse transcriptase origin. Testingon alarge
decoy set of non-RdRP sequences with recognizable sequence similar-
ity showed that the Palmscan false discovery rate for RARP identifica-
tion is 0.001. We estimated the probability of false positive matches
in unrelated sequence by generating sufficient random nucleotide
and amino acid sequences to show that the expected number of false
positive palmprint identifications is zero in a dataset of comparable
size to our assemblies. We also regard the low observed frequency of
palmprints in DNA whole-genome sequencing data (in 2.6 Pbp or 25.8%
ofreads, accounted for 100 known palmprints and 95 novel palmprints
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or 0.13% of the total identified) as a de facto confirmation of the low
probability false positives in unrelated sequence.

Endogenous viral elements (EVEs; that s, insertions of viral sequence
into host genomes that are potentially degraded and non-functional)
cannotbedistinguished from viral genomes on the basis of the palmprint
sequencealone. To assess the frequency of EVEsin our data, we re-assem-
bled 890 randomly chosen libraries yielding one or more palmprints
using all reads, extracted the 23,530 resulting contigs with a positive
palmprint hitby Palmscan, and classified themusing Virsorter2 (v2.1)¢".
Of these contigs, 11,914 were classified as viral, confirming the Palmscan
identification; 49 as Viridiplantae (green plants); 46 as Metazoa; 25 as
Fungi and the remainder were unclassified. Thus, 120/12,034 = 1% of
the classified contigs were predicted as non-viral, suggesting that the
frequency of EVEs in the reported palmprints is around 1%.

Annotation of CoV assemblies. Accurate annotation of CoV genomes
is challenging owing to ribosomal frameshifts and polyproteins that are
cleaved into maturation proteins®, and thus previously annotated viral
genomes offer a guide to accurate gene-calls and protein functional
predictions. However, although many of the viral genomes we were
likely to recover would be similar to previously annotated genomesin
Refseqor GenBank, we anticipated that many of the genomes would be
taxonomically distant from any available reference. To address these
constraints, we developed an annotation pipeline called DARTH (ver-
sion maul)® which leverages both reference-based and ab initio an-
notation approaches.

In brief, DARTH consists of the following phases: standardize
the ordering and orientation of assembly contigs using conserved
domain alignments, perform reference-based annotation of the
contigs, annotate RNA secondary structure, ab initio gene-calling,
generate files for aiding assembly and annotation diagnostics, and
generate a master annotation file. It isimportant to put the contigs
in the ‘expected’ orientation and ordering to facilitate comparative
analysis of synteny and as arequirement for genome deposition. To
perform this standardization, DARTH generates the six-frame trans-
lation of the contigs using the transeq (EMB0SS:6.6.0.0)”° and uses
HMMER3 (v3.3.2)" to search the translations for Pfam domain mod-
els specific to CoV®*. DARTH compares the Pfam accessions from the
HMMER alignment to the NCBI SARS-CoV-2 reference genome (NCBI
Nucleotide accession NC_045512.2) to determine the correct order-
ing and orientation, and produces an updated assembly FASTA file.
DARTH performs reference-based annotation using VADR (v1.1)”2, which
provides a set of genome models for all CoV RefSeq genomes’. VADR
provides annotations of gene coordinates, polyprotein cleavage sites,
and functional annotation of all proteins. DARTH supplements the
VADR annotation by using Infernal™ to scan the contigs against the
SARS-CoV-2 Rfamrelease” which provides updated models of CoV 50
and 30 untranslated regions (UTRs) along with stem-loop structures
associated with programmed ribosomal frame-shifts. Although VADR
provides reference-based gene-calling, DARTH also provides ab initio
gene-calling by using FragGeneScan (v1.31)®, aframeshift-aware gene
caller. DARTH also generates auxiliary files that are useful for assembly
quality and annotation diagnostics, such asindexed BAM files created
with SAMtools (v1.7)”” representing self-alignment of the trimmed
reads to the canonicalized assembly using bowtie2*, and variant-calls
using beftools from SAMtools. DARTH generates these files so that the
canbe easily loaded into agenome browser such as JBrowse”® or IGV”°.
As the final step DARTH generates a single Generic Feature Format
(GFF) 3.0 file®® containing combined set of annotation information
described above, ready for use in agenome browser, or for submitting
the annotation and sequence to a genome repository.

Phage assembly. Each metagenomic dataset was individually
de-novo-assembled using MEGAHIT (v1.2.9)%, and filtered to remove
contigs smaller than1kbinsize. ORFs were then predicted onall contigs

using Prodigal (v2.6.3)% with the following parameters: -m -p meta.
Predicted ORFs were initially annotated using USEARCH* to search all
predicted ORFs against UniProt®, UniRef90 and KEGG®. Sequencing
coverage of each contig was calculated by mapping raw reads back
to assemblies using bowtie2™. Terminase sequences from Al-Shayeb
etal.*?were clustered at 90% amino acid identity to reduce redundancy
using CD-HIT (v4.8.1)%5, and HMM models were built with hmmbuild
(from the HMMERS3 suite™) from the resulting set. Terminases in the
assemblies from Serratus were identified using hmmsearch, retain-
ing representatives from contigs greater than 140 kb in size. Some
examples of prophage and large phages that did not co-cluster with
thesequences from Al-Shayeb et al. were also recovered because they
were also presentinasample that contained the expected large phages.
The terminases were aligned using MAFFT (v7.407)% and filtered by
TrimAL (v1.14)¥ to remove columns comprising more than 50% gaps,
or 90% gaps, or using the automatic gappyout setting to retain the
most conserved residues. Maximum likelihood trees were built from
theresulting alignments using IQTREE (v1.6.6)%.

Deploying the assembly and annotation workflow. The Serratus
search for known or closely related viruses identified 37,131 libraries
(14,304 by nucleotide and 23,898 by amino acid) as potentially posi-
tive for CoV (score > 20 and =10 reads). To supplement this search we
also used a recently developed index of the SRA called STAT', which
identified an additional 18,584 SRA datasets not in the defined SRA
search space. The STAT BigQuery (accessed 24 June 2020) was: WHERE
taxid=11118 AND total count >1.

We used AWS Batch to launch thousands of assemblies of NCBl acces-
sions simultaneously. The workflow consists of four standard parts: a
job queue, ajob definition, a compute environment, and finally, the
jobsthemselves. A CloudFormation template (https://gitlab.pasteur.
fr/rchikhi_pasteur/serratus-batch-assembly/-/blob/10934001/tem-
plate/template.yaml) was created for building all parts of the cloud
infrastructure from the command line. The job definition specifies a
Docker image, and asks for 8 virtual CPUs (vCPUs, corresponding to
threads) and 60 GB of memory per job, corresponding to a reason-
able allocation for coronaSPAdes. The compute environment is the
mostinvolved component. We setit to runjobs on cost-effective Spot
instances (optimal setting) with an additional cost-optimization strat-
egy (SPOT_CAPACITY_OPTIMIZED setting), and allowing up to 40,000
vCPUstotal.Inaddition, the compute environment specifies alaunch
template which, oneachinstance, (i) automatically mounts an exclusive
1TBEBS volume, allowing sufficient disk space for several concurrent
assemblies, and (ii) downloads the 5.4 GB CheckV (v0.6.0)*’ database,
to avoid bloating the Docker image.

The peak AWS usage of our Batch infrastructure was around 28,000
vCPUs, performing around 3,500 assemblies simultaneously. A total
of 46,861 accessions out of 55,715 were assembled in a single day.
They were then analysed by two methods to detect putative CoV con-
tigs. The first method is CheckV®, followed selecting contigs associ-
ated to known CoV genomes. The second method is a custom script
(https://gitlab.pasteur.fr/rchikhi_pasteur/serratus-batch-assembly/-/
blob/10934001/stats/bgc_parse_and_extract.py) that parses coronaS-
PAdes BGC candidates and keeps contigs containing CoV domain(s).
For each accession, we kept the set of contigs obtained by the first
method (CheckV) if it is non-empty, and otherwise we kept the set of
contigs from the second method (BGC).

A majority (76%) of the assemblies were discarded for one of the
following reasons: (i) no CoV contigs were found by either filtering
method; (ii) reads were too short to be assembled; (iii) Batch job or
SRA download failed; or (iv) coronaSPAdes ran out of memory. A total
of11,120 assemblies were considered for further analysis.

The average cost of assembly was between US$0.30 and US$0.40
per library, varying depending on library type (RNA-seq versus
metagenomic). This places an estimate of 46-95-fold higher cost for
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assembly alone compared to a cost of US$0.0042 or US$0.0065 for an
alignment-based search.

Taxonomic and phylogenetic analyses

Taxonomy prediction for coronavirus genomes. We developed a
module, SerraTax, to predict taxonomy for CoV genomes and assem-
blies (https://github.com/ababaian/serratus/tree/master/containers/
serratax). SerraTax was designed with the following requirements
in mind: provide taxonomy predictions for fragmented and partial
assemblies in addition to complete genomes; report best-estimate
predictions balancing over-classification and under-classification (too
many and too few ranks, respectively); and assign an NCBI Taxonomy
Database® identifier (TaxID).

Assigning abest-fit TaxID was not supported by any previously pub-
lished taxonomy prediction software to the best of our knowledge;
this requires assignment to intermediate ranks such as sub-genus and
ranks below species (commonly called strains, but these ranks are
not named in the Taxonomy database), and to unclassified taxa, for
example, TaxID 2724161, unclassified Buldecovirus, in cases in which
the genome is predicted to fall inside a named clade but outside all
named taxa within that clade.

SerraTax uses a reference database containing domain sequences
with TaxIDs. This database was constructed as follows. Records anno-
tated as CoV were downloaded from UniProt®, and chain sequences
were extracted. Each chain name, for example Helicase, was considered
to be a separate domain. Chains were aligned to all complete coro-
navirus genomes in GenBank using UBLAST (usearch: v11.0.667) to
expand therepertoire of domainsequences. The reference sequences
were clustered using UCLUST** at 97% sequence identity to reduce
redundancy.

For a given query genome, ORFs are extracted using the getorf
(EMBOSS:6.6.0) software’®. ORFs are aligned to the domain references
andthetop 16 reference sequences for each domain are combined with
the best-matching query ORF. For each domain, amultiple alignment of
the top 16 matches plus query ORF is constructed on the fly by MUSCLE
(v3.8.31°)) and a neighbour-joining treeis inferred from the alignment,
also using MUSCLE. Finally, a consensus prediction is derived from
the placement of the ORF in the domain trees. Thus, the presence of a
single domainin the assembly suffices to enable a prediction; if more
domains are present they are combined into a consensus.

Taxonomic assignment by phylogenetic placement. To generatean
alternate taxonomic annotation of an assembled genome, we created
apipeline based on phylogenetic placement, SerraPlace.

To perform phylogenetic placement, a reference phylogenetic
tree is required. To this end, we collected 823 reference amino acid
RdARP sequences, spanning all Coronaviridae. To this set we added
an outgroup RARP sequence from the Torovirus family (NC 007447).
We clustered the sequences to 99% identity using USEARCH (ref. >*,
UCLUST algorithm, v11.0.667), resulting in 546 centroid sequences.
Subsequently, we performed multiple sequence alignment on the
clustered sequences using MUSCLE. We then performed maximum
likelihood tree inference using RAXML-NG (ref.*?, 'PROTGTR+FO+G4’,
v0.9.0), resulting in our reference tree.

To apply SerraPlace to a given genome, we first use HMMER (ref.”,
v3.3)togenerate areference HMM, based on the reference alignment.
We then split each contig into ORFs using esl-translate, and use
hmmesearch (Pvalue cut-off 0.01) and seqtk (commit 7cO4ce7) toidentify
those query ORFs that align with sufficient quality to the previously g
enerated reference HMM. All ORFs that pass this test are considered
valid input sequences for phylogenetic placement. This produces aset
of likely placementlocations onthe tree, with an associated likelihood
weight. We then use Gappa (v0.6.1,%%) to assign taxonomic informa-
tionto each query, using the taxonomic information for the reference
sequences. Gappa assigns taxonomy by first labelling the interior

nodes of the reference tree by a consensus of the taxonomic labels
of all descendant leaves of that node. If 66% of leaves share the same
taxonomic label up to some level, then the internal node is assigned
thatlabel. Then, the likelihood weight associated with each sequenceis
assigned to thelabels of internal nodes of the reference tree, according
to where the query was placed.

Fromthisresult, we select that taxonomic label thataccumulated the
highest total likelihood weight as the taxonomic label of a sequence.
Note that multiple ORFs of the same genome may result in ataxonomic
label, in which case, we select the longest sequence as the source of the
taxonomic assignment of the genome.

Phylogenetic inference. We performed phylogeneticinferences using
acustomsnakemake (v6.6.0) pipeline (available at https://github.com/
Iczech/nidhoggr), using ParGenes (v1.1.2)°*. ParGenes is a tree search
orchestrator, combining ModelTestNG (v0.1.3)** and RAXML-NG, and
enabling higher levels of parallelization for agiven tree search.

To infer the maximum likelihood phylogenetic trees, we performed
atree search comprising 100 distinct starting trees (50 random, 50
parsimony), aswellas1,000 bootstrap searches. We used ModelTest-NG
to automatically select the best evolutionary model for the given data.
The pipeline also automatically produces versions of the best maximum
likelihood tree annotated with Felsenstein’s Bootstrap® support values,
and Transfer Bootstrap Expectation values®.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

All Serratus data, raw and processed, are released into the public
domainimmediately in accordance with the Bermuda Principles and
freely available at https://serratus.io/access. Assembled genomes for
this study are available on GenBank under project PRJEB44047.

Code availability

Serratus (v0.3.0) is available at https://github.com/ababaian/serratus.
Archival copies of all code and software generated for this study are
freely available at https://github.com/serratus-bio. Electronic note-
books for experiments are available at https://github.com/ababaian/
serratus.
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Extended DataFig.1|Overview of the Serratusinfrastructure.aSchematic
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a Delta virus-like i,

Vertebrates (8 genomes, ~1,700 nt)

HDV (1,682 nt)  PmacDV (1,669 nt)*  MmonDV (1,712 nt) TgutDV (1,706 nt)  IchiDV (1,710 nt)  BglaDV (1,685 nt)

Host: Homo sapiens Host: Peropteryx macrotis Host: Marnota monax Host: Taenopygia guttata Host: Indirana chiravasi Host: Bethosema glaciale

Environmental (6 genomes, 1,029-1,636 nt) Controls
Wtin1_DV (1,187 nt)  WtIn2_DV (1,262 nt)  Wtin3_DV (1,262 nt) PCV2 (1,767 nt) Shuffled (1,712 nt)
Wetland, Mai Po, China Wetland, Mai Po, China Peatland, Michigan, USA Host: Sus scrofa Negativ e control

b Epsilon virus-like )

Invertebrates (4 genomes, 1,441-1,637 nt) Environmental (35 genomes, 910-1,792 nt)
SulaEV (1,520 nt) GsulEV (1,544 nt) BaerEV (1,441 nt) Wtin1_EV (1,042 nt) WtIin2_EV (1,354 nt) WtIn3_EV (1,754 nt)
Host: Sulabanus spp. Host: Globitermes sulphureus Host: Babylonia aerolata Wastewater, Wisconsin, USA  Wastewater, Wisconsin, USA Peatland, Michigan, USA

C Zeta virus-like ;)

Invertebrates (4 genomes, 552-651 nt) Environmental (307 genomes, 324-789 nt)
Ocasl1_ZV (552 nt) Wtin2_zZV (324 nt) Witin3_2ZV (330 nt) Wtin4_2ZV (438 nt)
Host: Ocassitermes spp. Wetland, Mai Po, China Peatland, Michigan, USA Wastewater, Wisconsin, USA

Ocas2_2V (606 nt) Wtin5_2V (501 nt) Wtin6_2V (696 nt) WtIn7_2V (753 nt)
Host: Ocassitermes spp. Wetland, north east Germany Wetland, Ohio, USA Wetland, Mai Po, China

Extended DataFig. 5|See next page for caption.
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Extended DataFig. 5| Newly characterized deltavirus and delta-virus-like
genomes. Structure and organization of selected examples from the 14 delta
virus-,39 epsilon virus-and 311 zeta virus-like genomes identified in our study.
aSimilar tohuman delta virus (HDV), deltavirus-like genomes from vertebrates
(PmacDV SRR7910143; MmonDV SRR2136906; TgutDV SRR5001850; IchiDV
SRR8954566 and BglaDV SRR8242383) and environmental datasets
(SRR7286070 and SRR6943136) share similar predicted stable rod-like folding,
apredicted ORF coding for the delta antigen (5Ag) and a deltaribozyme (dvrbz)
oneach polarity. Folding of the circular DNA virus Porcine Circovirus 2 (PCV2)
and ashuffled MmonDV sequence are shown as negative controls. b Epsilon
virus-like genomes detected ininvertebrates (SulaEV SRR8739608; GsulEV
SRR7170939 and BaerEV SRR12300397) and environmental datasets
(SRR8840728 and SRR6943136) show similar structure and organization to

deltaviruses, with one or two predicted ORFs (epsilon antigen or Ag) and two
hammerhead ribozymes (hhrbz) in equivalent genomicregions. ¢ Zeta virus-
like genomes detected ininvertebrate (Ocassitermes sp.ZVs SRR8924823) and
environmental datasets (SRR7286070, SRR6943136, SRR8840728,
SRR6201737,SRR5864109 and SRR12063536) are smaller than deltaand
epsilonagents. Up to 90% of the zeta genomes have sizes multiple of 3and
predicted ORFs without stop codons, capable toencode endless tandem-
repeated zeta antigens inboth polarities ((Ag+and {Ag- shown as yellow and
red arrows, respectively). Both genomic zeta polarities keep hhrbzs (shown as
arrows overlapping the ORFs) similar to the epsilon ribozymes (Extended Fig
6). Larger zetavirus-like genomes (>651 nt) were less abundant (7% of all zeta
genomes) and frequently show stop codons, or their sizes are not multiple of 3.
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Extended DataFig. 6 |See next page for caption.
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Extended DataFig. 6 | Evolutionary history of delta-virus-like agents.
aConsensus structures (weighted nucleotide conservation threshold of 90%)
ofdeltavirusribozymes, including the 14 genomes described in this work.

b Consensus structures of the two hammerhead ribozyme families (type Ill and
extended-typellI*®) detected in epsilon and zeta agents. Most positions of
epsilonand zeta motifs are sequence conserved for each ribozyme family.
cMSA of the predicted antigen (N-term domain) from deltaand epsilon agents
(genomes detectedin thisstudy areindicated withared asterisk). The
antiparallel coiled-coil of the HDV is delimited with agrey box, and conserved
residuesinvolved in hydrophobicinteractions are shown at the bottom*°,

supportinga highly divergent connection between deltaand epsilon genomes.
dHumanHDV deltavirusis known to contain aviroid-like domain related to the
Pospiviroidae family of plant viroids. Both families of agents conserve a tertiary
structure reminiscent of the E-loop 5S rRNA (nucleotides ingreen) and are
replicated by the RNA Pol Il of the host*.. Pospiviroids, despite lacking hhrbzs,
share withzetagenomes asmallrodstructure,and in some cases, the presence
of predicted endless tandem-repeat ORFs, most notably in both polarities of
numerous variants of the Hop Stunt Viroid (HSVd). Whereas viroids have been
historically regarded as non-protein-coding RNAs, our reported observations
warrant furtherinvestigation.
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Extended DataFig.7|Huge phage and Lak phage detail. Expanded view of reconstructed complete Lak megaphage genomes. These are the firstreported
maximum likelihood terminase large subunit protein phylogenetic trees for Lak megaphages from dogs (assembled from faecal sample metagenome reads
(a) theexpansion of the Kabirphage clade by newly recovered sequences from from Allaway et al.’®). The genomes have identical terminase sequences (at the
differentanimal types (coloured dots). Red branches are public datarecovered  nucleotidelevel) although the dogs were in different housing areas and were
by Serratus, black branchesindicate the previously reported genomes from*. sampled at different times (D. Allaway, personal communication).
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