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Petabase-scale sequence alignment 
catalyses viral discovery


Robert C. Edgar1,16, Jeff Taylor2,16, Victor Lin3,16, Tomer Altman4,16, Pierre Barbera5,16, 
Dmitry Meleshko6,7,16, Dan Lohr8,16, Gherman Novakovsky9,16, Benjamin Buchfink10,16, 
Basem Al-Shayeb11,16, Jillian F. Banfield12,16, Marcos de la Peña13,16, Anton Korobeynikov6,14,16, 
Rayan Chikhi15,16 & Artem Babaian2,16 ✉

Public databases contain a planetary collection of nucleic acid sequences, but their 
systematic exploration has been inhibited by a lack of efficient methods for searching 
this corpus, which (at the time of writing) exceeds 20 petabases and is growing 
exponentially1. Here we developed a cloud computing infrastructure, Serratus, to 
enable ultra-high-throughput sequence alignment at the petabase scale. We searched 
5.7 million biologically diverse samples (10.2 petabases) for the hallmark gene 
RNA-dependent RNA polymerase and identified well over 105 novel RNA viruses, 
thereby expanding the number of known species by roughly an order of magnitude. 
We characterized novel viruses related to coronaviruses, hepatitis delta virus and 
huge phages, respectively, and analysed their environmental reservoirs. To catalyse 
the ongoing revolution of viral discovery, we established a free and comprehensive 
database of these data and tools. Expanding the known sequence diversity of viruses 
can reveal the evolutionary origins of emerging pathogens and improve pathogen 
surveillance for the anticipation and mitigation of future pandemics.

Viral zoonotic disease has had a major impact on human health over the 
past century, with notable examples including the 1918 Spanish influ-
enza, AIDS, SARS, Ebola and COVID-19. There are an estimated 3 × 105 
mammalian virus species from which infectious diseases in humans may 
arise2, of which only a fraction are known at present. Global surveillance 
of virus diversity is required for improved prediction and prevention 
of future epidemics, and is the focus of international consortia and 
hundreds of research laboratories3,4.

Pioneering works expanding the virome of the Earth have each 
uncovered thousands of novel viruses, with the rate of virus dis-
covery increasing exponentially and driven largely by the increased 
availability of high-throughput sequencing5–11. Sequence analysis 
remains computationally expensive, in particular the assembly of 
short reads into contigs, which limits the breadth of samples ana-
lysed. Here we propose an alternative alignment-based strategy that 
is considerably cheaper than assembly and enables processing of 
massive datasets.

Petabases (1 × 1015 bases) of sequencing data are freely available in 
public databases such as the Sequence Read Archive (SRA)1, in which 
viral nucleic acids are often captured incidental to the goals of the 
original studies12. To catalyse global virus discovery, we developed the 
Serratus cloud computing infrastructure for ultra-high-throughput 

sequence alignment, screening 5.7 million ecologically diverse 
sequencing libraries or 10.2 petabases of data.

Identification of Earth’s virome is a fundamental step in preparing 
for the next pandemic. We lay the foundations for future research 
by enabling direct access to 883,502 RNA-dependent RNA polymer-
ase (RdRP)-containing sequences, which include the RdRP from 
131,957 novel RNA viruses (sequences with greater than 10% divergence 
from a known RdRP), including 9 novel coronaviruses. Altogether this 
captures the collective efforts of over a decade of sequencing studies 
in a free repository, available at https://serratus.io.

Accessing the planetary virome
Serratus is a free, open-source cloud-computing infrastructure 
optimized for petabase-scale sequence alignment against a set of 
query sequences. Using Serratus, we aligned more than one million 
short-read sequencing datasets per day for less than 1 US cent per 
dataset (Extended Data Fig. 1). We used a widely available commercial 
computing service to deploy up to 22,250 virtual CPUs simultaneously 
(see Methods), leveraging SRA data mirrored onto cloud platforms as 
part of the NIH STRIDES initiative13.

Our search space spans data deposited over 13 years from every con-
tinent and ocean, and all kingdoms of life (Fig. 1). We applied Serratus 
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in two of many possible configurations. First, to identify libraries 
that contain known or closely related viruses, we searched 3,837,755 
(around May 2020) public RNA sequencing (RNA-seq), meta-genome, 
meta-transcriptome and meta-virome datasets (termed sequencing 
runs1) against a nucleotide pangenome of all coronavirus sequences 
and RefSeq vertebrate viruses. We then aligned 5,686,715 runs ( January 
2021) against all known viral RdRP amino acid sequences using a spe-
cially optimized version of DIAMOND v2 (ref. 14, Methods); this search 
was completed within 11 days, at a cost of US$23,980 (Fig. 1a, Methods).

Previous approaches for identifying sequences across the entire 
SRA rely on pre-computed indexes15,16 that require exact substring 
or hash-based matches, which limits their sensitivity to diverged 
sequences (Extended Data Fig. 1f). Pre-assembled reads (for example, 
the NCBI Transcriptome Shotgun Assembly database) enable efficient 
alignment-based searches5, but are at present available for only a small 
fraction of the SRA. Serratus aligns a query of up to hundreds of mega-
bytes against unassembled libraries, achieving greater sensitivity to 
diverged viruses compared to substring (k-mer) indexes while using 
far fewer computational resources than de novo assembly (Fig. 1g, 
Methods).

A sketch of RdRP
Viral RdRP is a hallmark gene of RNA viruses that lack a DNA stage 
of replication17. We identified RdRP by a well-conserved amino acid 
sub-sequence that we call the ‘palmprint’. Palmprints are delineated by 
three essential motifs that together form the catalytic core in the RdRP 
structure18 (Fig. 2). We constructed species-like operational taxonomic 
units (sOTUs) by clustering palmprints at a threshold of 90% amino acid 
identity, chosen to approximate taxonomic species18.

A total of 3,376,880 (59.38%) sequencing runs contained one or more 
reads that mapped to the RdRP query (E-value ≤ 1 × 10−4). We assem-
bled RdRP aligned reads from each library (and their mate-pairs when 
available), which yielded 4,261,616 ‘microassembly’ contigs. Of these, 
881,167 (20.7%) contained a high-confidence palmprint identified by 
Palmscan (false discovery rate = 0.001)18, representing 260,808 unique 

palmprints. Applying Palmscan to reference databases1,7,19, we obtained 
45,824 unique palmprints, which clustered into 15,016 known sOTUs.  
If a newly acquired palmprint aligned to a known palmprint at an identity 
of 90% or greater, it was assigned membership to that reference sOTU; 
otherwise, it was designated as novel. We clustered novel palmprints 
at 90% identity and obtained 131,957 novel sOTUs, representing an 
increase in the number of known RNA viruses by a factor of 9.8. Cluster-
ing novel palmprints at genus-like 75% and family-like 40% thresholds 
yielded 78,485 and 3,599 novel OTUs, which represent increases of 8.0× 
and 1.9×, respectively (Fig. 2b).

We extracted host, geospatial and temporal metadata for each bio-
logical sample when available (Fig. 1c), noting that the majority (88%) of 
novel RdRP sOTUs were observed from metagenomic or environmental 
runs in which accurate host inference is challenging. Mapping observa-
tions of virus marker genes across time and space suggests ecological 
niches for these viruses, and improved characterization of sequence 
diversity can improve PCR primer design for in situ virus identification.

We estimate that around 1% of sOTUs are endogenous virus elements 
(EVEs); that is, viral RdRPs that have reverse-transcribed into a host 
germline. We did not attempt to systematically distinguish EVEs from 
viral RdRPs, noting that EVEs with intact catalytic motifs are likely to 
be recent insertions that can serve as a representative sequence for 
related exogenous viruses. Most (60.5%) recovered palmprints were 
found in exactly one run (singletons), and are observed within the 
expected frequency range predicted by extrapolating from more abun-
dant sequences (Fig. 2b).

The abundance distribution of distinct palmprints is consistent 
with log-log-linear for each year from 2015 to 2020 (Extended Data 
Fig. 2e), and over time, singletons are confirmed by subsequent runs at 
an approximately constant rate (Extended Data Fig. 2g). The majority 
of novel viruses will be singletons until the diversity represented by 
the search query and the fraction of the planetary virome sampled in 
the SRA both approach saturation. Extrapolating one year forward, 
by when the SRA is expected to have doubled in size, we predict that 
430,000 (95% confidence interval [330,000, 561,000]) additional 
unique palmprints could be identified by running Serratus with its 
current query (Fig. 2b).

RNA viruses have highly divergent sequences, even within the 
conserved RdRP17. Amino acid sequence alignment can recover the 
majority of RdRP short reads above 60% identity, but sensitivity falls as 
sequences diverge further (Extended Data Fig. 2f). Subsequent microas-
sembly fragmentation can in part account for the decreased abundance 
of novel sOTUs below 60% identity (Fig. 2b); thus, the sensitivity to 
highly diverged (less than 50% identity) RdRP sequences is limited in the 
present study. Saturation of virus discovery within the SRA is far from 
complete, even if data-growth rates are ignored. Intensive searches 
for so-called highly diverged or ‘dark’ viruses20, in combination with 
iterative reanalysis (conceptually similar to PSI-BLAST21), are likely to 
yield further expansion of the known virome.

The total number of virus species is estimated to be 108 to 1012 (ref.22), 
so our data captured at most 0.1% of the global virome. However, if 
exponential data growth combined with increased search sensitivity 
continues, we are at the cusp of identifying a notable fraction of Earth’s 
total genetic diversity with tools such as Serratus.

Expanding known Coronaviridae
The SARS-CoV-2 pandemic has severely affected human society. We 
further exemplify the potential of Serratus for virus discovery with the 
Coronaviridae (CoV) family, including a recently proposed subfamily23 
that contains a CoV-like virus, Microhyla alphaletovirus 1 (MLeV), in the 
frog Microhyla fissipes, and Pacific salmon nidovirus (PsNV) described 
in the endangered Oncorhynchus tshawytscha24.

First, we identified 52,772 runs that contain 10 or more CoV-aligned 
reads or 2 or more CoV k-mers (32-mer,16). These runs were 
de-novo-assembled with a new version of synteny-informed SPAdes 
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Fig. 1 | Searching the planetary virome. a, Total bases searched from the 
5,686,715 SRA sequencing runs analysed in the viral RdRP search grouped by 
sample taxonomy, where available (see Extended Data Figs. 1, 3, Supplementary 
Table 1). A total of 8,871 out of 15,016 (59%) of known RdRP sOTUs were 
observed in the SRA, and 131,957 unique and novel RdRP sOTUs were identified 
(see Extended Data Fig. 2). sOTUs identified in multiple taxonomic groups are 
counted in each group separately; numbers shown indicate the number of 
novel sOTUs in each group. WGS, whole-genome sequencing. b, Release dates 
of the runs included in the analysis reflecting the growth rate of available data. 
c, Sample locations for 635,656 RdRP-containing contigs (27.8% of samples 
lacked geographical metadata). The high density of RdRP seen in North 
America, western Europe and eastern Asia reflects the substantial acquisition 
bias for samples originating from these regions. Interactive RdRP map is 
available at https://serratus.io/geo.
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called coronaSPAdes25. This yielded 11,120 identifiable CoV contigs 
that we annotated for a comprehensive assemblage of Coronaviridae 
in the SRA (see Methods for discussion). With these training data we 
defined a scoring function to predict the subsequent success of assem-
bly (Extended Data Fig. 3b).

CoV and neighbouring palmprints comprise 70 sOTUs, 44 of which 
are described in public databases. Seventeen CoV sOTUs contained 
partial RdRP (inclusive of full palmprint) from an amplicon-based virus 
discovery study for which the data had not been publicly deposited at 
the time of writing26. The remaining nine sOTUs are novel viruses, with 
protein domains consistent with a CoV or CoV-like genome organiza-
tion (Extended Data Fig. 4).

We operationally designate MLeV, PsNV and the nine novel viruses 
broadly as group E, noting that all were found in samples from 
non-mammalian aquatic vertebrates (Fig. 3). Notably, Ambystoma 
mexicanum (axolotl) nidovirus (AmexNV) was assembled in 18 runs, 11 
of which yielded common contigs of approximately 19 kb. Easing the 
criteria of requiring an RdRP match in a contig, 28 out of 44 (63.6%) 
of the runs from the associated studies were AmexNV-positive27,28. 
Consistent assembly break points in AmexNV, PsNV and similar viruses 
suggest that the viral genomes of this clade of CoV-like viruses are 
organized in at least two segments, one containing ORF1ab with RdRP, 
and a shorter segment containing a lamin-associated domain protein, 
spike and N’ accessory genes (Fig. 3). An assembly gap with common 
break points is present in the published PsNV genome24. Together, 
these seven monophyletic species possibly represent a distinct clade 
of segmented CoV-like nidoviruses, although molecular validation of 
this hypothesis is required.

While our manuscript was under review, public transcriptome screen-
ing by Miller et al.29 identified three group-E CoV sequences that are 
not included in our sOTU analysis. One CoV+ library had failed at the 
alignment step, and microassembly from two others yielded incomplete 
palmprint sub-sequences and therefore lacked the required specificity 
for the systematic palmprint classification. A high-sensitivity reanalysis 

of microassemblies for any group-E RdRP sequence fragment captured 
the two CoV sequences that we missed from the Miller et al. study29, and 
found another approximately 25 putative-novel CoV species from 53 
fragmented contigs (Supplementary Table 1e).

In addition to identifying genetic diversity within CoV, we 
cross-referenced CoV+ library metadata to identify possible zoonoses 
and vectors of transmission. Discordant libraries—ones in which a CoV 
is identified and the viral expected host30 does not match the sequenc-
ing library source taxa—were rare, accounting for only 0.92% of cases 
(Supplementary Table 1f).

An important limitation for these analyses is that the nucleic acid 
reads do not prove that viral infection has occurred in the nominal host 
species. For example, we identified five libraries in which a porcine, 
avian, or bat coronavirus was found in plant samples. The parsimonious 
explanation is that CoV was present in faeces or fertilizer originating 
from a mammalian or avian host applied to these plants. However, this 
exemplifies a merit of exhaustive search in identifying transmission 
vectors and for monitoring the geotemporal distribution of viruses.

Rapid expansion into the viral unknowns
The global mortality from viral hepatitis exceeds that of HIV/AIDS, 
tuberculosis or malaria31. Hepatitis delta virus (HDV) has a small cir-
cular RNA genome (around 1,700 nucleotides (nt)) that folds into a 
rod-like shape and encodes three genes: a delta antigen protein, and 
two self-cleaving delta ribozymes (drbz)32.

Before 2018, HDV was the sole known member of its genus; 13 
drbz-containing members have since been characterized33–38, and 
recently a second class of ribozyme (known as hammerhead or hhrbz) 
characteristic of plant viroids was identified in delta-like viruses that 
we refer to as epsilon viruses39. By sequence search for the delta antigen 
protein and ribozymes, we identified 14 delta viruses, 39 epsilon viruses 
and 311 enigmatic sequences with delta-virus-like synteny that we term 
zeta viruses (Fig. 4, Extended Data Fig. 5). The evolutionary histories 
of these mammalian delta viruses are explored further elsewhere37.
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database. Extended Data Figure 3c shows the per-order distribution. Inset, 
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singleton palmprints (that is, observed in exactly one run) occur within 95% 
confidence intervals of the value predicted by extrapolation from high- 
abundance palmprints (linear regression applied to log-transformed data),  
and this distribution is consistent through time (Extended Data Fig. 2).  
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The zeta virus circular genomes are highly compressed, ranging from 
324 to 789 nt and predicted to fold into rod-like structures. They contain 
a hhrbz in each orientation and encode two open reading frames (ORFs), 
one sense and one anti-sense. Both ORFs generally lack stop codons 
and encompass the entire genome, potentially producing an endless 
tandem repeat of antigen. The atypical coiled-coil domain of the HDV 
antigen40 is conserved in the antigens of new delta and epsilon viruses, 
whereas epsilon and zeta genomes show analogous hhrbzs (Extended 
Data Fig. 6), suggesting that these sequences share common ancestry. 
These abundant elements may help to solve a long-standing question 
about the origins of circular RNA subviral agents in higher eukaryotes 
(Extended Data Fig. 6), historically regarded as molecular fossils of a 
prebiotic RNA world41.

To evaluate the feasibility of applying Serratus in the context of 
microbiome research, we sought to locate bacteriophages that are 
related to recently reported huge phages42, searching for terminase 
amino acid sequences. Targeted assembly of 287 high-scoring runs 
returned 252 terminase-containing contigs of greater than 140 kb. 
Phylogenetics of these sequences resolved new groups of phages 
with large genomes (Fig. 4e). Although most phages were from a sin-
gle animal genus, we identified closely related phages that crossed 
animal orders, including related phages in a human from Bangladesh 
(ERR866585) and in groups of cats (PRJEB9357) and dogs (PRJEB34360) 
from England, sampled five years apart. Similarly, we recovered two 

approximately 554-kb Lak megaphage genomes (among the largest 
animal microbiome phages reported so far) that are extremely closely 
related to sequences previously reported from pigs, baboons and 
humans43 (Extended Data Fig. 7). These two genomes were circular-
ized and manually curated to completion. The large carrying capacity 
of such phages and broad distribution underlines their potential for 
extensive lateral gene transfer amongst animal microbiomes and 
modification of host bacterial function. These sequences substantially 
expand the inventory of phages with genomes whose length range 
overlaps with those of bacteria.

Discussion
Since the completion of the human genome, the growth of DNA 
sequencing databases has outpaced Moore’s Law. Serratus provides 
rapid and focused access to genomic sequences captured over more 
than a decade by the global research community, which would other-
wise be inaccessible in practice. This work and further extensions of 
petabase-scale genomics15,16,44 are shaping a new era in computational 
biology, enabling expansive gene discovery, pathogen surveillance and 
pangenomic evolutionary analyses.

Optimal translation of such massive datasets into meaningful bio-
medical advances requires free and open collaboration among sci-
entists45. The current pandemic underscores the need for prompt, 
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unrestricted and transparent data sharing. With these goals in mind, 
we deposited 7.3 terabytes of virus alignments and assemblies into an 
open-access database that can be explored via a graphical web inter-
face at https://serratus.io or programmatically through the Tantalus 
R package and its PostgreSQL interface.

The ‘metagenomics revolution’ of virus discovery is accelerating7,11. 
Innovative fields such as high-throughput viromics46 can leverage vast 
collections of virus sequences to inform policies that predict and miti-
gate emerging pandemics47. Combining ecoinformatics with virus, 
host and geotemporal metadata offers a proof-of-concept for a global 
pathogen surveillance network, arising as a by-product of centralized 
and open data sharing.

Human population growth and encroachment on animal habitats 
is bringing more species into proximity, leading to an increased rate 
of zoonosis2 and accelerating the Anthropocene mass extinction48. 
While Serratus enhances our capability to chronicle the full genetic 
diversity of our planet, the genetic diversity of the biosphere is dimin-
ishing. Thus, investment in the collection and curation of biologically 
diverse samples, with an emphasis on geographically underrepresented 
regions, has never been more pressing—if not for the conservation of 
endangered species, then to better conserve our own.
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Methods

Serratus alignment architecture
Serratus (v0.3.0) (https://github.com/ababaian/serratus) is an open- 
source cloud-infrastructure designed for ultra-high-throughput 
sequence alignment against a query sequence or pangenome (Extended 
Data Fig. 1). Serratus compute costs are dependent on search param-
eters (expanded discussion available: https://github.com/ababaian/
serratus/wiki/pangenome_design). The nucleotide vertebrate viral 
pangenome search (bowtie2, database size: 79.8 MB) reached process-
ing rates of 1.29 million SRA runs in 24 h at a cost of US$0.0062 per 
dataset (Extended Data Fig. 1). The translated-nucleotide RdRP search 
(DIAMOND14; database size: 7.1 MB) reached processing rates exceed-
ing 0.5 million SRA runs in 12 h at a cost of US$0.0042 per dataset. All 
5,686,715 runs analysed in the RdRP search were completed within 11 
days for a total cost of US$23,980 or around US$2,350 per petabase. 
For a detailed breakdown of Serratus project costs and recommenda-
tions for managing cloud-computing costs, see Serratus wiki: https://
github.com/ababaian/serratus/wiki/budget. Tutorials on how to find 
particular novel viruses using Serratus data are available at https://
github.com/ababaian/serratus /wiki/Find_novel_viruses.

Computing cluster architecture
The processing of each sequencing library is split into three modules: 
‘dl’ (download), ‘align’ and ‘merge’. The dl module acquires compressed 
data (.sra format) via prefetch (v2.10.4), from the Amazon Web Services 
(AWS) Simple Storage Service (S3) mirror of the SRA, decompresses 
to FASTQ with fastq-dump (v2.10.4) and splits the data into chunks of 
1 million reads or read-pairs (‘fq-blocks’) into a temporary S3 cache 
bucket. To mitigate excessive disk usage caused by a few large data-
sets, a total limit of 100 million reads per dataset was imposed. The 
align module reads individual fq-blocks and aligns to an indexed data-
base of user-provided query sequences using either bowtie2 (v2.4.1, 
--very-sensitive-local)51 for nucleotide search, or DIAMOND (v2.0.6 
development version, --mmap-target-index --target-indexed --masking 
0 --mid-sensitive -s 1 -c1 -p1 -k1 -b 0.75)14 for translated-protein search. 
Finally, the merge module concatenates the aligned blocks into a single 
output file (.bam for nucleotide, or .pro for protein) and generates 
alignment statistics with a Python script (see details about Summarizer 
in ‘Generating viral summary reports’ below).

Computing resource allocation
Each component is launched from a separate AWS autoscaling group 
with its own launch template, allowing the user to tailor instance 
requirements per task. This enabled us to minimize the use of costly 
block storage during compute-bound tasks such as alignment.  
We used the following Spot instance types; dl: 250 GB SSD block storage, 
8 virtual CPUs (vCPUs), 32 GB RAM (r5.xlarge) around 1,300 instances; 
align: 10 GB SSD block storage, 8 vCPUs, 8 GB RAM (c5.xlarge) around 
4,300 instances; merge: 150 GB SSD block storage, 4 vCPUs, 4 GB RAM 
(c5.large) around 60 instances. Users should note that it may be nec-
essary to submit a service ticket to access more than the default EC2 
instance limit.

AWS Elastic Compute Cloud (EC2) instances have higher network 
bandwidth (up to 1.25 GB s−1) than block storage bandwidth (250 MB s−1). 
To exploit this, we used S3 buckets as a data buffering and streaming 
system to transfer data between instances following methods devel-
oped in a previous cloud architecture (https://github.com/FredHutch/
sra-pipeline). This, combined with splitting of FASTQ files into individ-
ual blocks, effectively eliminated file input/output (i/o) as a bottleneck, 
as the available i/o is multiplied per running instance (conceptually 
analogous to a RAID0 configuration or a Hadoop distributed file sys-
tem52).

Using S3 as a buffer also allowed us to decouple the input and out-
put of each module. S3 storage is cheap enough that in the event of 

unexpected issues (for example, exceeding EC2 quotas) we could 
resolve system problems in real time and resume data processing. For 
example, shutting down the align modules to hotfix a genome indexing 
problem without having to re-run the dl modules, or if an alignment 
instance is killed by a Spot termination, only that block needs to be 
reprocessed instead of the entire sequencing run.

Work queue and scheduling
The Serratus scheduler node controls the number of desired instances 
to be created for each component of the workflow, based on the avail-
able work queue. We implemented a pull-based work queue. After 
boot-up, each instance launches a number of ‘worker’ threads equal 
to the number of CPUs available. Each worker independently man-
ages itself via a boot script, and queries the ‘scheduler’ for available 
tasks. Upon completion of the task, the worker updates the scheduler 
of the result: success, or fail, and queries for a new task. Under ideal 
conditions, this allows for a worst-case response rate in the hundreds 
of milliseconds, keeping cluster throughput high. Each task typically 
lasts several minutes depending on the pangenome.

The scheduler itself was implemented using Postgres (for persistence 
and concurrency) and Flask (to pool connections and translate REST 
queries into SQL). The Flask layer allowed us to scale the cluster past 
the number of simultaneous sessions manageable by a single Postgres 
instance. The work queue can also be managed manually by the user, 
to perform operations such as re-attempting the downloading of an 
SRA accession after a failure or to pause an operation while debug-
ging. Up to 300,000 SRA jobs can be processed in the work queue per 
batch process.

The system is designed to be fully self-scaling. An ‘autoscaling con-
troller’ was implemented, which scales-in or scales-out the desired 
number of instances per task every five minutes on the basis of the work 
queue. As a backstop, when all workers on an instance fail to receive 
work instructions from the scheduler, the instance self shuts-down. 
Finally a ‘job cleaner’ component checks the active jobs against cur-
rently running instances. If an instance has disappeared owing to SPOT 
termination or manual shutdown, it resets the job allowing it to be 
processed up by the next available instance.

To monitor cluster performance in real-time, we used Prometheus 
(v2.5.0) and node exporter to retrieve CPU, disk, memory and network-
ing statistics from each instance, to expose performance information 
about the work queue, and Python exporter to export information from 
the Flask server. This allowed us to identify and diagnose performance 
problems within minutes to avoid costly overruns.

Generating viral summary reports
We define a viral pangenome as the entire collection of reference 
sequences belonging to a taxonomic viral family, which may contain 
both full-length genomes and sequence fragments such as those 
obtained by RdRP amplicon sequencing.

We developed a Summarizer module written in Python to provide a 
compact, human- and machine-readable synopsis of the alignments 
generated for each SRA dataset. The method was implemented in Ser-
ratus_summarizer.py for nucleotide alignment and Serratus_psum-
marizer.py for amino acid alignments. Reports generated by the 
Summarizer are text files with three sections described in detail online 
(https://github.com/ababaian/serratus/wiki/.summary-Reports). In 
brief, each contains a header section with alignment metadata and 
one-line summaries for each virus family pangenome, reference 
sequence and gene, respectively, with gene summaries provided for 
protein alignments only.

For each summary line we include descriptive statistics gathered 
from the alignment data such as the number of aligned reads, esti-
mated read depth, mean alignment identity and coverage; that is, the 
distribution of reads across each reference sequence or pangenome. 
Coverage is measured by dividing a reference sequence into 25 equal 
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bins and depicted as an ASCII text string of 25 symbols, one per bin; 
for example oaooomoUU:oWWUUWOWamWAAUW. Each symbol rep-
resents log2(n + 1), where n is the number of reads aligned to a bin in 
this order _.:uwaomUWAOM^. Thus, ‘_’ indicates no reads, ‘.’ exactly one 
read, ‘:’ two reads, ‘u’ 3–4 reads, ‘w’ 5–7 reads and so on; ‘^’ represents 
>213 = 8,192 reads in the bin. For a pangenome, alignments to its refer-
ence sequences are projected onto a corresponding set of 25 bins. For 
a complete genome, the projected pangenome bin number 1, 2, …, 25 
is the same as the reference sequence bin number. For a fragment, a 
bin is projected onto the pangenome bin implied by the alignment of 
the fragment to a complete genome. For example, if the start of a frag-
ment aligns halfway into a complete genome, bin 1 of the fragment is 
projected to bin floor(25/2) = 12 of the pangenome. The introduction 
of pangenome bins was motivated by the observation that bowtie2 
selects an alignment at random when there are two or more top-scoring 
alignments, which tends to distribute coverage over several reference 
sequences when a single viral genome is present in the reads. Coverage 
of a single reference genome may therefore be fragmented, and binning 
to a pangenome better assesses coverage over a putative viral genome in 
the reads while retaining pangenome sequence diversity for detection.

Identification of viral families within a sequencing dataset
The Summarizer implements a binary classifier predicting the pres-
ence or absence of each virus family in the query on the basis of 
pangenome-aligned short reads. For a given family F, the classifier 
reports a score in the range [0,100] with the goal of assigning a high 
score to a dataset if it contains F and a low score if it does not. Setting a 
threshold on the score divides datasets into disjoint subsets represent-
ing predicted positive and negative detections of family F. The choice 
of threshold implies a trade-off between false positives and false nega-
tives. Sorting by decreasing score ranks datasets in decreasing order 
of confidence that F is present in the reads.

Naively, a natural measure of the presence of a virus family is the 
number of alignments to its reference sequences. However, alignments 
may be induced by non-homologous sequence similarity, for example 
low-complexity sequence.

The score for a family was therefore designed to reflect the overall 
coverage of a pangenome because coverage across all or most of a 
pangenome is more likely to reflect true homology; that is, the presence 
of a related virus. Ideally, coverage would be measured individually for 
each base in the reference sequence, but this could add undesirable 
overhead in compute time and memory for a process that is executed 
in the Linux alignment pipe (FASTQ decompression → aligner → Sum-
marizer → alignment file compression). Coverage was therefore meas-
ured by binning as described above, which can be implemented with 
minimal overhead.

A virus that is present in the reads with coverage too low to enable an 
assembly may have less practical value than an assembled genome. Also, 
genomes with lower identity to previously known sequences will tend 
to contain more novel biological information than genomes with high 
identity but highly diverged genomes will tend to have fewer aligned 
reads. With these considerations in mind, the classifier was designed 
to give higher scores when coverage is high, read depth is high and/or 
identity is low. This was accomplished as follows. Let H be the number 
of bins with at least 8 alignments to F, and L be the number of bins with 
from 1 to 7 alignments. Let S be the mean alignment percentage identity, 
and define the identity weight w = (S/100)−3, which is designed to give 
higher weight to lower identities, noting that w is close to 1 when iden-
tity is close to 100% and increases rapidly at lower identities. The clas-
sification score for family F is calculated as ZF = max(w(4H + L)),100). By 
construction, ZF has a maximum of 100 when coverage is consistently 
high across a pangenome, and is also high when identity is low and 
coverage is moderate, which may reflect high read depth but many 
false negative alignments due to low identity. Thus, ZF is greater than 
zero when there is at least one alignment to F and assigns higher scores 

to SRA datasets that are more likely to support successful assembly of 
a virus belonging to F.

Sensitivity to novel viruses as a function of identity
We aimed to assess the sensitivity of our pipeline as a function of 
sequence identity by asking what fraction of novel viruses is detected 
at increasingly low identities compared to the reference sequences used 
for the search. Several variables other than identity affect sensitivity, 
including read length, whether reads are mate-paired, sequencing 
error rate, coverage bias and the presence of other similar viruses that 
may cause some variants to be unreported in the contigs. Coverage 
bias can render a virus with high average read depth undetectable, 
in particular if the query is RdRP-only and the RdRP gene has low 
coverage or is absent from the reads. Successful detection might be 
defined in different ways, depending on the goals of the search; for 
example, a single local alignment of a reference to a read (maximiz-
ing sensitivity, but not always useful in practice); a microassembled 
palmprint; a full assembly contig that contains a complete palmprint 
or otherwise classifiable fragment of a marker gene; or an assembly 
of a complete genome. We assessed alignment sensitivity of bowtie2 
--very-sensitive-local and Serratus-optimized DIAMOND14 as a function 
of identity by simulating typical examples in a representative scenario: 
unpaired reads of length 100 with a base call error rate of 1%. We manu-
ally selected test-reference pairs of RefSeq complete Ribovirus genomes 
at RdRP amino acid identities 100%, 95% … 20%, generating simulated 
length-100 reads at uniformly distributed random locations in the test 
genome with a mean coverage of 1,000×. For bowtie2, the complete 
reference genome was used as a reference; for DIAMOND the reference 
was the translated amino acid sequence of the RdRP gene (400 amino 
acids), which was identified by aligning to the ‘wolf18’ dataset. These 
choices model the coronavirus pangenome used as a bowtie2 query 
and the rdrp1 protein reference used as a DIAMOND query, respectively. 
Sensitivity was assessed as the fraction of reads aligned to the reference. 
With bowtie2, the number of unmapped reads reflects a combina-
tion of lack of alignment sensitivity and divergence in gene content as 
some regions of the genome may lack homology to the reference. With 
DIAMOND, the number of unmapped reads reflects a combination of 
lack of alignment sensitivity and the fraction of the genome that is not 
RdRP, which varies by genome length 1g. They show that the fraction 
of aligned reads by bowtie2 drops to around 2% to 4% at 90% RdRP 
amino acid identity, and maps no reads for most of the lower identity 
test–reference pairs. DIAMOND maps around 5% to 10% of reads down 
to 50% RdRP amino acid identity, then less than 1% at lower identities; 
around 30% to 35% is the lower limit of practical detection.

Defining viral pangenomes and the SRA search space
Nucleotide search pangenomes. To create a collection of viral 
pangenomes, a comprehensive set of complete and partial genomes 
representing the genetic diversity of each viral family, we used two 
approaches.

For Coronaviridae, we combined all RefSeq (n = 64) and GenBank 
(n = 37,451) records matching the NCBI Nucleotide53 server query 
“txid11118[Organism:exp]” (date accessed: 1 June 2020). Sequences 
of fewer than 200 nt were excluded as well as sequences identified 
to contain non-CoV contaminants during preliminary testing (such 
as plasmid DNA or ribosomal RNA fragments). Remaining sequences 
were clustered at 99% identity with UCLUST (USEARCH: v11.0.667)54 and 
masked by Dustmasker (ncbi-blast:2.10.0) (--window 30 and --window 
64)55. The final query contained 10,101 CoV sequences (accessions 
in Supplementary Table 1a; masked coordinates in Supplementary 
Table 1b). SeqKit (v0.15) was used for working with fasta files56.

For all other vertebrate viral family pangenomes, RefSeq sequences 
(n = 2,849) were downloaded from the NCBI Nucleotide server with the 
query "Viruses[Organism] AND srcdb refseq[PROP] NOT wgs[PROP] 
NOT cellular organisms[ORGN] NOT AC 000001:AC 999999[PACC] 
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AND ("vhost human"[Filter] AND "vhost vertebrates"[Filter])" (date 
accessed: 17 May 2020). Retroviruses (n = 80) were excluded as prelimi-
nary testing yielded excessive numbers of alignments to transcribed 
endogenous retroviruses. Each sequence was annotated with its taxo-
nomic family according to its RefSeq record; those for which no family 
was assigned by RefSeq (n = 81) were designated as ‘unknown’.

The collection of these pangenomes was termed ‘cov3m’, and was 
the nucleotide sequence reference used for this study.

Amino acid viral RdRP search panproteome. For the translated- 
nucleotide search of viral RNA-dependent RNA polymerase (RdRP; 
hereinafter viral RdRP is implied) we combined sequences from several 
sources. (1) The ‘wolf18’ collection is a curated snapshot (around 2018) 
of RdRP from GenBank (ref. 19 accessed: ftp://ftp.ncbi.nlm.nih.gov/pub/
wolf/_suppl/rnavir18/RNAvirome.S2.afa). (2) The ‘wolf20’ collection 
is RdRPs from assembled from marine metagenomes (ref. 7 accessed: 
ftp://ftp.ncbi.nlm.nih.gov/pub/wolf/_suppl/yangshan/gb_rdrp.afa). 
(3) All viral GenBank protein sequences were aligned with DIAMOND 
--ultra-sensitive14 against the combined wolf18 and wolf20 sequences 
(E-value < 1 × 10−6). These produced local alignments that contained 
truncated RdRP, so each RdRP-containing GenBank sequence was then 
re-aligned to the wolf18 and wolf20 collection to ‘trim’ them to ‘wolf’ 
RdRP boundaries. (4) The above algorithm was also applied to all viral 
GenBank nucleotide records to capture additional RdRP not annotated 
as such by GenBank. A region of HCV capsid protein shares similarity 
to HCV RdRP; sequences annotated as HCV capsid were therefore re-
moved. Eight novel coronavirus RdRP sequences identified in a pilot 
experiment were added manually. The combined RdRP sequences 
from the above collections were clustered (UCLUST) at 90% amino 
acid identity and the resulting representative sequences (centroids, 
n = 14,653) used as the rdrp1 search query.

In addition, we added delta virus antigen proteins from NC 001653, 
M21012, X60193, L22063, AF018077, AJ584848, AJ584847, AJ584844, 
AJ584849, MT649207, MT649208, MT649206, NC 040845, NC 040729, 
MN031240, MN031239, MK962760, MK962759 and eight additional 
homologues we identified in a pilot experiment.

SRA search space and queries. To run Serratus, a target list of SRA 
run accessions is required. We defined 11 (not-mutually exclusive) 
queries as our search space, which were named human, mouse, mam-
mal, vertebrate, invertebrate, eukaryotes, prokaryotes/others, bat 
(including genomic sequences), virome, metagenome and mamma-
lian genome (Supplementary Table 1c). Our search was restricted to 
Illumina sequencing technologies and to RNA-seq, meta-genomic and 
meta-transcriptome library types for these organisms (except for the 
mammalian genome query, which was genome or exome). Before 
each Serratus deployment, target lists were depleted of accessions 
already analysed. Reprocessing of a failed accession was attempted 
at least twice. In total, we aligned 3,837,755/4,059,695 (94.5%) of the 
runs in our nucleotide-pangenome search (around May 2020) and 
5,686,715/5,780,800 (98.37%) of the runs in our translated-nucleotide 
RdRP search (around January 2021).

User interfaces for the Serratus databases
We implemented an on-going, multi-tiered release policy for code and 
data generated by this study, as follows. All code, electronic notebooks 
and raw data are immediately available at https://github.com/ababa-
ian/serratus and on the s3://serratus-public bucket, respectively. Upon 
completion of a project milestone, a structured data release is issued 
containing raw data into our viral data warehouse s3://lovelywater/. 
For example, the .bam nucleotide alignment files from 3.84 million 
SRA runs are stored in s3://lovelywater/bam/X.bam; and the protein 
.summary files are in s3://lovelywater/psummary/X.psummary, where 
X is a SRA run accession. These structured releases enable downstream 
and third-party programmatic access to the data.

Summary files for every searched SRA dataset are parsed into a pub-
licly accessible AWS Relational Database (RDS) instance that can be 
queried remotely via any PostgreSQL client. This enables users and 
programs to perform complex operations such as retrieving summaries 
and metadata for all SRA runs matching a given reference sequence 
with above a given classifier score threshold. For example, one can 
query for all records containing at least 20 aligned reads to hepatitis 
delta virus (NC 001653.2) and the associated host taxonomy for the 
corresponding SRA datasets:

SELECT sequence_accession, run_id, tax_id, n_readsFROM nsequence 
JOINsrarun ON (nsequence.run_id = srarun.run) WHERE n_reads >= 20

For users unfamiliar with SQL, we developed Tantalus (https://github.
com/serratus-bio/tantalus, an R programming-language package that 
directly interfaces the Serratus PostgreSQL database to retrieve sum-
mary information as data-frames. Tantalus also offers functions to 
explore and visualize the data.

Finally, the Serratus data can be explored via a graphical web inter-
face by accession, virus or viral family at https://serratus.io/explorer. 
Under the hood, we developed a REST API to query the database from 
the website. The website uses React+D3.js to serve graphical reports 
with an overview of viral families found in each SRA accession match-
ing a user query.

All four data access interfaces are under ongoing development, 
receiving community feedback via their respective GitHub issue track-
ers to facilitate the translation of this data collection into an effective 
viral discovery resource. Documentation for data access methods is 
available at https://serratus.io/access.

Geocoding BioSamples. To generate the map in Fig. 1c, we parsed 
and extracted geographical information from all 16 million BioSample 
XML submissions57. Geographic information is either in the form of 
coordinates (latitude and longitude) or freeform text (for example, 
‘France’, ‘Great Lakes’). For each BioSample, coordinate extraction 
was attempted using regular expressions. If that failed, text extraction 
was attempted using a manually curated list of keywords that capture 
BioSample attribute names that are likely to contain geographical in-
formation. If that failed, then we were unable to extract geographical 
information for that BioSample. Geocoding the text to coordinates 
was done using Amazon Location Service on a reduced set of distinct 
filtered text values (52,028 distinct values from 2,760,241 BioSamples 
with potential geographical text). BioSamples with geocoded coor-
dinates were combined with BioSamples with submitted coordinate 
information to form a set of 5,325,523 geospatial BioSamples. This is 
then cross-referenced with our subset of SRA accessions with an RdRP 
match to generate the figure.

All intermediate and resulting data from this step are stored on the 
SQL database described above. Development work is public at https://
github.com/serratus-bio/biosample-sql.

Viral alignment, assembly and annotation
Upon identification of CoV reads in a run from alignment, we assem-
bled 52,772 runs containing at least 10 reads that aligned to our CoV 
pangenome or at least 2 reads with CoV-positive k-mers16. A total of 
11,120 of the resulting assemblies contained identifiable CoV contigs, 
of which only 4,179 (37.58%) contained full-length CoV RdRP (Sup-
plementary Table 1d). The discrepancy between alignment-positive, 
assembly-positive and RdRP-positive libraries arises owing to random 
sampling of viral reads and assembly fragmentation. In this respect, 
alignment or k-mer based methods are more sensitive than assembly 
in detecting for the presence of low-abundance viruses (genome cover-
age < 1) with high identity to a reference sequence. Scoring libraries for 
genome coverage and depth is a good predictor of ultimate assembly 
success (Extended Data Fig. 3); thus, it can be used to efficiently pri-
oritize computationally expensive assembly in the future, as has been 
previously demonstrated for large-scale SRA alignment analyses58.
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https://serratus.io/access
https://github.com/serratus-bio/biosample-sql
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DIAMOND optimization and output. To optimize DIAMOND14 for small 
(<10 MB) databases such as the RdRP search database, we built a proba-
bilistic hash set that stores 8-bit hash values for the database seeds, us-
ing SIMD instructions for fast probing. This index is loaded as a memory 
mapped file to be shared among processes and allows us to filter the 
query reads for seeds contained in the database, thus omitting the full 
construction of the query seed table. We also eliminated the overhead 
of building seed distribution histograms that is normally required to 
allocate memory and construct the query table in a single pass over the 
data using a deque-like data structure. In addition, query reads were not 
masked for simple repeats, as the search database is already masked. 
These features are available starting from DIAMOND v2.0.8 with the 
command line flags --target-indexed --masking 0. In a benchmark of 
4 sets of 1 million reads from a bat metagenome (ERR2756788), the 
implemented optimization produced a speed-up of ×1.47 and reduced 
memory use by 64%, compared to the public unmodified DIAMOND 
v2.0.6, using our optimized set of parameters in both cases (see 1.1.1). 
Together, the optimized parameters and implementation reduced 
DIAMOND runtime against RdRP search from 197.96 s (s.d. = 0.18 s), to 
21.29 s (s.d.  = 0.23 s) per million reads, a speed-up of a factor of 9.3. This 
effectively reduced the computational cost of translated-nucleotide 
search for Serratus from US$0.03 to US$0.0042 per library.

DIAMOND output files (we label .pro) were specified with the com-
mand -f 6 qseqid qstart qend qlen qstrand sseqid sstart send slen pident 
evalue cigar qseq_translated full_qseq full_qseq_mate.

coronaSPAdes. RNA viral genome assembly faces several distinct 
challenges stemming from technical and biological bias in sequencing 
data. During library preparation, reverse transcription introduces 50 
end coverage bias, and GC-content skew and secondary structures 
lead to unequal PCR amplification59. Technical bias is confounded by 
biological complexity such as intra-sample sequence variation due to 
transcript isoforms and/or to the presence of multiple strains.

To address the assembly challenges specific to RNA viruses, we 
developed coronaSPAdes (v3.15.3), which is described in detail in a 
companion manuscript25. In brief, rnaviralSPAdes and the more spe-
cialized variant, coronaSPAdes, combines algorithms and methods 
from several previous approaches based on metaSPAdes60, rnaSPAdes61 
and metaviralSPAdes62 with a HMMPathExtension step. coronaSPAdes 
constructs an assembly graph from an RNA-seq dataset (transcrip-
tome, meta-transcriptome, and meta-virome are supported), removing 
expected sequencing artifacts such as low complexity (poly-A/poly-T) 
tips, edges, single-strand chimeric loops or double-strand hairpins61 
and subspecies-bases variation62.

To deal with possible misassemblies and high-covered sequenc-
ing artefacts, a secondary HMMPathExtension step is performed to 
leverage orthogonal information about the expected viral genome. 
Protein domains are identified on all assembly graphs using a set of viral 
hidden Markov models (HMMs), and similar to biosyntheticSPAdes63, 
HMMPathExtension attempts to find paths on the assembly graph that 
pass through significant HMM matches in order.

coronaSPAdes is bundled with the Pfam SARS-CoV-2 set of HMMs64, 
although these may be substituted by the user. This latter feature of 
coronaSPAdes was used for HDV assembly, in which the HMM model 
of HDAg, the hepatitis delta antigen, was used instead of the Pfam 
SARS-CoV-2 set. Note that despite the name, the HMMs from this set 
are quite general, modelling domains found in all coronavirus genera in 
addition to RdRP, which is found in many RNA virus families. Hits from 
these HMMs cover most bases in most known coronavirus genomes, 
enabling the recovery of strain mixtures and splice variants.

Microassembly of RdRP-aligned reads. Reads aligned by DIAMOND14 
in the translated-nucleotide RdRP search are stored in the .pro alignment 
file. All sets of mapped reads (3,379,127 runs) were extracted, and each 

non-empty set was assembled with rnaviralSPAdes (v3.15.3)25 using de-
fault parameters. This process is referred to as ‘microassembly’, as a col-
lection of DIAMOND hits is orders of magnitude smaller than the original 
SRA accession (40 ± 534 KB compressed size, ranging from a single read 
up to 53 MB). Then bowtie251 (default parameters) was used to align the 
DIAMOND read hits of an accession back to the microassembled contigs 
of that accession. Palmscan (v1.0.0, -rdrp -hicon)18 was run on microas-
sembled contigs, resulting in high-confidence palmprints for 337,344 
contigs. Finally mosdepth (v0.3.1)65 was used to calculate a coverage 
pileup for each palmprint hit region within microassembled contigs.

Classification of assembled RdRP sequences. Our methods for RdRP 
classification are described and validated in a companion paper18.  
In brief, we defined a barcode sequence, the polymerase palmprint (PP), 
as an approximately 100-amino-acid segment of the RdRP palm subdo-
main delineated by well-conserved catalytic motifs. We implemented 
an algorithm, Palmscan, to identify palmprint sequences and discrimi-
nate RdRPs from reverse transcriptases. The combined set of RdRP 
palmprints from public databases and our assemblies was classified by 
clustering into operational taxonomic units (OTUs) at 90%, 75% and 40% 
identity, giving species-like, genus-like and family-like clusters (sOTUs, 
gOTUs and fOTUs), respectively. Tentative taxonomy of novel OTUs 
was assigned by aligning to palmprints of named viruses and taking a 
consensus of the top hits above the identity threshold for each rank.

Quality control of assembled RdRP sequences. Our goal was to 
identity novel viral RdRP sequences and novel sOTUs in SRA libraries. 
From this perspective, we considered the following to be erroneous 
to varying degrees: sequences that are (a) not polymerases; (b) not 
viral; (c) with differences due to experimental artefacts; or (d) with 
sufficient differences to cause a spurious inference of a novel sOTU. 
We categorized potential sources of such errors and implemented 
quality control procedures to identify and mitigate them, as follows.

Point errors are single-letter substitution and indel errors that may 
be caused by PCR or sequencing per se. Random point errors are not 
reproduced in multiple non-PCR duplicate reads and are unlikely to 
assemble because such errors almost always induce identifiable struc-
tures in the assembly graph (tips and bubbles) that are pruned during 
graph simplification. In rare cases, a contig may contain a read with 
random point errors. Such contigs will have low coverage of around 1,  
and we therefore recorded coverage as a quality control metric and 
assessed whether low-coverage assemblies were anomalous compared 
to high-coverage assemblies by measures such as the frequencies with 
which they are reproduced in multiple libraries compared to exactly 
one library, finding no noticeable difference when coverage is low.

Chimeras of polymerases from different species could arise from PCR 
amplification or assembly. We used the UCHIME2 (usearch v8.0.1623) 
algorithm66 to screen assembled palmprint sequences, finding no 
high-scoring putative chimeras. Mosaic sequences formed by joining 
a polymerase to unrelated sequence would either have an intact palm-
print, in which case the mosaic would be irrelevant to our analysis, or 
would be rejected by Palmscan owing to the lack of delimiting motifs.

Reverse transcriptases are homologous to RdRP. Retroviral insertions 
into host genomes induce ubiquitous sequence similarity between 
host genomes and viral RdRP. Palmscan was designed to discriminate 
RdRP from sequences of reverse transcriptase origin. Testing on a large 
decoy set of non-RdRP sequences with recognizable sequence similar-
ity showed that the Palmscan false discovery rate for RdRP identifica-
tion is 0.001. We estimated the probability of false positive matches 
in unrelated sequence by generating sufficient random nucleotide 
and amino acid sequences to show that the expected number of false 
positive palmprint identifications is zero in a dataset of comparable 
size to our assemblies. We also regard the low observed frequency of 
palmprints in DNA whole-genome sequencing data (in 2.6 Pbp or 25.8% 
of reads, accounted for 100 known palmprints and 95 novel palmprints 
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or 0.13% of the total identified) as a de facto confirmation of the low 
probability false positives in unrelated sequence.

Endogenous viral elements (EVEs; that is, insertions of viral sequence 
into host genomes that are potentially degraded and non-functional) 
cannot be distinguished from viral genomes on the basis of the palmprint 
sequence alone. To assess the frequency of EVEs in our data, we re-assem-
bled 890 randomly chosen libraries yielding one or more palmprints 
using all reads, extracted the 23,530 resulting contigs with a positive 
palmprint hit by Palmscan, and classified them using Virsorter2 (v2.1)67. 
Of these contigs, 11,914 were classified as viral, confirming the Palmscan 
identification; 49 as Viridiplantae (green plants); 46 as Metazoa; 25 as 
Fungi and the remainder were unclassified. Thus, 120/12,034 = 1% of 
the classified contigs were predicted as non-viral, suggesting that the 
frequency of EVEs in the reported palmprints is around 1%.

Annotation of CoV assemblies. Accurate annotation of CoV genomes 
is challenging owing to ribosomal frameshifts and polyproteins that are 
cleaved into maturation proteins68, and thus previously annotated viral 
genomes offer a guide to accurate gene-calls and protein functional 
predictions. However, although many of the viral genomes we were 
likely to recover would be similar to previously annotated genomes in 
Refseq or GenBank, we anticipated that many of the genomes would be 
taxonomically distant from any available reference. To address these 
constraints, we developed an annotation pipeline called DARTH (ver-
sion maul)69 which leverages both reference-based and ab initio an-
notation approaches.

In brief, DARTH consists of the following phases: standardize 
the ordering and orientation of assembly contigs using conserved 
domain alignments, perform reference-based annotation of the 
contigs, annotate RNA secondary structure, ab initio gene-calling, 
generate files for aiding assembly and annotation diagnostics, and 
generate a master annotation file. It is important to put the contigs 
in the ‘expected’ orientation and ordering to facilitate comparative 
analysis of synteny and as a requirement for genome deposition. To 
perform this standardization, DARTH generates the six-frame trans-
lation of the contigs using the transeq (EMBOSS:6.6.0.0)70 and uses 
HMMER3 (v3.3.2)71 to search the translations for Pfam domain mod-
els specific to CoV64. DARTH compares the Pfam accessions from the 
HMMER alignment to the NCBI SARS-CoV-2 reference genome (NCBI 
Nucleotide accession NC_045512.2) to determine the correct order-
ing and orientation, and produces an updated assembly FASTA file. 
DARTH performs reference-based annotation using VADR (v1.1)72, which 
provides a set of genome models for all CoV RefSeq genomes73. VADR 
provides annotations of gene coordinates, polyprotein cleavage sites, 
and functional annotation of all proteins. DARTH supplements the 
VADR annotation by using Infernal74 to scan the contigs against the 
SARS-CoV-2 Rfam release75 which provides updated models of CoV 50 
and 30 untranslated regions (UTRs) along with stem-loop structures 
associated with programmed ribosomal frame-shifts. Although VADR 
provides reference-based gene-calling, DARTH also provides ab initio 
gene-calling by using FragGeneScan (v1.31)76, a frameshift-aware gene 
caller. DARTH also generates auxiliary files that are useful for assembly 
quality and annotation diagnostics, such as indexed BAM files created 
with SAMtools (v1.7)77 representing self-alignment of the trimmed 
reads to the canonicalized assembly using bowtie251, and variant-calls 
using bcftools from SAMtools. DARTH generates these files so that the 
can be easily loaded into a genome browser such as JBrowse78 or IGV79. 
As the final step DARTH generates a single Generic Feature Format 
(GFF) 3.0 file80 containing combined set of annotation information 
described above, ready for use in a genome browser, or for submitting 
the annotation and sequence to a genome repository.

Phage assembly. Each metagenomic dataset was individually 
de-novo-assembled using MEGAHIT (v1.2.9)81, and filtered to remove 
contigs smaller than 1 kb in size. ORFs were then predicted on all contigs 

using Prodigal (v2.6.3)82 with the following parameters: -m -p meta. 
Predicted ORFs were initially annotated using USEARCH54 to search all 
predicted ORFs against UniProt83, UniRef90 and KEGG84. Sequencing 
coverage of each contig was calculated by mapping raw reads back 
to assemblies using bowtie251. Terminase sequences from Al-Shayeb 
et al.42 were clustered at 90% amino acid identity to reduce redundancy 
using CD-HIT (v4.8.1)85, and HMM models were built with hmmbuild 
(from the HMMER3 suite71) from the resulting set. Terminases in the 
assemblies from Serratus were identified using hmmsearch, retain-
ing representatives from contigs greater than 140 kb in size. Some 
examples of prophage and large phages that did not co-cluster with 
the sequences from Al-Shayeb et al. were also recovered because they 
were also present in a sample that contained the expected large phages. 
The terminases were aligned using MAFFT (v7.407)86 and filtered by 
TrimAL (v1.14)87 to remove columns comprising more than 50% gaps, 
or 90% gaps, or using the automatic gappyout setting to retain the 
most conserved residues. Maximum likelihood trees were built from 
the resulting alignments using IQTREE (v1.6.6)88.

Deploying the assembly and annotation workflow. The Serratus 
search for known or closely related viruses identified 37,131 libraries 
(14,304 by nucleotide and 23,898 by amino acid) as potentially posi-
tive for CoV (score ≥ 20 and ≥10 reads). To supplement this search we 
also used a recently developed index of the SRA called STAT16, which 
identified an additional 18,584 SRA datasets not in the defined SRA 
search space. The STAT BigQuery (accessed 24 June 2020) was: WHERE 
tax id=11118 AND total count >1.

We used AWS Batch to launch thousands of assemblies of NCBI acces-
sions simultaneously. The workflow consists of four standard parts: a 
job queue, a job definition, a compute environment, and finally, the 
jobs themselves. A CloudFormation template (https://gitlab.pasteur.
fr/rchikhi_pasteur/serratus-batch-assembly/-/blob/10934001/tem-
plate/template.yaml) was created for building all parts of the cloud 
infrastructure from the command line. The job definition specifies a 
Docker image, and asks for 8 virtual CPUs (vCPUs, corresponding to 
threads) and 60 GB of memory per job, corresponding to a reason-
able allocation for coronaSPAdes. The compute environment is the 
most involved component. We set it to run jobs on cost-effective Spot 
instances (optimal setting) with an additional cost-optimization strat-
egy (SPOT_CAPACITY_OPTIMIZED setting), and allowing up to 40,000 
vCPUs total. In addition, the compute environment specifies a launch 
template which, on each instance, (i) automatically mounts an exclusive 
1 TB EBS volume, allowing sufficient disk space for several concurrent 
assemblies, and (ii) downloads the 5.4 GB CheckV (v0.6.0)89 database, 
to avoid bloating the Docker image.

The peak AWS usage of our Batch infrastructure was around 28,000 
vCPUs, performing around 3,500 assemblies simultaneously. A total 
of 46,861 accessions out of 55,715 were assembled in a single day. 
They were then analysed by two methods to detect putative CoV con-
tigs. The first method is CheckV89, followed selecting contigs associ-
ated to known CoV genomes. The second method is a custom script 
(https://gitlab.pasteur.fr/rchikhi_pasteur/serratus-batch-assembly/-/
blob/10934001/stats/bgc_parse_and_extract.py) that parses coronaS-
PAdes BGC candidates and keeps contigs containing CoV domain(s). 
For each accession, we kept the set of contigs obtained by the first 
method (CheckV) if it is non-empty, and otherwise we kept the set of 
contigs from the second method (BGC).

A majority (76%) of the assemblies were discarded for one of the 
following reasons: (i) no CoV contigs were found by either filtering 
method; (ii) reads were too short to be assembled; (iii) Batch job or 
SRA download failed; or (iv) coronaSPAdes ran out of memory. A total 
of 11,120 assemblies were considered for further analysis.

The average cost of assembly was between US$0.30 and US$0.40 
per library, varying depending on library type (RNA-seq versus 
metagenomic). This places an estimate of 46–95-fold higher cost for 
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assembly alone compared to a cost of US$0.0042 or US$0.0065 for an 
alignment-based search.

Taxonomic and phylogenetic analyses
Taxonomy prediction for coronavirus genomes. We developed a 
module, SerraTax, to predict taxonomy for CoV genomes and assem-
blies (https://github.com/ababaian/serratus/tree/master/containers/
serratax). SerraTax was designed with the following requirements 
in mind: provide taxonomy predictions for fragmented and partial 
assemblies in addition to complete genomes; report best-estimate 
predictions balancing over-classification and under-classification (too 
many and too few ranks, respectively); and assign an NCBI Taxonomy 
Database90 identifier (TaxID).

Assigning a best-fit TaxID was not supported by any previously pub-
lished taxonomy prediction software to the best of our knowledge; 
this requires assignment to intermediate ranks such as sub-genus and 
ranks below species (commonly called strains, but these ranks are 
not named in the Taxonomy database), and to unclassified taxa, for 
example, TaxID 2724161, unclassified Buldecovirus, in cases in which 
the genome is predicted to fall inside a named clade but outside all 
named taxa within that clade.

SerraTax uses a reference database containing domain sequences 
with TaxIDs. This database was constructed as follows. Records anno-
tated as CoV were downloaded from UniProt83, and chain sequences 
were extracted. Each chain name, for example Helicase, was considered 
to be a separate domain. Chains were aligned to all complete coro-
navirus genomes in GenBank using UBLAST (usearch: v11.0.667)54 to 
expand the repertoire of domain sequences. The reference sequences 
were clustered using UCLUST54 at 97% sequence identity to reduce 
redundancy.

For a given query genome, ORFs are extracted using the getorf 
(EMBOSS:6.6.0) software70. ORFs are aligned to the domain references 
and the top 16 reference sequences for each domain are combined with 
the best-matching query ORF. For each domain, a multiple alignment of 
the top 16 matches plus query ORF is constructed on the fly by MUSCLE 
(v3.8.3191) and a neighbour-joining tree is inferred from the alignment, 
also using MUSCLE. Finally, a consensus prediction is derived from 
the placement of the ORF in the domain trees. Thus, the presence of a 
single domain in the assembly suffices to enable a prediction; if more 
domains are present they are combined into a consensus.

Taxonomic assignment by phylogenetic placement. To generate an 
alternate taxonomic annotation of an assembled genome, we created 
a pipeline based on phylogenetic placement, SerraPlace.

To perform phylogenetic placement, a reference phylogenetic 
tree is required. To this end, we collected 823 reference amino acid 
RdRP sequences, spanning all Coronaviridae. To this set we added 
an outgroup RdRP sequence from the Torovirus family (NC 007447). 
We clustered the sequences to 99% identity using USEARCH (ref. 54, 
UCLUST algorithm, v11.0.667), resulting in 546 centroid sequences. 
Subsequently, we performed multiple sequence alignment on the 
clustered sequences using MUSCLE. We then performed maximum 
likelihood tree inference using RAxML-NG (ref. 92, ‘PROTGTR+FO+G4’, 
v0.9.0), resulting in our reference tree.

To apply SerraPlace to a given genome, we first use HMMER (ref. 71,  
v3.3) to generate a reference HMM, based on the reference alignment.  
We then split each contig into ORFs using esl-translate, and use 
hmmsearch (P value cut-off 0.01) and seqtk (commit 7c04ce7) to identify  
those query ORFs that align with sufficient quality to the previously g 
enerated reference HMM. All ORFs that pass this test are considered 
valid input sequences for phylogenetic placement. This produces a set 
of likely placement locations on the tree, with an associated likelihood 
weight. We then use Gappa (v0.6.1,93) to assign taxonomic informa-
tion to each query, using the taxonomic information for the reference 
sequences. Gappa assigns taxonomy by first labelling the interior 

nodes of the reference tree by a consensus of the taxonomic labels 
of all descendant leaves of that node. If 66% of leaves share the same 
taxonomic label up to some level, then the internal node is assigned 
that label. Then, the likelihood weight associated with each sequence is 
assigned to the labels of internal nodes of the reference tree, according 
to where the query was placed.

From this result, we select that taxonomic label that accumulated the 
highest total likelihood weight as the taxonomic label of a sequence. 
Note that multiple ORFs of the same genome may result in a taxonomic 
label, in which case, we select the longest sequence as the source of the 
taxonomic assignment of the genome.

Phylogenetic inference. We performed phylogenetic inferences using 
a custom snakemake (v6.6.0) pipeline (available at https://github.com/
lczech/nidhoggr), using ParGenes (v1.1.2)94. ParGenes is a tree search 
orchestrator, combining ModelTestNG (v0.1.3)95 and RAxML-NG, and 
enabling higher levels of parallelization for a given tree search.

To infer the maximum likelihood phylogenetic trees, we performed 
a tree search comprising 100 distinct starting trees (50 random, 50 
parsimony), as well as 1,000 bootstrap searches. We used ModelTest-NG 
to automatically select the best evolutionary model for the given data. 
The pipeline also automatically produces versions of the best maximum 
likelihood tree annotated with Felsenstein’s Bootstrap96 support values, 
and Transfer Bootstrap Expectation values97.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All Serratus data, raw and processed, are released into the public 
domain immediately in accordance with the Bermuda Principles and 
freely available at https://serratus.io/access. Assembled genomes for 
this study are available on GenBank under project PRJEB44047.

Code availability
Serratus (v0.3.0) is available at https://github.com/ababaian/serratus. 
Archival copies of all code and software generated for this study are 
freely available at https://github.com/serratus-bio. Electronic note-
books for experiments are available at https://github.com/ababaian/
serratus.
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Extended Data Fig. 1 | Overview of the Serratus infrastructure. a Schematic 
and data workflow (b) as described in the methods for sequence alignment.  
c The align module accepts either a nucleotide or protein sequence query.  
d A nucleotide alignment completion rate for Serratus shows stable and linear 
performance to complete 1.29 million SRA accessions in a 24-hour period and 
the e cost breakdown for this run. Compute costs between modules are an 
approximate comparison of CPU requirements of each step. The total average 
cost per completed SRA accession was US$0.0062 for nucleotide search or 
US$0.0042 for translated-nucleotide search. f Tukey boxplot of biological 

cross-validation to measure alignment sensitivity for bowtie2 (nucleotide 
search), DIAMOND14 (translated nucleotide search) or 32-mer for exact search. 
In brief, two RdRP sequences sharing the nominal amino acid identities form a 
”pair”. 100 bp reads were simulated from the coding sequence of one pair and 
mapped onto the second pair, with the fraction of reads mapped reported.  
A fraction of 0.5 indicates that half the simulated reads at the given RdRP 
percent identity are mappable and thus detectable (see Methods). For each of 
the 12 percent identity categories, n = 10 biologically independent RdRP pairs 
were analysed.
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Extended Data Fig. 2 | Analysis of palmprint contigs recovered by Serratus. 
a Length distribution of amino acid sequences in the rdrp1 query (upper 
histogram) and microassembled contigs (lower histogram, 
length=nucleotides/3). b Distribution of Palmscan confidence scores.  
c Observations of the 10 most frequent “super-motifs” (six well-conserved 
residues marked with asterisk) reported by Palmscan. d Kernel distribution 
and mean (white cross) of coverage vs. abundance (number of runs where a 
given palmprint is observed), showing that palmprints have similar underlying 
coverage distributions at all abundances. e Preston plot of distinct palmprints 
vs. abundance exhibiting similar, approximately log-log-linear relationships to 

totals at end-of-year 2015 to 2019 and final totals at approx. end of 2020 (all).  
f Preston plot of number of distinct palmprints observed in a given run vs. 
number of runs with 95% confidence interval. g Numbers of singletons and 
second observations (confirmations) at the end of each year showing that the 
growth in singletons is matched by a comparable growth in confirmations.  
h Kingdom predicted by Virsorter2 for RdRP+ contigs (by Palmscan) obtained 
by full assembly of 880 randomly chosen RdRP+ runs. i Number of palmprints 
in each phylum assigned by taxonomy (known) or predicted (novel). j Number 
of OTUs as a function of clustering identity.



Extended Data Fig. 3 | Distribution of select RNA virus families.  
a Histograms of datasets matching select RNA viral family by translated- 
nucleotide search against RdRP query, binned by the average amino acid 
identity. Score (gradient colouring) function approximates pangenome/gene 
coverage (see methods) used for manual inspection and to prioritize assembly. 
Interactive and queryable versions of these plots for extended virus families 
are available at https://serratus.io/explorer. b Relationship between the 
nucleotide pangenome score function and the subsequent assembly success 

(defined by the presence of an RdRP+ contig) measured from 52,772 libraries 
with reads aligning to Coronaviridae. c Histogram of all detected sOTUs 
classified to Riboviria order (>40% amino acid identity to a named species)  
with unclassified sOTUs not shown. Segmented bars (left) show the fraction of 
sOTUs with similarity to known sOTU, binned into intervals 90+ (>=90%, ~species), 
75+ (75% to 90%, ~genus), 50+ (50% to 75%, ~family), and <50% (~novel family). 
Complete multiple sequence alignments and tree files for per-order and 
per-family trees is available at https://serratus.io/trees.

https://serratus.io/explorer
https://serratus.io/trees
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Extended Data Fig. 4 | Genome organization of Coronaviridae and 
neighbours. a Length distribution for 11,120 assembled contigs classified as 
CoV-positive, showing a peak around the typical CoV genome length, 4,179 
(37.58%) of contigs also contained a match for RdRP. b Phylogram shown in 
Figure 3 showing the Mesoniviridae, Tobaniviridae, and Roniviridae outgroups. 

c Triangular matrix showing median RdRP sequence identities between 
selected Nidovirales and group-E sequences. d Hidden Markov Model (HMM) 
protein domain matches from the RdRp in exemplar sequences (contigs or 
GenBank sequences), grouped by genus. Novel sOTUs identified in this analysis 
indicated by a coloured circle.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Newly characterized delta virus and delta-virus-like 
genomes. Structure and organization of selected examples from the 14 delta 
virus-, 39 epsilon virus- and 311 zeta virus-like genomes identified in our study. 
a Similar to human delta virus (HDV), delta virus-like genomes from vertebrates 
(PmacDV SRR7910143; MmonDV SRR2136906; TgutDV SRR5001850; IchiDV 
SRR8954566 and BglaDV SRR8242383) and environmental datasets 
(SRR7286070 and SRR6943136) share similar predicted stable rod-like folding, 
a predicted ORF coding for the delta antigen (δAg) and a delta ribozyme (dvrbz) 
on each polarity. Folding of the circular DNA virus Porcine Circovirus 2 (PCV2) 
and a shuffled MmonDV sequence are shown as negative controls. b Epsilon 
virus-like genomes detected in invertebrates (SulaEV SRR8739608; GsulEV 
SRR7170939 and BaerEV SRR12300397) and environmental datasets 
(SRR8840728 and SRR6943136) show similar structure and organization to 

delta viruses, with one or two predicted ORFs (epsilon antigen or Ag) and two 
hammerhead ribozymes (hhrbz) in equivalent genomic regions. c Zeta virus-
like genomes detected in invertebrate (Ocassitermes sp. ZVs SRR8924823) and 
environmental datasets (SRR7286070, SRR6943136, SRR8840728, 
SRR6201737, SRR5864109 and SRR12063536) are smaller than delta and 
epsilon agents. Up to 90% of the zeta genomes have sizes multiple of 3 and 
predicted ORFs without stop codons, capable to encode endless tandem-
repeated zeta antigens in both polarities (ζAg+ and ζAg– shown as yellow and 
red arrows, respectively). Both genomic zeta polarities keep hhrbzs (shown as 
arrows overlapping the ORFs) similar to the epsilon ribozymes (Extended Fig 
6). Larger zeta virus-like genomes (>651 nt) were less abundant (7% of all zeta 
genomes) and frequently show stop codons, or their sizes are not multiple of 3.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Evolutionary history of delta-virus-like agents.  
a Consensus structures (weighted nucleotide conservation threshold of 90%) 
of delta virus ribozymes, including the 14 genomes described in this work.  
b Consensus structures of the two hammerhead ribozyme families (type III and 
extended-type III39) detected in epsilon and zeta agents. Most positions of 
epsilon and zeta motifs are sequence conserved for each ribozyme family.  
c MSA of the predicted antigen (N-term domain) from delta and epsilon agents 
(genomes detected in this study are indicated with a red asterisk). The 
antiparallel coiled-coil of the HDV is delimited with a grey box, and conserved 
residues involved in hydrophobic interactions are shown at the bottom40, 

supporting a highly divergent connection between delta and epsilon genomes. 
d Human HDV delta virus is known to contain a viroid-like domain related to the 
Pospiviroidae family of plant viroids. Both families of agents conserve a tertiary 
structure reminiscent of the E-loop 5S rRNA (nucleotides in green) and are 
replicated by the RNA Pol II of the host41. Pospiviroids, despite lacking hhrbzs, 
share with zeta genomes a small rod structure, and in some cases, the presence 
of predicted endless tandem-repeat ORFs, most notably in both polarities of 
numerous variants of the Hop Stunt Viroid (HSVd). Whereas viroids have been 
historically regarded as non-protein-coding RNAs, our reported observations 
warrant further investigation.



Extended Data Fig. 7 | Huge phage and Lak phage detail. Expanded view of 
maximum likelihood terminase large subunit protein phylogenetic trees for  
(a) the expansion of the Kabirphage clade by newly recovered sequences from 
different animal types (coloured dots). Red branches are public data recovered 
by Serratus, black branches indicate the previously reported genomes from42. 
b Publicly available Lak phage genomes98 with sequences of two newly 

reconstructed complete Lak megaphage genomes. These are the first reported 
Lak megaphages from dogs (assembled from faecal sample metagenome reads 
from Allaway et al.99). The genomes have identical terminase sequences (at the 
nucleotide level) although the dogs were in different housing areas and were 
sampled at different times (D. Allaway, personal communication).
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