
1

Assembling Genomes

BCH394P/364C Systems Biology / Bioinformatics

Edward Marcotte, Univ of Texas at Austin

Nature 409, 860-921(2001)

www.yourgenome.org/facts/timeline-the-human-genome-project

2

Beijing Genomics Institute

(Wikipedia)

“If it tastes good you should sequence it...
you should know what's in the genes of that species”

Wang Jun, Chief executive, BGI

The NovaSeq in the UT GSAF core generates

>1.4 terabases of sequence in a 1-day run

Illumina

 Many millions of 75-150 bp reads

3

 Thousands of 1,000 to 1,000,000 (ish) bp reads

“shotgun”
sequencing

“mapping”

4

(Translating the cloning jargon)

Twelve quick steps for genome assembly and annotation in the classroom

PLoS Comp Biology (2020), doi:10.1371/journal.pcbi.1008325

Contemporary genome assembly is fairly complex, but at its core

are assembly algorithms that grew from the shotgun concept

5

Beverly Micro “Pure White Hell” Jigsaw Puzzle (10,000,000,000 Piece)

Thinking about the basic shotgun concept

• Start with a very large set of random

sequencing reads

• How might we match up the

overlapping sequences?

• How can we assemble the overlapping
reads together in order to derive the

genome?

6

Thinking about the basic shotgun concept

• At a high level, the first genomes were

sequenced by comparing pairs of reads
to find overlapping reads

• Then, building a graph (i.e., a network)
to represent those relationships

• The genome sequence is a “walk”

across that graph

The “Overlap-Layout-Consensus” method

Overlap: Compare all pairs of reads
(allow some low level of mismatches)

Layout: Construct a graph describing the overlaps

Simplify the graph

Find the simplest path through the graph

Consensus: Reconcile errors among reads along that
path to find the consensus sequence

read

read

sequence
overlap

7

Building an overlap graph

EUGENE W. MYERS. Journal of Computational

Biology. Summer 1995, 2(2): 275-290

5’ 3’

Reads

Overlap graph

EUGENE W. MYERS. Journal of Computational

Biology. Summer 1995, 2(2): 275-290 (more or less)

Building an overlap graph

5’ 3’

8

EUGENE W. MYERS. Journal of Computational

Biology. Summer 1995, 2(2): 275-290 (more or less)

1. Remove all contained nodes & edges going to them

Simplifying an overlap graph

EUGENE W. MYERS. Journal of Computational

Biology. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph

2. Transitive edge removal:

Given A – B – D and A – D , remove A – D

9

EUGENE W. MYERS. Journal of Computational

Biology. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph

3. If un-branched, calculate consensus sequence

If branched, assemble un-branched bits and then decide
how they fit together

EUGENE W. MYERS. Journal of Computational

Biology. Summer 1995, 2(2): 275-290 (more or less)

Simplifying an overlap graph

“contig” (assembled contiguous sequence)

10

This basic strategy was used for most of
the early genomes.

Also useful: “mate pairs”

2 reads separated by a known distance

Contig #1 Contig #2

Contigs can be ordered using these paired reads

to produce “scaffolds”

Read #1

Read #2

DNA fragment of known size

GigAssembler (used to assemble the public
human genome project sequence)

Jim Kent David Haussler

Let’s take a little walk through history to see what they did…

11

Whole genome Assembly: big picture

http://www.nature.com/scitable/content/anatomy-of-whole-genome-assembly-20429

GigAssembler – Preprocessing

1. Decontaminating & Repeat Masking.

2. Aligning of mRNAs, ESTs, BAC ends & paired
reads against initial sequence contigs.

 psLayout → BLAT

3. Creating an input directory (folder) structure.

12

RepBase + RepeatMasker

GigAssembler: Build merged
sequence contigs (“rafts”)

13

Sequencing quality (Phred Score)

Sequencing quality (Phred Score)

http://en.wikipedia.org/wiki/Phred_quality_score

Base-calling
Error
Probability

14

We’re going to skip the remaining
details of GigAssembler (mainly of
historical interest now) to get to the
key strategy for assembling all of

the various contigs and paired end
reads into a genome

GigAssembler:
Build a “raft-ordering” graph

15

GigAssembler:
Build a “raft-ordering” graph

 Add information from mRNAs,
ESTs, paired plasmid reads,
BAC end pairs: building a
“bridge”

 Different weight to different data
type: (mRNA ~ highest)

 Conflicts with the graph as
constructed so far are rejected.

 Build a sequence path through each
raft.

 Fill the gap with N’s.

 100: between rafts

 50,000: between bridged barges

Finding the shortest path across the
ordering graph using the
Bellman-Ford algorithm

http://compprog.wordpress.com/2007/11/29/one-source-shortest-path-the-bellman-ford-algorithm/

16

A

B C

D E

+6

+8

+7

+9

+2

+5

-2

-3

Find the shortest path to all nodes.

-4

+7

Take every edge and try to relax it (N – 1 times where N is the count of nodes)

A

B C

D E

+6

+8

+7

+9

+2

+5

-2

-3

Find the shortest path to all nodes.

-4

+7

Take every edge and try to relax it (N – 1 times where N is the count of nodes)

17

A

B C

D E

+6

+8

+7

+9

+2

+5

-2

-3

Find the shortest path to all nodes.

-4

+7START

Inf. Inf.

Inf. Inf.

Take every edge and try to relax it (N – 1 times where N is the count of nodes)

A

B C

D E

+6

+8

+7

+9

+2

+5

-2

-3

Find the shortest path to all nodes.

-4

+7
0

START

Inf.

Inf.

+7
(→ A)

+6
(→ A)

Take every edge and try to relax it (N – 1 times where N is the count of nodes)

18

A

B C

D E

+6

+8

+7

+9

+2

+5

-2

-3

Find the shortest path to all nodes.

-4

+7
0

START

+7
(→ A)

+6
(→ A)

+2
(→ B)

+4
(→ D)

Take every edge and try to relax it (N – 1 times where N is the count of nodes)

A

B C

D E

+6

+8

+7

+9

+2

+5

-2

-3

Find the shortest path to all nodes.

-4

+7
0

START

+7
(→ A)

+2
(→ B)

+4
(→ D)

+2
(→ C)

Take every edge and try to relax it (N – 1 times where N is the count of nodes)

19

A

B C

D E

+6

+8

+7

+9

+2

+5

-2

-3

Find the shortest path to all nodes.

-4

+7
0

START

+7
(→ A)

+4
(→ D)

+2
(→ C)

-2
(→ B)

Take every edge and try to relax it (N – 1 times where N is the count of nodes)

A

B C

D E

+6

+8

+7

+9

+2

+5

-2

-3

-4

+7
0

START

+7
(→ A)

+4
(→ D)

+2
(→ C)

-2
(→ B)

Answer: A-D-C-B-E

20

Modern assemblers now work a bit differently,
using so-called DeBruijn graphs:

Here’s what we saw before:

Nature Biotech 29(11):987-991 (2011)

In Overlap-Layout-Consensus:

Nodes are reads
Edges are overlaps

In a DeBruijn graph:

Nature Biotech 29(11):987-991 (2011)

Modern assemblers now work a bit differently,
using so-called DeBruijn graphs:

21

Why Eulerian?

From Leonhard Euler’s solution in 1735 to the
‘Bridges of Königsberg’ problem:

Königsberg (now Kaliningrad, Russia) had 7 bridges connecting 4
parts of the city. Could you visit each part of the city, walking
across each bridge only once, & finish back where you started?

Euler conceptualized it as a graph:

Nodes = parts of city
Edges = bridges

Nature Biotech 29(11):987-991 (2011)

(Visiting every edge once = an Eulerian path)

DeBruijn graph assemblers tend to have nice
properties, e.g. correcting sequencing errors &

handling repeats better

Sequencing errors appear as
‘bulges’

Removing the ‘bulges’
corrects the errors
(e.g. leaves the red path)

Nature Biotech 29(11):987-991 (2011)

22

Beginner’s guide to comparative bacterial genome analysis using next-generation sequence data

Microb Informatics Exp (2013) doi:10.1186/2042-5783-3-2

e.g. Velvet, an example algorithm using DeBruijn graphs

Once a reference genome is assembled,

new sequencing data can ‘simply’ be
mapped to the reference.

reads

Reference genome

23

Mapping reads to assembled
genomes

Trapnell C, Salzberg SL, Nat. Biotech., 2009

The list is a little longer now! e.g. see https://en.wikipedia.org/wiki/
List_of_sequence_alignment_software#Short-Read_Sequence_Alignment

Mapping
strategies

Trapnell C, Salzberg SL, Nat. Biotech., 2009

24

Burroughs
Wheeler
indexing

Trapnell C, Salzberg SL, Nat. Biotech., 2009

Burroughs-Wheeler transform indexing

Input SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

Output TEXYDST.E.IXIXIXXSSMPPS.B..E.S.EUSFXDIIOIIIT

Recovered

input

SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

BWT is often used for file compression (like bzip2),

here used to make a fast ‘lookup’ index in a genome

BWT = ‘reversible block-sorting’

Forward BWT

Reverse BWT

This sequence is

more compressible

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

25

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

26

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

27

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

28

BWT is remarkable because it is

reversible.

Any ideas as how you might reverse it?

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

29

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

Write the
sequence as

the last column

Sort it… Add the
columns…

Sort those…

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

Add the
columns…

Sort those…Add the
columns…

Sort those…

30

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

Add the
columns…

Sort those…Add the
columns…

Sort those…

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

Add the
columns…

Add the
columns…

Sort those…

The row with
the "end of file"
character at the

end is the
original text

31

Burroughs-Wheeler transform indexing

http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

The row with the "end of file"
character at the end is the

original text

Li & Durbin, doi:10.1093bioinformatics/btp324/

The Burroughs-Wheeler transform

leads naturally to a suffix array

32

http://blog.avadis-ngs.com/2012/04/elegant-exact-string-match-using-bwt-2/ (& wikipedia)

The Burroughs-Wheeler transform

leads naturally to a suffix array

http://blog.thegrandlocus.com/2016/07/a-tutorial-on-burrows-wheeler-indexing-methods

e.g. applying BWT to construct the suffix array of GATGCGAGAGATG

The search can be even more efficient by using compression & various other extensions

“If string W is a substring of X, the position of each occurrence of

W in X will occur in an interval in the suffix array. This is because

all the suffixes that have W as prefix are sorted together.”

Li & Durbin, doi:10.1093bioinformatics/btp324/

33

Why is this efficient?

Searching a suffix array in this way cuts the search

space in half at each step, so…

A suffix array of the human genome (3.2 billion bases)

takes at most

log2(3.2 billion) + 1 = 32 steps

to determine if a query sequence is present or not

There are few more steps to find all the occurrences, build an efficient

real-world implementation, use compression to reduce memory and

storage space, etc., but this still illustrates the massive savings in time

and memory from constructing an index

Burroughs
Wheeler
indexing

Trapnell C, Salzberg SL, Nat. Biotech., 2009

Convert each hit back
to genome location

