Phenologs
A case study of using bioinformatics to find new genes for genetic traits

BCH394P/364C Systems Biology / Bioinformatics
Edward Marcotte, Univ of Texas at Austin

Are you a research parasite?

“The aerial view of the concept of data sharing is beautiful.”

[but!]

A ... concern ... is that a new class of research person will emerge...the system will be taken over by ...
“research parasites.”

Let’s think in the abstract for a moment:

How are mouse models useful for studying human disease? Are some models better than others?

What’s the worm equivalent of breast cancer?

Are there plant versions of human diseases? Why would they possibly be useful?

Conserved systems intermediate between organism-specific genotype and phenotype
We share genes with almost every known organism.

All genetic traits and diseases affect molecular structures that are evolutionarily conserved.
Comparative evolution studies rely on finding orthologs

Orthologs = genes from different species that derive from a single gene in the last common ancestor of the species

Paralogs = genes that derive from a single gene that was duplicated within a genome
Phenologs = significantly overlapping sets of orthologous genes, such that each gene in a given set gives rise to the same phenotype in that organism.

Example:

- **Phenologs**
 - Gene A
 - Gene B
 - Gene C
 - Gene D
 - Gene E

Organism 1

- Candidate for phenotype 1
- Orthologous genes
- Mutations lead to phenotype 1 (e.g., breast cancer)

Organism 2

- Candidate for phenotype 1
- Orthologous genes
- Mutations lead to phenotype 2 (e.g., specific worm phenotype)

E.g., ‘high incidence of male’ *C. elegans* genes predict human breast/ovarian cancer genes

<table>
<thead>
<tr>
<th>Human/Worm Ortholog</th>
<th>Linked to breast cancer in humans</th>
<th>Linked to more males in worms</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM/atm-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BRIP1/dog-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>KRAS/let-50</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PHB/phb-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PIK3CA/age-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAD51/rad-51</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAD54L/rad-54</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SLC22A18/C53B4.3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TSG101/tag-1010</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>BARD1/brd-1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BRCA1/brc-1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHEK2/chk-2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FAM52B/F33H2.6</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GCC2/hcp-1,hcp-2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HMG20A/B/W02D9.3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HORMAD2.1/him-3,htp-1,2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>KIF15/kip-10.18</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MRE11A/mre-11</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PIGA/D2085.6</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAD1/mrt-2</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>RAD21/coh-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SEH1L/ppp-18</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SVIL/vilin-1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TSP0,BZRP1/C41G7.3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WDHD1/F17C11.10</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

4649 orthogroups total

- **Human**
 - Breast/ovarian cancer
 - High incidence
 - Male progeny

- **Worm**

- **9**
 - Human genes
 - Worm genes

- **13**
 - Human genes
 - Worm genes

- **p ≤ 7.2x10^-6**

Building & searching a collection of phenotypes

Mining available databases + manual collection from the primary literature

- **# gene-phenotype associations**
 - **Organism**
 - human: 1,923
 - mouse: 74,250
 - worm: 27,065
 - yeast: 86,383
 - *Arabidopsis*: 22,921

Spanning ~300 human diseases,
>7,000 model organism mutational phenotypes

Computational scan phenotypes for novel models of a disease of interest, identify significant phenologs using permutation tests

Discovering phenologs

- Human disease gene sets
- Yeast phenotype gene sets

Measure p (overlap $\geq k \mid n_1, n_2, N$) for each disease-phenotype pair, considering only human-yeast orthologs

Identify all significant phenologs by permutations or reciprocal best hits

Computationally, we find many genes shared between human diseases and mouse, yeast, worm, and even plant traits.

Waardenburg syndrome accounts for ~2-5% of cases of deafness.
Plants sense and respond to gravity → gravitropism

Fukaki et al., The Plant Journal 14, 425–430 (1998)

Plant gravitropism genes predict Waardenburg syndrome, a human congenital deafness syndrome

Waardenburg syndrome is a defect of neural crest cells

Neural crest cells migrate during embryonic development

Some WS correlates in other animals:
Deafness in Dalmatian dogs (22% unilaterally deaf)

Variations in the Blenheim spot:
Cavalier King Charles Spaniels

Association between white blue-eyed cats and deafness (noted by Darwin in 1859)

White forelock and deafness/bowel blockage in
foals & many more...

Sure enough, inactivating one of the genes—predicted from plants—in a tadpole disrupts neural crest cells, consistent with Waardenburg syndrome
BEGIN WITH KNOWN GENES for Waardenburg syndrome

FIND PLANT ORTHOLOGS that share mutant phenotypes (gravitropism)

PREDICT novel Waardenburg genes

VALIDATE CANDIDATE GENE in frog, CONFIRM PLANT MODEL?

SEARCH FOR MUTATIONS in humans?

PREDICT AND VALIDATE new gravitropism genes

Waardenburg syndrome genes...

...suggest a relevant plant system. Plant genes...

...suggest new WS genes, confirmed in frogs, validating the plant model.

Search for mutations in humans...

...suggest new WS genes, confirmed in frogs, validating the plant model.

Conservation and “repurposing” of core cell machinery across deep evolutionary time

Last common ancestor

Set of genes in LCA

Plant

Orthologous genes

Genes now used to direct polarized growth in gravitropism

Genes now used to direct neural crest cell migration

Human
Let’s talk about how such projects play out in practice.

How are discoveries made? How do you computationally explore ideas?

Let’s step through this particular discovery process:

1. We had an idea, based on a puzzling observation:
 Why do mutations in worm retinoblastoma genes induce ectopic vulva while a mutation in the human ortholog causes eye cancer?
 We weren’t interested in specific mechanism here, but rather the impact of organismal context on conserved systems. In particular, how do ever-more distant evolutionary models inform us about human disease?
Let’s step through this particular discovery process:

2. We thought about how this might be part of a large trend—does it illustrate a general principle? Could we could look for new cases systematically?

3. We thought about other examples, mentally assembling what could serve as positive and negative control cases. i.e. how to we decide if a systematic approach is working?

4. A grad student (Kris McGary) started assembling relevant datasets. We took heavy advantage of existing resources: model organism databases that had already painstakingly curated relevant data, large-scale screens reporting easy-to-process data.
Let’s step through this particular discovery process:

5. We started inventing/evaluating statistical models/algorithms, exploring the data and thinking about how to search for the relevant trends. We iterated these steps until we thought we understood the problem better.

6. At some point, the lab bet a 6 pack of beer on the outcome:
 Can we discover plant models of human disease?

Let’s step through this particular discovery process:

7. The algorithms predicted some remarkable and crazy results. We had no option but to test or reject the new predictions, so began testing, thanks to collaborators in the Wallingford lab willing to sink a few weeks into high-risk experiments.

8. Some tests worked, some didn’t. We went back & thought about the ones that didn’t and refined how we prioritized the results.

9. Iterate, iterate. Jackpot! A plant model of deafness! Shouting in the halls...
Can these really tell us about these?

The human versions of these yeast genes are candidate angiogenesis genes.

Disrupting the SOX13 gene causes strong blood vessel defects.
A yeast model of angiogenesis = example of a deeply conserved, but “repurposed” gene module

The yeast/angiogenesis gene module

McGary, Park et al. PNAS (2010)
1144 assays from Hillenmeyer et al., Science (2008)

Chemicals that interact genetically with this module are candidate angiogenesis inhibitors

2137 orthologs

\[
\begin{array}{c}
\text{Abnormal angiogenesis genes in MOUSE and FROG} \\
3 \\
\text{Lovastatin sensitive genes in YEAST} \\
54 \\
13
\end{array}
\]

\[\rho < 10^{-18}\]

Screening for drugs that interact genetically with this yeast module led us to identify a new angiogenesis inhibitor

TBZ = thiabendazole
FDA-approved antifungal drug with 40 years of safety data

- Approved by U.S. Food and Drug Administration in 1967
- Fungicide and parasiticide
- Not mutagenic or carcinogenic; 2 year dog safety trials
- Off-patent, marketed as a generic
Imaging the blood vessels of a living, transgenic tadpole in a dish of water

$kdr:GFP$ transgenic $Xenopus$ laevis

TBZ disrupts vascular integrity, making vascular endothelial cells retract & round up

Control (DMSO carrier) + TBZ

(Dha et al., PLoS Biology, 2012)
TBZ slows human fibrosarcoma tumors transplanted into immune-compromised mice

Control

TBZ

Vasculature in tumor sections

“Road map” to a new vascular disrupting agent, by mapping phenotypes across species

Mouse genes linked to angiogenesis...

...suggest a yeast system. Yeast genes...

...suggest angiogenesis genes, confirmed in frogs, validating the method.

...mouse tumor trials, and humans

...confirmed in frogs

Drug screens in yeast suggest angiogenesis drugs...
Try it out yourself!
http://www.phenologs.org

You can start by rediscovering the plant model of Waardenburg syndrome:

Search known diseases for "Waardenburg", or enter the human genes linked to Waardenburg (Entrez gene IDs 4286, 5077, 6591, 7299) to start.

Tools for finding orthologs are linked on the class website