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As the cost of DNA sequencing drops and metagenomic 
sequencing projects flourish, efficient tools that annotate 
sequences with function are central to our ability to exploit 

these data and accelerate biotechnology1,2. State-of-the-art anno-
tation uses profile hidden Markov models (pHMMs) built from 
hand-crafted sequence alignments and scoring functions3–6 or algo-
rithms such as BLASTp that use pairwise alignment across large sets 
of labeled sequences7. While these approaches are highly successful, 
the widely used protein families database Pfam has grown by less 
than 5% over the last 5 years, and at least one-third of microbial 
proteins cannot be annotated through alignment to functionally 
characterized sequences8,9. Pfam provides small, manually curated 
seed sets of protein domain sequences (Supplementary Fig. 1). 
These sets are used to build >17,000 HMM profiles that provide 
functional annotations for 77.2% of UniProtKB sequences in Pfam. 
Deep learning presents an opportunity to build on this expertise 
by learning a model that shares information across families and 
directly predicts annotation from unaligned sequence. Recent work 
reports deep models trained on large sets of protein sequences 
that predict Gene Ontology (GO) terms or Enzyme Commission 
(EC) numbers10–19 and use the resulting learned representations to 
build exciting exploratory tools17,20–24. However, many Pfam fam-
ily seeds contain relatively few sequences, presenting a challenge 
for data-hungry deep learning approaches. Moreover, it is not yet 
clear how deep learning models compare to existing state-of-the-art 
methods or whether they can extend our understanding of the rela-
tionship between protein sequence and function.

In this paper, we ask whether deep learning models can comple-
ment existing approaches and provide protein function prediction 
tools with broad coverage of the protein universe. We compare 
deep learning and existing approaches on the task of annotating 
unaligned protein domain sequences from Pfam-seed v.32.0, which 
includes 17,929 families, many of which have very few sequences25. 
For protein sequences, similarities between the test and train data 

mean that it is essential to stratify model performance as a function 
of the similarity between each held-out test sequence and the near-
est sequence in the train set. We analyze both random and clustered 
splits in which sequences are assigned to the test or train split using 
similarity-based cluster membership26. We find that the deep mod-
els make fewer errors at annotating held-out test sequences than 
current approaches across both the random and clustered splits. 
To confirm that the model has captured the structure of unaligned 
protein sequences, we use the joint representation learned across 
protein families in one-shot learning to annotate sequences from 
small families that the model was not trained on. Classifying Pfam 
seed sequences presents a substantial challenge, and these findings 
demonstrate that deep learning models can accurately annotate pro-
tein domains with their functions.

Results
We used expertly curated seed sequences from the 17,929 families 
of Pfam v.32.0 to construct benchmark annotation tasks, where 
unaligned seed sequences from each family are split into train and 
test sets (1) randomly and (2) by clustering based on sequence iden-
tity (Methods). For the random split, 81.2% of sequences are used for 
training, 9.4% are used for validation and 9.4% are held out as unseen 
test sequences for all models (available for download at https://con-
sole.cloud.google.com/storage/browser/brain-genomics-public/
research/proteins/pfam/random_split and https://console.cloud.
google.com/storage/browser/brain-genomics-public/research/ 
proteins/pfam/clustered_split, and the interactive notebook is located 
at https://www.kaggle.com/googleai/pfam-seed-random-split). We  
trained a neural network (ProtCNN) to classify held-out test 
sequences by Pfam family and show that it outperforms existing 
methods, displaying superior accuracy despite not using sequence 
alignment. On the random split, ProtCNN significantly outperforms 
the alignment-based methods Top Pick HMM (TPHMM), BLASTp 
and phmmer for sequences with 30–90% maximum identity to the 
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training set (Fig. 1a). ProtENN, a simple majority vote across an 
ensemble of 19 ProtCNN models, reduces the error rate to 0.16% or 
205 misclassifications of 126,171 test sequences, with significantly 
better accuracy for sequences <90% identical to the training set 
(Fig. 1a, Supplementary Fig. 2 and Table 1) and notable improve-
ment at annotating short sequences (Supplementary Fig. 3). We 
found that 11 sequences were classified incorrectly in the same way 
by every ProtENN ensemble element, and our analysis suggested 
that there may be some ambiguity over the correct family label in 
each case. For example, the sequence R7EGP4_9BACE/13-173 has 

a 100% identity match to a UniProtKB sequence annotated with the 
YIP family in addition to a GO term GO:0016021 (integral com-
ponent of membrane), which matches that of the YIP family. After 
further curation, Pfam family DUF1282 and the YIP1 family have 
now been merged in Pfam.

Expanding the set of annotated protein sequences requires remote 
homology detection, that is, accurate classification of sequences 
that have low similarity to the training data. To measure perfor-
mance at this task, we used single-linkage clustering at 25% identity 
within each family to build a clustered split of the seed sequences, 
inspired by ref. 26. The resulting benchmark has a distant held-out 
test set of 21,293 sequences (Methods, Supplementary Table 4 and 
Supplementary Fig. 4). Table 2 and Fig. 1b show that ProtENN is 
significantly more accurate for all bins including those with distant 
test sequences, a key requirement to expand coverage of the protein 
universe. Stratifying accuracy by the number of training sequences 
per family, Supplementary Fig. 5 shows that ProtENN outperforms 
alignment-based methods in all cases except the smallest families of 
the clustered split. To address this challenge of extrapolating from 
few examples, we used the sequence representation learned by the 
deep model (Fig. 2) to improve performance.

ProtCNN learns a length 1,100 real-valued vector representa-
tion of each sequence, regardless of its unaligned length27. For high 
accuracy, representations from each family must cluster tightly 
such that different families are well separated from each other. To 
test whether this learned representation could be used to accu-
rately classify sequences from the smallest families, we built a new 
approach called ProtREP. For ProtREP, we compute the average 
learned representation for each family across its training sequences, 
yielding a sentinel family representation. We then classify each 
held-out test sequence by finding its nearest sentinel in the space of 
learned representations. For the same computational cost, ProtREP 
surpasses the accuracy of ProtCNN on the clustered split (Fig. 3a 
and Supplementary Fig. 6).

Over the last several years, increases in Pfam coverage have 
been driven by the identification of new families6, which involves 
(1) determining that a domain does not belong to an existing fam-
ily and (2) identifying additional family members7,28. To investigate 
whether ProtREP can build new families, we split the families, train-
ing the underlying neural network on only the 12,361 families with 
>9 random split train sequences. We used the resulting model to 
embed one training sequence from each of the unseen 5,568 small 
families (Methods). We then used ProtREP to classify all 126,171 
held-out test sequences of the random split, achieving an overall 
accuracy of 99.21% and 85.1% on the 710 test sequences from the 
5,568 unseen small families. This demonstrates that ProtREP can 
accurately grow a new family from a single example. Supplementary 
Table 9 shows that ProtREP accuracy on unseen families improves 
rapidly as additional founder sequences are added. This suggests 
that ProtREP will excel at an iterative approach to family discovery, 
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Fig. 1 | Model performance on Pfam-seed. Held-out test error rate as a 
function of max percent sequence identity of each test sequence with 
training sequences in the same Pfam family (Methods). Data are binned 
by percent sequence identity; the x axis labels describe the bin ranges. 
a, For the random split, ProtCNN makes significantly fewer errors than 
alignment-based methods for sequence identities in the range of 30–90% 
(two-sided McNemar test, 10–20%: 292 sequences, P = 0.000070; 
20–30%: 3,628 sequences, P < 10 × 10−6; 30–40%: 9,537 sequences, 
P < 10 × 10−6; 40–50%: 16,798 sequences, P < 10 × 10−6; 50–60%: 22,662 
sequences, P < 10 × 10−6; 60–70%: 28,277 sequences, P < 10 × 10−6; 
70–80%: 40,221 sequences, P < 10 × 10−6; 80–90%: 4,429 sequences, 
P = 0.000244), while ProtENN is significantly better than alignment-based 
methods for sequence identities less than 90% (two-sided McNemar 
test, 10–20%: 292 sequences, P = 0.000070; 20–30%: 3,628 sequences, 
P < 10 × 10−6; 30–40%: 9,537 sequences, P < 10 × 10−6; 40–50%: 16,798 
sequences, P < 10 × 10−6; 50–60%: 22,662 sequences, P < 10 × 10−6; 
60–70%: 28,277 sequences, P < 10 × 10−6; 70–80%: 40,221 sequences, 
P < 10 × 10−6; 80–90%: 4,429 sequences, P = 0.000244). b, For the 
clustered split, where all sequence identities are ≤25%, ProtENN is 
significantly more accurate for all bins (two-sided McNemar test, 10–12%: 
62 sequences, P = 0.006348; 12–14%: 426 sequences, P < 10 × 10−6; 14–
16%: 1,058 sequences, P < 10 × 10−6; 16–18%: 2,516 sequences, P < 10 × 10−6; 
18–20%: 4,419 sequences, P < 10 × 10−6; 20–22%: 6,013 sequences, 
P = 0.011417; 22–24%: 4,892 sequences, P = 0.000120; 24–25%: 1,902 
sequences, P = 0.005172).

Table 1 | Model performance on the random split of Pfam-seed

Model error rate Number of errors

TPHMM 1.414% 1,784

phmmer 1.531% 1,932

BLASTp 1.654% 2,087

k-mer 9.994% 12,610

ProtCNN 0.495% 625

ProteNN 0.162% 205

Performance is evaluated by the number of errors made when using each approach to classify 
the 126,171 protein domain sequences contained in the held-out random test set (available for 
download at https://console.cloud.google.com/storage/browser/brain-genomics-public/research/
proteins/pfam/random_split). The model with the fewest errors is indicated in bold.
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where a single founder sequence is gradually incremented by homo-
logs identified by the model.

To probe what the deep models learn about protein sequence 
data, we trained ProtCNN on 80% of unaligned sequences from 
Pfam-full (Supplementary Fig. 7) and computed a similarity matrix 
of learned amino acid representations. Fig. 3b shows that this matrix 
closely mirrors the structure of the BLOSUM62 substitution matrix, 
which was derived by experts from carefully curated sequence align-
ments29. To measure the predicted impact of single mutations, we 
calculated the Kullback–Leibler divergence between the ProtCNN 
predictions for the original and mutated sequences (Supplementary 
Fig. 8). Mutations in disordered regions are predicted to have neg-
ligible effect, except for mutations to phenylalanine, tyrosine and 
tryptophan, which promote order due to aromatic ring stacking30. 
Similarly, ProtCNN amino acid preference within transmembrane 
helices agrees with prior knowledge31.

These results demonstrate that ProtCNN learns a meaningful 
representation of protein sequence that (1) generalizes to unseen 
parts of sequence space and (2) can be used to predict and under-
stand the properties of protein sequences. A further challenge is to 
detect a protein domain and its location within a protein sequence. 
This task is analogous to image segmentation, a task at which deep 
learning models excel. While ProtCNN was trained using domains, 
Supplementary Table 12 shows ProtCNN segmentation of full 
sequences into domains using a simple sliding window approach 
(Methods).

Deep models have the capacity to capture non-local sequence 
information and transfer information across protein families, mean-
ing they can learn complementary information to the pHMMs used 
to build Pfam-full. This suggests that combining the two approaches 
could expand Pfam coverage of the protein universe. To test this 
idea on the clustered benchmark, we built a simple ensemble: for 
held-out test sequences where HMMER is confident, we retain its 
prediction, otherwise we consider the ProtENN prediction. Protein 
domain sequences can match multiple families within each expertly 
curated clan of related families32–34; so to be conservative, we work at 
the clan level (Supplementary Fig. 9). Figure 4a and Supplementary 
Figs. 10 and 11 show that the ensemble of ProtENN and HMMER is 
substantially more accurate than either model at clan-level remote 
sequence homology detection, reducing the clustered benchmark 

error rate by 38.6%. By contrast, combining BLAST and HMMER 
yields no performance gain (Supplementary Fig. 12). These results 
show that the deep models provide highly complementary informa-
tion to alignment-based annotation methods.

This orthogonality suggests that ProtENN can expand Pfam 
coverage of the protein universe. To test this hypothesis, we first 
used the clustered benchmark to identify criteria that yield reli-
able annotations. For held-out sequences from the clustered split, 
requiring ProtENN ensemble consensus >60% yields 99.9% accu-
racy, while adding the requirement that TPHMM agrees raises this 
to 100% (Fig. 4b and Supplementary Fig. 11). These criteria pro-
vide effective mechanisms for determining that a sequence domain 
does not belong to an existing family. To leverage these criteria 
to expand Pfam coverage, we trained ProtENN on Pfam-full and 
performed inference for 140 million regions where HMMER con-
fidence was not sufficient for inclusion in Pfam v.34.0. Overall, we 
find that combining ProtENN + HMM increases Pfam coverage by 
6.8 million sequence regions or ~9.5%, comparable to the number 
of regions added by the HMM-based pipeline over the last decade 
(Fig. 4c)35. These ProtENN-predicted regions provide annotations 
for ~1.8 million protein sequences with no annotation in Pfam-full, 
including 360 proteins from the human reference proteome36. These 
predictions are available as Pfam-N, part of the Pfam 34.0 release 
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Table 2 | Model performance on the clustered split of 
Pfam-seed

Model error rate Number of errors

Top Pick HMM 18.1% 3,844

phmmer 32.6% 6,942

BLASTp 35.9% 7,639

ProtCNN 27.6% 5,882

ProteNN 12.2% 2,590

Performance is evaluated by the number of errors made when using each approach to classify 
the 21,293 protein domain sequences contained in the held-out clustered test set (available for 
download at https://console.cloud.google.com/storage/browser/brain-genomics-public/research/
proteins/pfam/clustered_split). The model with the fewest errors is indicated in bold.
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(available for download at http://ftp.ebi.ac.uk/pub/databases/Pfam/
releases/Pfam34.0/).

Discussion
The ~6.8 million sequence regions for which ProtENN adds Pfam 
annotations represent a noteworthy expansion of coverage without 
adding new protein families. We provide functional predictions 
for 360 human reference proteome proteins that had no previous 
Pfam annotation. Among these, we highlight our prediction that 
the protein Q96HJ9, recently renamed FMC1, contains the Pfam 
Complex1_LYR-like domain. Compellingly, Li et al.37 showed exper-
imentally that Q96HJ9 is required for mitochondrial ATP synthase 
function and binds a known assembly factor of the mitochondrial 
ATP synthase complex, entirely analogous with the role played by 
the yeast protein Fmc1p, which also contains a LYR protein domain, 

although homology between the yeast protein Fmc1p and Q96HJ9 
cannot be detected by methods such as BLASTp37.

Our benchmarking of the simple combination of 
ProtENN + HMMER shows that it is more accurate than either 
individual approach, suggesting that errors will be less frequent. 
For example, this method suggests that the protein domain 
I0I4T0/38-83 be added to the Pfam glutaredoxin family PF00462. 
The existing Pfam annotation in this region assigns it to the unchar-
acterized family DUF411, suggesting a potential functional similar-
ity between DUF411 members and families within the thioredoxin 
clan. Indeed, this is borne out by the observation of the substan-
tial number of overlapping InterProScan calls for DUF411 and 
thioredoxins (IPR036249); there are 2,865 TREMBL proteins that 
share these annotations, of which 731 are named ‘Uncharacterized 
protein’ in UniProt. Moreover, the uncharacterized CopG protein 
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from Pseudomonas aeruginosa, which contains a Pfam DUF411 
annotation, was recently extensively characterized through struc-
tural and biochemical analysis38. The crystal structure reveals that 
CopG contains a thioredoxin domain modified by a C-terminal 
extension that contributes to metal binding. The sequence loca-
tion of the thioredoxin domain is shifted by about 25 residues 
from the DUF411 Pfam annotation, but the large overlap supports 
the ProtENN-predicted link between the DUF411 family and the 
thioredoxin-like clan CL0172.

These examples, drawn from the ~6.8 million new sequence 
region annotations provided by this work, demonstrate the depth 
of insights provided by the deep learning models. The ability of 
ProtREP to improve accuracy without adding computational over-
head suggests that model performance can be further improved 
using techniques from machine learning. For example, the accu-
racy of ProtREP could be extended by, for example, ensembling 
embeddings across multiple ProtCNN models or distilling the 
ensembled CNN models into a single model39 before moving to 
embedding space. Using the ProtREP results presented here to dis-
cover new families is a natural next step, with the ability to fur-
ther expand the annotated protein universe. These results present 
a substantial advance over previous efforts applying deep learning 
in terms of the number of families, the number of sequences per 
family and the rigorous comparison with existing methods. The 
model training protocol we describe can be applied to many sets of 
protein annotations to rapidly and efficiently annotate unlabeled 
sequences and unlock molecular diversity for both therapeutic and 
biotechnology applications.
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over the TPHMM performance of 88.1% accuracy. b, Illustration of the simple combination of the TPHMM and ProtENN models used to propose new 
additions to Pfam. Following these steps for the test sequences used in a that clear the confidence score thresholds results in an accuracy of 100%.  
c, The ProtENN-proposed increase in Pfam sequence regions in the context of recent Pfam releases.
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Methods
Benchmark data. To benchmark performance at unaligned protein domain 
sequence annotation, we use the highly curated Pfam database25,40. The 17,929 
classes of Pfam 32.0 provide broad coverage of the known protein universe; 
77.2% of the ~137 million sequences in UniProtKB have at least one Pfam family 
annotation, including 74.5% of proteins from reference proteomes10,25. Many 
domains have functional annotations, although at least 22% of Pfam domains have 
unknown function25. Pfam provides a profile HMM for each family constructed 
from the seed alignment. These manually curated seed alignments contain between 
1 and 4,545 sequences (Supplementary Fig. 1), originally picked due to their 
trusted functional annotations40.

Random split. We split each Pfam family with ≥10 seed sequences randomly 
into disjoint train, dev and test sets. A dev (development) set is a set used to tune 
hyperparameters that is separate from the test set to avoid overfitting on test data. 
This results in held-out test sequences for 13,071 families (Supplementary Table 1), 
where 2,819 families have exactly one sequence in each of the test and dev sets. The 
other 4,858 families have <10 seed sequences and are only present in the train set. 
This makes the task harder because there are more ways each test sequence can be 
misclassified. We provide the split for download (https://console.cloud.google.com/
storage/browser/brain-genomics-public/research/proteins/pfam/random_split) 
and at Kaggle, together with an interactive Jupyter notebook (https://www.kaggle.
com/googleai/pfam-seed-random-split).

Clustered split. For every family (no minimum family size), we split the  
sequences into train, dev and test sequence sets that are distant in sequence space 
from each other, following the protocol developed in ref. 26. For each family, we 
split the sequences using the following steps (see Supplementary Methods for 
additional details):

 1. Construct the matrix of pairwise distances, where distance is measured in 
terms of sequence identity according to the Pfam-seed family alignment 
(Supplementary Fig. 1c).

 2. Run single-linkage hierarchical agglomerative clustering and process the 
resulting clustering tree to yield a set of clusters where each element of a given 
cluster is guaranteed to have at most α = 0.25% sequence identity with the 
nearest element of any other cluster.

 3. For each family, sort clusters by size, and add clusters to a set of training 
sequences until its size exceeds a fraction Δ = 0.66 of the overall family size.

 4. Split the non-training sequences into dev and test sets using the following steps: 

(a) Recluster each family at a threshold of α = 0.7.
(b) Place clusters into dev using a ratio of Δ = 0.5.

The additional evaluation (dev) set allows model hyperparameters to be tuned 
without overfitting to the test data, because for each family, these two sets are also 
distant in sequence space. The number of sequences in the resulting split are shown 
in Supplementary Table 2.

ProtCNN. We use unaligned sequence data to train ProtCNN, a deep model 
that predicts which Pfam family each held-out Pfam seed sequence belongs to. 
ProtCNN processes an input sequence using two consecutive steps: (1) map 
the sequence to a 1,100-dimensional feature vector (known as an ‘embedding’) 
using multiple layers of non-linear transformations, and (2) apply a linear 
transformation to the embedding to predict family membership. Fig. 2 depicts 
the input, embedding and prediction networks. Sequences are represented using 
one-hots and presented to the model in batches, where each sequence is padded to 
the length of the longest sequence in the batch. All processing in the embedding 
network is invariant to padding (Supplementary Information). Details about neural 
network hyperparameters tuned using the dev set and inference speed are provided 
in Supplementary Tables 13–16.

For the embedding network, ProtCNN uses convolutional ResNets, a variant 
of convolutional neural networks that train quickly and are stable, even with 
many layers41. Fig. 2 depicts the ResNet architecture, which includes dilated 
convolutions42. The ProtCNN networks are translationally invariant, an advantage 
for working with unaligned protein sequence data. An n-dilated one-dimensional 
(1D)-convolution takes standard convolution operations over every nth element 
in a sequence, allowing local and global information to be combined without 
greatly increasing the number of model parameters. For our benchmark setup, we 
find that larger receptive fields (a function of how dilated the convolutions are) 
generally correspond to higher accuracy (Supplementary Fig. 2). The prediction 
network maps the output of the embedding network to a distribution over labels 
using a multiclass logistic regression model. The model prediction is the most 
likely label under this distribution. At train time, the weights and biases of the 
model are updated using standard forward and back propagation.

ProtENN. Replicate deep CNN models trained with different random parameter 
initializations make distinct errors, leading to ProtENN, an ensemble of ProtCNN 

models. Accuracy as a function of the number of ensemble elements is shown in 
Supplementary Fig. 2.

phmmer. We take the set of unaligned training sequences as a sequence database, 
and using ‘phmmer’ from HMMER 3.1b2 (ref. 26), we query each test sequence 
against this database to find the closest match. Those test sequences that return hits 
above the default phmmer reporting threshold are then annotated with the label of 
the training sequence hit with the highest bit score. Of the 126,171 sequences in the 
test set, 42 did not return a hit using this approach. All training sequences that are 
not reported as hits by the phmmer function are counted as incorrect.

k-mer. An alignment-free approach is provided by a k-mer (or n-gram)-based 
model, where each sequence is represented by the set of k-mers that it contains. 
We train a multiclass logistic regression model on vectors of k-mer counts using 
the same stochastic gradient descent procedure as was used by our deep models 
(Supplementary Table 18).

BLASTp. BLASTp43 is one of the most well-known algorithms for searching for 
similar sequences and is among the current state of the art. BLASTp uses an 
alignment to rank sequences according to their similarity to a target sequence, and 
from this, a user can impute functional annotation by ascribing known functions 
of similar sequences. We use BLASTp as a one-nearest neighbor algorithm by 
first using ‘makeblastdb’ (version 2.7.1+) with the training data. We then query 
sequences from that database using ‘blastp -query’, taking only the top hit by bit 
score. This implementation returns no hit for 259 (0.21%) of the 126,171 sequences 
in the Pfam-seed test set.

TPHMM. We used ‘hmmbuild’ from HMMER 3.1b2 to construct a pHMM from 
the aligned train sequences for each family in Pfam 32.0. We implement a simple 
top pick strategy to avoid any handicap from the filters built into HMMER 3.1b2. 
We first use ‘hmmsearch’ to search all 17,929 profiles against each unaligned test 
sequence and report at least one hit (using ‘--max’ if necessary). We then call 
the profile with the highest score as the TPHMM prediction (Supplementary 
Methods). Removing the top pick strategy returns multiple family hits for 8.5% of 
test sequences from our random benchmark, resulting in a higher error rate. Note 
that we do not expect TPHMM to achieve 100% accuracy because the training 
data are a subset of the Pfam-seed alignment. For TPHMM only, we retain the 
alignment information from the whole Pfam-seed to avoid any artifacts introduced 
by realignment and enable optimal performance. During training, this provides 
information about the held-out test sequences used to measure performance, 
meaning that the reported TPHMM accuracy should be taken as an upper bound. 
By contrast, all alignment information is removed from the data for the deep 
learning models and other baselines.

ProtREP. We can use the learned representation to perform nearest neighbor 
classification for any set of protein sequences. Given a trained ProtCNN model, 
ProtREP computes an average embedding or learned representation per family 
over the training sequences and computes a linear whitening transformation to 
convert their covariance to the identity. This whitening transformation is then 
applied to the embedding of each test sequence, from which ProtREP classifies 
test sequences by computing the cosine similarity in embedding space to all train 
families in a single step. Thus ProtREP has the same computational efficiency as 
ProtCNN.

Annotation of sequences from families unseen during training. ProtCNN has 
0% accuracy at classifying sequences into new families. To test ProtREP’s ability 
at this task, we hold out the smallest families from model training. We use the 
training sequences from the 12,361 largest random split families to train ProtCNN 
and compute an average representation for each training family. We then embed 
one or more founder sequences from each of the 5,568 smallest families held out 
from training. ProtREP classifies each held-out test sequence into a new or existing 
family. We report results in Supplementary Table 9 for (1) all 126,171 held-out test 
sequences and (2) the 710 held-out test sequences belonging to the 5,568 families 
that were entirely held out during training (of which 4,858 families were too small 
for any members to be assigned to the test set).

Saturation mutagenesis experiment. We trained ProtCNN on Pfam-full and 
predicted the impact of single amino acid mutations by calculating the Kullback–
Leibler divergence between the predicted distributions for the original and 
mutated sequences (Supplementary Table 19) of (1) an ATPase domain sequence 
(Supplementary Fig. 8) and (2) vasopressin (Supplementary Fig. 8). In the 
transmembrane regions, amino acid substitutions maintain function in the order 
FMLVI YACTS WGQHN KRPED for the ATPase and VLIAM FTWCY SNGQH 
PRDKE for vasopressin. The predicted disruptive effects of charged amino acids 
and proline agree with prior knowledge.

Domain calling procedure. We designed our experiment of domain calling (not 
just domain classification) as follows: the input is a full protein (not a precut 
domain), and the desired outputs are (1) which Pfam families are present and (2) 
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where these domains are within the sequence. Note that an input protein can have 
0 or more domains. This task is akin to boundary box annotation in computer 
vision. A simple approach taken in computer vision to convert an object classifier 
into a detector is to simply slide the classifier over all candidate bounding boxes 
and then find where the signal is strongest. We use this approach, first computing 
all possible (start, end) pairs for an input sequence and running ProtENN on each 
of them. We output the region where the signal is strongest for a particular family 
as a called domain. We do not consider very short (start, end) ostensible domain 
ranges because we find this leads to spurious calls, especially repeats. It is known 
that domain calls on repeats are a difficult issue, even for HMMs44. Although 
substantially more work is required, the fact that this procedure from the early 
computer vision literature worked without modification is encouraging.

Pfam clans. Around 45% of Pfam sequences belong to clans25, groups of 
evolutionarily related families constructed through manual curation32,34. In some 
cases, a single HMM model cannot capture the full diversity of a large sequence 
family32. Measuring the accuracy of clan-level annotation takes into account 
the fact that the distinction between different families in the same clan may be 
less meaningful33. In Supplementary Fig. 9, we report accuracy at annotating 
the 55,604 held-out test sequences that belong to Pfam clans at both (1) the clan 
level and (2) the family level. Note that the deep models are not provided with 
clan-level annotations. Both ProtCNN and ProtENN accurately annotate protein 
domain sequences at both clan and family levels. At the clan level, the error rate of 
ProtENN is significantly lower for sequence identity in 30–70%; outside this range, 
neither ProtENN or TPHMM is significantly better (P < 0.05, McNemar test). All 
differences between ProtCNN and TPHMM are significant for sequence identity 
<70%. At the family level, the neural network models make significantly fewer 
errors for sequence identities <80%.

Combining ProtENN and HMMER. Combining ProtENN and HMMER yields a 
model that reduces the error on the clustered split dataset by 38.6%. Supplementary 
Fig. 10a shows that TPHMM is highly accurate on the held-out test sequences 
of the clustered split if the HMMER E value is <10−4; however, many sequences 
have HMMER E values >10−2, where ProtENN predictions are more accurate. 
Therefore, based on the HMMER E value, we choose the HMMER or ProtENN 
prediction. Supplementary Fig. 10b shows accuracy of the combined model as a 
function of the E value threshold used to determine which prediction is reported.

Similarly, we can build a confidence score for the ProtENN ensemble: to 
describe the extent to which the predictions of each model in ProtENN agree, we 
calculate the ensemble consensus as the ratio of votes for a particular label divided 
by the number of ensemble elements. Supplementary Fig. 11 reports analogous 
results if the ProtENN ensemble consensus is used in place of the HMMER E value 
to set the threshold for the combined model. For comparison, Supplementary Fig. 
12a reports TPHMM and BLASTp accuracy as a function of HMMER E value. 
Across nearly all E values, TPHMM predictions are more accurate. As a result, 
Supplementary Fig. 12b shows that combining TPHMM and BLASTp does not 
reduce the error rate on the clustered split.

Using ProtENN to increase Pfam coverage. To build Pfam, the HMM models 
are used to search pfamseq, a large set of sequences drawn from UniProtKB 
reference proteomes25,45. Matches with statistical significance (bit score) below 
each family gathering threshold are significant. Here, we use all Pfam sequences 
to train ProtENN and use the trained model to predict family membership 
for each insignificant match. Supplementary Fig. 11 suggests that ProtENN 
accuracy saturates at ensemble consensus 60% on our clustered benchmark, while 
Supplementary Fig. 10 suggests that HMM accuracy increases rapidly for E values 
<102. We use these criteria to filter the large set of potential insignificant matches 
and select cases where ProtENN and HMMER agree at the clan or family level. To 
avoid overcounting, we only consider matches for which (1) the midpoint does not 
occur within a significant domain, (2) no significant domain sequence midpoint 
falls in the proposed new match and (3) the overlap is overall less than 20 residues 
(to account for overlaps between very short calls). This heuristic is conservative, as 
some regions are truly subsequences of others and are not included in our output 
set. As noted in the main text, the resulting additions to Pfam are available for 
download as Pfam-N, which is part of the Pfam v.34.0 release, available at http://
ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam34.0/.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data splits described in this manuscript are available for download at https://
console.cloud.google.com/storage/browser/brain-genomics-public/research/
proteins/pfam/random_split and https://console.cloud.google.com/storage/
browser/brain-genomics-public/research/proteins/pfam/clustered_split, and 

an interactive notebook for data loading is available at https://www.kaggle.com/
googleai/pfam-seed-random-split. Model predictions for Pfam-N are freely 
available to download as part of the Pfam v.34.0 release from http://ftp.ebi.ac.uk/
pub/databases/Pfam/releases/Pfam34.0/.

Code availability
The TensorFlow API, specifically tensorflow-gpu v.1.15.4, was used to implement 
and train all deep models using the architectures described in the Methods. Code 
that documents model training using Python v.3.7 is available on GitHub at https://
github.com/google-research/google-research/tree/master/using_dl_to_annotate_
protein_universe. The training and validation datasets used for creating each 
model are available as described in the preceding section. Trained models are 
available in Google Cloud Storage at https://console.cloud.google.com/storage/
browser/brain-genomics-public/research/proteins/pfam/models/single_domain_
per_sequence_zipped_models, including the ensembles trained on the Pfam-seed 
random split, Pfam-seed clustered split, Pfam-full random split (all Pfam v.32.0) 
and the models used to generate Pfam-N v.34.0. ProtCNN inference was run using 
a custom Python script that (1) read in FASTA records and (2) ran inference of the 
ProtCNN as a TensorFlow SavedModel. An interactive notebook that demonstrates 
inference using ProtCNN is available at https://colab.research.google.com/github/ 
google-research/google-research/blob/master/using_dl_to_annotate_protein_
universe/neural_network/Neural_network_accuracy_on_random_seed_split.
ipynb. An interactive notebook showing use of the trained models to produce 
Pfam class predictions as well as embeddings is available in GitHub at https://
colab.sandbox.google.com/github/google-research/google-research/blob/master/
using_dl_to_annotate_protein_universe/Using_Deep_Learning_to_Annotate_
the_Protein_Universe.ipynb.
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