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Author summary

Computers are now essential in all branches of science, but most researchers are never

taught the equivalent of basic lab skills for research computing. As a result, data can get

lost, analyses can take much longer than necessary, and researchers are limited in how

effectively they can work with software and data. Computing workflows need to follow

the same practices as lab projects and notebooks, with organized data, documented steps,

and the project structured for reproducibility, but researchers new to computing often

don’t know where to start. This paper presents a set of good computing practices that

every researcher can adopt, regardless of their current level of computational skill. These

practices, which encompass data management, programming, collaborating with col-

leagues, organizing projects, tracking work, and writing manuscripts, are drawn from a

wide variety of published sources from our daily lives and from our work with volunteer

organizations that have delivered workshops to over 11,000 people since 2010.

Overview

We present a set of computing tools and techniques that every researcher can and should con-

sider adopting. These recommendations synthesize inspiration from our own work, from the

experiences of the thousands of people who have taken part in Software Carpentry and Data

Carpentry workshops over the past 6 years, and from a variety of other guides. Our recom-

mendations are aimed specifically at people who are new to research computing.

Introduction

Three years ago, a group of researchers involved in Software Carpentry and Data Carpentry

wrote a paper called "Best Practices for Scientific Computing" [1]. That paper provided recom-

mendations for people who were already doing significant amounts of computation in their

research. However, as computing has become an essential part of science for all researchers,

there is a larger group of people new to scientific computing, and the question then becomes,

"where to start?"
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This paper focuses on these first accessible skills and perspectives—the "good enough" prac-

tices—for scientific computing: a minimum set of tools and techniques that we believe every

researcher can and should consider adopting. It draws inspiration from many sources [2–8],

from our personal experience, and from the experiences of the thousands of people who have

taken part in Software Carpentry and Data Carpentry workshops over the past 6 years.

Our intended audience is researchers who are working alone or with a handful of collabora-

tors on projects lasting a few days to several months. A practice is included in our list if large

numbers of researchers use it and large numbers of people are still using it months after first

trying it out. We include the second criterion because there is no point in recommending

something that people won’t actually adopt.

Many of our recommendations are for the benefit of the collaborator every researcher cares

about most: their future self (as the joke goes, yourself from 3 months ago doesn’t answer

email. . .). Change is hard, and if researchers don’t see those benefits quickly enough to justify

the pain, they will almost certainly switch back to their old way of doing things. This rules out

many practices, such as code review, that we feel are essential for larger-scale development

(Section 6).

We organize our recommendations into the following topics (Box 1):

• Data management: saving both raw and intermediate forms, documenting all steps, creating

tidy data amenable to analysis.

• Software: writing, organizing, and sharing scripts and programs used in an analysis.

• Collaboration: making it easy for existing and new collaborators to understand and contrib-

ute to a project.

• Project organization: organizing the digital artifacts of a project to ease discovery and

understanding.

• Tracking changes: recording how various components of your project change over time.

• Manuscripts: writing manuscripts in a way that leaves an audit trail and minimizes manual

merging of conflicts.

Data management

Data within a project may need to exist in various forms, ranging from what first arrives to

what is actually used for the primary analyses. Our recommendations have 2 main themes.

One is to work towards ready-to-analyze data incrementally, documenting both the intermedi-

ate data and the process. We also describe the key features of "tidy data", which can be a power-

ful accelerator for analysis [5, 8].

• Save the raw data (1a). Where possible, save data as originally generated (i.e., by an instru-

ment or from a survey). It is tempting to overwrite raw data files with cleaned-up versions,

but faithful retention is essential for rerunning analyses from start to finish, for recovery

from analytical mishaps, and for experimenting without fear. Consider changing file permis-

sions to read-only or using spreadsheet protection features so that it is harder to damage raw

data by accident or to hand edit it in a moment of weakness.

Some data will be impractical to manage in this way. For example, you should avoid making

local copies of large, stable databases. In that case, record the exact procedure used to obtain

the raw data, as well as any other pertinent information, such as an official version number

or the date of download.
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Box 1. Summary of practices

1. Data management

a Save the raw data.

b Ensure that raw data are backed up in more than one location.

c Create the data you wish to see in the world.

d Create analysis-friendly data.

e Record all the steps used to process data.

f Anticipate the need to use multiple tables, and use a unique identifier for every

record.

g Submit data to a reputable DOI-issuing repository so that others can access and

cite it.

2. Software

a Place a brief explanatory comment at the start of every program.

b Decompose programs into functions.

c Be ruthless about eliminating duplication.

d Always search for well-maintained software libraries that do what you need.

e Test libraries before relying on them.

f Give functions and variables meaningful names.

g Make dependencies and requirements explicit.

h Do not comment and uncomment sections of code to control a program’s

behavior.

i Provide a simple example or test data set.

j Submit code to a reputable DOI-issuing repository.

3. Collaboration

a Create an overview of your project.

b Create a shared "to-do" list for the project.

c Decide on communication strategies.

d Make the license explicit.

e Make the project citable.

4. Project organization

a Put each project in its own directory, which is named after the project.

b Put text documents associated with the project in the doc directory.

c Put raw data and metadata in a data directory and files generated during cleanup

and analysis in a results directory.

d Put project source code in the src directory.

e Put external scripts or compiled programs in the bin directory.
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• Ensure that raw data are backed up in more than one location (1b). If external hard drives

are used, store them off-site of the original location. Universities often have their own data-

storage solutions, so it is worthwhile to consult with your local Information Technology (IT)

group or library. Alternatively, cloud computing resources, like Amazon Simple Storage

Service (Amazon S3), Google Cloud Storage, or Microsoft Azure are reasonably priced and

reliable. For large data sets, for which storage and transfer can be expensive and time-con-

suming, you may need to use incremental backup or specialized storage systems, and people

in your local IT group or library can often provide advice and assistance on options at your

university or organization as well.

• Create the data you wish to see in the world (1c). Create the data set you wish you had

received. The goal here is to improve machine and human readability, but not to do vigorous

data filtering or add external information. Machine readability allows automatic processing

using computer programs, which is important when others want to reuse your data. Specific

examples of nondestructive transformations that we recommend at the beginning of analysis

include the following:

File formats: Convert data from closed, proprietary formats to open, nonproprietary formats

that ensure machine readability across time and computing setups [9]. Good options include

CSV for tabular data, JSON, YAML, or XML for nontabular data such as graphs (the node-

and-arc kind), and HDF5 for certain kinds of structured data.

Variable names: Replace inscrutable variable names and artificial data codes with self-

explaining alternatives, e.g., rename variables called name1 and name2 to personal_
name and family_name, recode the treatment variable from 1 vs. 2 to untreated vs.

treated, and replace artificial codes for missing data, such as "-99," with NA, a code used

in most programming languages to indicate that data are "Not Available" [10].

f Name all files to reflect their content or function.

5. Keeping track of changes

a Back up (almost) everything created by a human being as soon as it is created.

b Keep changes small.

c Share changes frequently.

d Create, maintain, and use a checklist for saving and sharing changes to the project.

e Store each project in a folder that is mirrored off the researcher’s working

machine.

f Add a file called CHANGELOG.txt to the project’s docs subfolder.

g Copy the entire project whenever a significant change has been made.

h Use a version control system.

6. Manuscripts

a Write manuscripts using online tools with rich formatting, change tracking, and

reference management.

b Write the manuscript in a plain text format that permits version control.
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File names: Store especially useful metadata as part of the file name itself, while keeping the

file name regular enough for easy pattern matching. For example, a file name like 2016-
05-alaska-b.csvmakes it easy for both people and programs to select by year or by

location.

• Create analysis-friendly data (1d). Analysis can be much easier if you are working with so-

called "tidy" data [5]. Two key principles are as follows:

Make each column a variable: Don’t cram 2 variables into one; e.g., "male_treated" should be

split into separate variables for sex and treatment status. Store units in their own variable or

in metadata, e.g., "3.4" instead of "3.4kg".

Make each row an observation: Data often come in a wide format, because that facilitated

data entry or human inspection. Imagine 1 row per field site and then columns for measure-

ments made at each of several time points. Be prepared to gather such columns into a vari-

able of measurements, plus a new variable for time point. Fig 1 presents an example of such

a transformation.

• Record all the steps used to process data (1e). Data manipulation is as integral to your anal-

ysis as statistical modeling and inference. If you do not document this step thoroughly, it is

impossible for you or anyone else to repeat the analysis.

The best way to do this is to write scripts for every stage of data processing. This might feel

frustratingly slow, but you will get faster with practice. The immediate payoff will be the ease

with which you can redo data preparation when new data arrive. You can also reuse data

preparation steps in the future for related projects. For very large data sets, data preparation

may also include writing and saving scripts to obtain the data or subsets of the data from

remote storage.

Some data-cleaning tools, such as OpenRefine, provide a graphical user interface but also

automatically keep track of each step in the process. When tools like these or scripting are

not feasible, it’s important to clearly document every manual action (what menu was used,

what column was copied and pasted, what link was clicked, etc.). Often, you can at least

capture what action was taken, if not the complete why. For example, choosing a region of

interest in an image is inherently interactive, but you can save the region chosen as a set of

boundary coordinates.

• Anticipate the need to use multiple tables, and use a unique identifier for every record

(1f). Raw data, even if tidy, are not necessarily complete. For example, the primary data table

Fig 1. Example of gathering columns to create tidy data.

https://doi.org/10.1371/journal.pcbi.1005510.g001
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might hold the heart rate for individual subjects at rest and after a physical challenge, identi-

fied via a subject ID. Demographic variables, such as subject age and sex, are stored in a sec-

ond table and will need to be brought in via merging or lookup. This will go more smoothly

if subject ID is represented in a common format in both tables, e.g., always as "14025" versus

"14,025" in one table and "014025" in another. It is generally wise to give each record or unit

a unique, persistent key and to use the same names and codes when variables in 2 data sets

refer to the same thing.

• Submit data to a reputable DOI-issuing repository so that others can access and cite it

(1g). Your data are as much a product of your research as the papers you write and just as

likely to be useful to others (if not more so). Sites such as Figshare, Dryad, and Zenodo allow

others to find your work, use it, and cite it; we discuss licensing in Section 3 below. Follow

your research community’s standards for how to provide metadata. Note that there are 2

types of metadata: metadata about the data set as a whole and metadata about the content

within the data set. If the audience is humans, write the metadata (the README file) for

humans. If the audience includes automatic metadata harvesters, fill out the formal metadata

and write a good README file for the humans [11].

Taken in order, the recommendations above will produce intermediate data files with

increasing levels of cleanliness and task specificity. An alternative approach to data manage-

ment would be to fold all data-management tasks into a monolithic procedure for data analy-

sis, so that intermediate data products are created "on the fly" and stored only in memory, not

saved as distinct files.

While the latter approach may be appropriate for projects in which very little data cleaning

or processing is needed, we recommend the explicit creation and retention of intermediate

products. Saving intermediate files makes it easy to rerun parts of a data analysis pipeline,

which in turn makes it less onerous to revisit and improve specific data-processing tasks.

Breaking a lengthy workflow into pieces makes it easier to understand, share, describe, and

modify. This is particularly true when working with large data sets, for which storage and

transfer of the entire data set is not trivial or inexpensive.

Software

If you or your group are creating tens of thousands of lines of software for use by hundreds of

people you have never met, you are doing software engineering. If you’re writing a few dozen

lines now and again and are probably going to be their only user, you may not be doing engi-

neering, but you can still make things easier on yourself by adopting a few key engineering

practices. What’s more, adopting these practices will make it easier for people to understand

and (re)use your code.

The core realization in these practices is that being readable, reusable, and testable are all

side effects of writing modular code, i.e., of building programs out of short, single-purpose

functions with clearly-defined inputs and outputs [12]. Much has been written on this topic

[12–14], and this section focuses on practices that best balance ease of use with benefit for you

and collaborators.

• Place a brief explanatory comment at the start of every program (2a), no matter how

short it is. That comment should include at least 1 example of how the program is used;

remember, a good example is worth a thousand words. Where possible, the comment should

also indicate reasonable values for parameters. An example of such a comment is shown

below.
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Synthesizeimagefilesfor testingcircularityestimationalgorithm.
Usage:make_images.py-f fuzzing-n flaws-o output-s seed-v -w size
where:
-f fuzzing:fuzzingrangeof blobs(typically0.0–0.2)
-n flaws:p(success)for # flaws/sample(e.g.0.5–0.8)
-o output:nameof outputfile
-s seed:randomnumbergeneratorseed(largeinteger)
-v: verbose
-w size:imagewidth/heightin pixels(typically480–800)
-h: showhelpmessage

• Decompose programs into functions (2b) that are no more than 1 page (about 60 lines)

long. A function is a reusable section of software that can be treated as a black box by the rest

of the program. The syntax for creating functions depends on programming language, but

generally, you name the function, list its input parameters, and describe what information it

produces. Functions should take no more than 5 or 6 input parameters and should not refer-

ence outside information.

The key motivation here is to fit the program into the most limited memory of all: ours.

Human short-term memory is famously incapable of holding more than about 7 items at

once [15]. If we are to understand what our software is doing, we must break it into chunks

that obey this limit, then create programs by combining these chunks. Putting code into

functions also makes it easier to test and troubleshoot when things go wrong.

• Be ruthless about eliminating duplication (2c). Write and reuse functions instead of copy-

ing and pasting code, and use data structures like lists instead of creating many closely related

variables, e.g., create score = (1, 2, 3) rather than score1,score2, and score3.

Also, look for well-maintained libraries that already do what you’re trying to do. All program-

ming languages have libraries that you can import and use in your code. This is code that peo-

ple have already written and made available for distribution that has a particular function. For

instance, there are libraries for statistics, modeling, mapping, and many more. Many languages

catalog the libraries in a centralized source, for instance, R has CRAN, Python has PyPI, and so

on. Thus, always search for well-maintained software libraries that do what you need (2d)

before writing new code yourself, but test libraries before relying on them (2e).

• Give functions and variables meaningful names (2f), both to document their purpose and

to make the program easier to read. As a rule of thumb, the greater the scope of a variable,

the more informative its name should be; while it’s acceptable to call the counter variable in

a loop i or j, things that are reused often, such as the major data structures in a program,

should not have 1-letter names. Remember to follow each language’s conventions for names,

such as net_charge for Python and NetCharge for Java.

Tab completion

Almost all modern text editors provide tab completion, so that typing the first part of a

variable name and then pressing the tab key inserts the completed name of the variable.

Employing this means that meaningful, longer variable names are no harder to type than

terse abbreviations.

• Make dependencies and requirements explicit (2g). This is usually done on a per-

project rather than per-program basis, i.e., by adding a file called something like
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requirements.txt to the root directory of the project or by adding a "Getting

Started" section to the README file.

• Do not comment and uncomment sections of code to control a program’s behavior (2h),

since this is error prone and makes it difficult or impossible to automate analyses. Instead,

put if/else statements in the program to control what it does.

• Provide a simple example or test data set (2i) that users (including yourself) can run to

determine whether the program is working and whether it gives a known correct output for

a simple known input. Such a "build-and-smoke test" is particularly helpful when supposedly

innocent changes are being made to the program or when it has to run on several different

machines, e.g., the developer’s laptop and the department’s cluster.

• Submit code to a reputable DOI-issuing repository (2j) upon submission of paper, just as

you do with data. Your software is as much a product of your research as your papers and

should be as easy for people to credit. DOIs for software are provided by Figshare and

Zenodo. Zenodo integrates directly with GitHub.

Collaboration

You may start working on projects by yourself or with a small group of collaborators you

already know, but you should design it to make it easy for new collaborators to join. These col-

laborators might be new grad students or postdocs in the lab or they might be you returning to

a project that has been idle for some time. As summarized in [16], you want to make it easy for

people to set up a local workspace so that they can contribute, help them find tasks so that they

know what to contribute, and make the contribution process clear so that they know how to

contribute. You also want to make it easy for people to give you credit for your work.

• Create an overview of your project (3a). Have a short file in the project’s home directory

that explains the purpose of the project. This file (generally called README, README.txt,

or something similar) should contain the project’s title, a brief description, up-to-date con-

tact information, and an example or 2 of how to run various cleaning or analysis tasks. It is

often the first thing users and collaborators on your project will look at, so make it explicit

how you want people to engage with the project. If you are looking for more contributors,

make it clear that you welcome contributors and point them to the license (more below) and

ways they can help.

You should also create a CONTRIBUTING file that describes what people need to do in

order to get the project going and use or contribute to it, i.e., dependencies that need to be

installed, tests that can be run to ensure that software has been installed correctly, and guide-

lines or checklists that your project adheres to.

• Create a shared "to-do" list (3b). This can be a plain text file called something like

notes.txt or todo.txt, or you can use sites such as GitHub or Bitbucket to create a

new issue for each to-do item (you can even add labels such as "low hanging fruit" to point

newcomers at issues that are good starting points). Whatever you choose, describe the

items clearly so that they make sense to newcomers.

• Decide on communication strategies (3c). Make explicit decisions about (and publicize

where appropriate) how members of the project will communicate with each other and with

externals users/collaborators. This includes the location and technology for email lists, chat

channels, voice/video conferencing, documentation, and meeting notes, as well as which of

these channels will be public or private.
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• Make the license explicit (3d). Have a LICENSE file in the project’s home directory that

clearly states what license(s) apply to the project’s software, data, and manuscripts. Lack of

an explicit license does not mean there isn’t one; rather, it implies the author is keeping all

rights and others are not allowed to reuse or modify the material.

We recommend Creative Commons licenses for data and text, either CC-0 (the "No Rights

Reserved" license) or CC-BY (the "Attribution" license, which permits sharing and reuse but

requires people to give appropriate credit to the creators). For software, we recommend a

permissive open source license such as the MIT, BSD, or Apache license [17].

What not to do

We recommend against the "no commercial use" variations of the Creative Commons

licenses because they may impede some forms of reuse. For example, if a researcher in a

developing country is being paid by her government to compile a public health report, she

will be unable to include your data if the license says "noncommercial". We recommend

permissive software licenses rather than the GNU General Public License (GPL) because

it is easier to integrate permissively licensed software into other projects; see chapter 3 in

[17].

• Make the project citable (3e) by including a CITATION file in the project’s home directory

that describes how to cite this project as a whole and where to find (and how to cite) any

data sets, code, figures, and other artifacts that have their own DOIs. The example below

shows the CITATION file for the Ecodata Retriever (https://github.com/weecology/

retriever); for an example of a more detailed CITATION file, see the one for the khmer proj-

ect (https://github.com/dib-lab/khmer).

Please cite this work as:
Morris,B.D. and E.P. White.2013. "The EcoDataRetriever:improv-

ing access to existingecologicaldata". PLoS ONE 8:e65848.http://
doi.org/doi:10.1371/journal.pone.0065848

Project organization

Organizing the files that make up a project in a logical and consistent directory structure will

help you and others keep track of them. Our recommendations for doing this are drawn pri-

marily from [2, 3].

• Put each project in its own directory, which is named after the project (4a). Like deciding

when a chunk of code should be made a function, the ultimate goal of dividing research into

distinct projects is to help you and others best understand your work. Some researchers

create a separate project for each manuscript they are working on, while others group all

research on a common theme, data set, or algorithm into a single project.

As a rule of thumb, divide work into projects based on the overlap in data and code files. If 2

research efforts share no data or code, they will probably be easiest to manage independently.

If they share more than half of their data and code, they are probably best managed together,

while if you are building tools that are used in several projects, the common code should

probably be in a project of its own. Projects do often require their own organizational

model, but below are general recommendations on how you can structure data, code, analy-

sis outputs, and other files. The important concept is that it is useful to organize the project

by the types of files and that consistency helps you effectively find and use things later.
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• Put text documents associated with the project in the doc directory (4b). This includes

files for manuscripts, documentation for source code, and/or an electronic lab notebook

recording your experiments. Subdirectories may be created for these different classes of files

in large projects.

• Put raw data and metadata in a data directory and files generated during cleanup and

analysis in a results directory (4c), where "generated files" includes intermediate results

such as cleaned data sets or simulated data, as well as final results such as figures and tables.

The results directory will usually require additional subdirectories for all but the simplest

projects. Intermediate files such as cleaned data, statistical tables, and final publication-ready

figures or tables should be separated clearly by file-naming conventions or placed into differ-

ent subdirectories; those belonging to different papers or other publications should be

grouped together. Similarly, the data directory might require subdirectories to organize

raw data based on time, method of collection, or other metadata most relevant to your

analysis.

• Put project source code in the src directory (4d). src contains all of the code written for

the project. This includes programs written in interpreted languages such as R or Python;

those written in compiled languages like Fortran, C++, or Java; as well as shell scripts, snip-

pets of SQL used to pull information from databases; and other code needed to regenerate

the results.

This directory may contain 2 conceptually distinct types of files that should be distinguished

either by clear file names or by additional subdirectories. The first type is files or groups of

files that perform the core analysis of the research, such as data cleaning or statistical analy-

ses. These files can be thought of as the "scientific guts" of the project.

The second type of file in src is controller or driver scripts that contain all the analysis steps

for the entire project from start to finish, with particular parameters and data input/output

commands. A controller script for a simple project, for example, may read a raw data table,

import and apply several cleanup and analysis functions from the other files in this directory,

and create and save a numeric result. For a small project with 1 main output, a single con-

troller script should be placed in the main src directory and distinguished clearly by a name

such as "runall". The short example in Box 2 is typical of scripts of this kind; note how it uses

1 variable, TEMP_DIR, to avoid repeating the name of a particular directory 4 times.

• Put compiled programs in the bin directory (4e). bin contains executable programs com-

piled from code in the src directory (the name bin is an old Unix convention and comes

Box 2. Example of a "runall" script

TEMP_DIR= ./temp_zip_files
echo "Packagingzip files requiredby analysistool. . ."
mkdir $(TEMP_DIR)
./src/make-zip-files.py$(TEMP_DIR) �.dat
echo "Analyzing. . ."
./bin/sqr_mean_analyze -i $(TEMP_DIR)-b "temp"
echo "Cleaningup. . ."
rm -rf $(TEMP_DIR)
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from the term "binary"). Projects that do not have any executable programs compiled from

code in the src directory will not require bin.

Scripts versus programs

We use the term "script" to mean "something that is executed directly as is" and "program"

to mean "something that is explicitly compiled before being used". The distinction is more

one of degree than kind—libraries written in Python are actually compiled to bytecode as

they are loaded, for example—so one other way to think of it is "things that are edited

directly" and "things that are not edited directly".

External scripts

If src is for human-readable source code and bin is for compiled binaries, where should

projects put scripts that are executed directly—particularly ones that are brought in from

outside the project? On the one hand, these are written in the same languages as the proj-

ect-specific scripts in src; on the other, they are executable, like the programs in bin.

The answer is that it doesn’t matter, as long as each team’s projects follow the same rule.

As with many of our other recommendations, consistency and predictability are more

important than hairsplitting.

• Name all files to reflect their content or function (4f). For example, use names such as

bird_count_table.csv,manuscript.md, or sightings_analysis.py.Do

not use sequential numbers (e.g., result1.csv,result2.csv) or a location in a final

manuscript (e.g., fig_3_a.png), since those numbers will almost certainly change as the

project evolves.

The structure shown in Box 3 is a concrete example of how a simple project might be orga-

nized following these recommendations. The root directory contains a README file that pro-

vides an overview of the project as a whole, a CITATION file that explains how to reference it,

and a LICENSE file that states the licensing. The data directory contains a single CSV file

Box 3. Project layout

.
|-- CITATION
|-- README
|-- LICENSE
|-- requirements.txt
|-- data
| |-- birds_count_table.csv
|-- doc
| |-- notebook.md
| |-- manuscript.md
| |-- changelog.txt
|-- results
| |-- summarized_results.csv
|-- src
| |-- sightings_analysis.py
| |-- runall.py
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with tabular data on bird counts (machine-readable metadata could also be included here).

The src directory contains sightings_analysis.py, a Python file containing functions

to summarize the tabular data, and a controller script runall.py that loads the data table,

applies functions imported from sightings_analysis.py, and saves a table of summa-

rized results in the results directory.

This project doesn’t have a bin directory because it does not rely on any compiled soft-

ware. The doc directory contains 2 text files written in Markdown, 1 containing a running lab

notebook describing various ideas for the project and how these were implemented, and the

other containing a running draft of a manuscript describing the project findings.

Keeping track of changes

Keeping track of changes that you or your collaborators make to data and software is a critical

part of research. Being able to reference or retrieve a specific version of the entire project aids

in reproducibility for you leading up to publication, when responding to reviewer comments,

and when providing supporting information for reviewers, editors, and readers.

We believe that the best tools for tracking changes are the version control systems that are

used in software development, such as Git, Mercurial, and Subversion. They keep track of

what was changed in a file, when, and by whom and synchronize changes to a central server so

that multiple contributors can manage changes to the same set of files.

While these version control tools make tracking changes easier, they can have a steep learn-

ing curve. Thus, we provide 2 sets of recommendations, (1) a systematic manual approach for

managing changes and (2) version control in its full glory, and you can use the first while

working towards the second or just jump into version control.

Whatever system you chose, we recommend that you do the following:

• Back up (almost) everything created by a human being as soon as it is created (5a). This

includes scripts and programs of all kinds, software packages that your project depends on,

and documentation. A few exceptions to this rule are discussed below.

• Keep changes small (5b). Each change should not be so large as to make the change tracking

irrelevant. For example, a single change such as "Revise script file" that adds or changes sev-

eral hundred lines is likely too large, as it will not allow changes to different components of

an analysis to be investigated separately. Similarly, changes should not be broken up into

pieces that are too small. As a rule of thumb, a good size for a single change is a group of

edits that you could imagine wanting to undo in one step at some point in the future.

• Share changes frequently (5c). Everyone working on the project should share and incorpo-

rate changes from others on a regular basis. Do not allow individual investigator’s versions

of the project repository to drift apart, as the effort required to merge differences goes up

faster than the size of the difference. This is particularly important for the manual versioning

procedure described below, which does not provide any assistance for merging simulta-

neous, possibly conflicting changes.

• Create, maintain, and use a checklist for saving and sharing changes to the project (5d).

The list should include writing log messages that clearly explain any changes, the size and

content of individual changes, style guidelines for code and updating to-do lists, and bans

on committing half-done work or broken code. See [18] for more on the proven value of

checklists.

• Store each project in a folder that is mirrored off the researcher’s working machine (5e)

using a system such as Dropbox or a remote version control repository such as GitHub.
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Synchronize that folder at least daily. It may take a few minutes, but that time is repaid the

moment a laptop is stolen or its hard drive fails.

Manual versioning

Our first suggested approach, in which everything is done by hand, has 2 additional parts:

• Add a file called CHANGELOG.txt to the project’s docs subfolder (5f), and make

dated notes about changes to the project in this file in reverse chronological order (i.e.,

most recent first). This file is the equivalent of a lab notebook and should contain entries

like those shown below.

## 2016-04-08
� Switchedto cubic interpolationas default.
� Moved questionabout family'sTB historyto end of questionnaire.
## 2016-04-06
� Added option for cubic interpolation.
� Removedquestionabout staph exposure(can be inferredfrom blood

test results).

• Copy the entire project whenever a significant change has been made (5g) (i.e., one that

materially affects the results), and store that copy in a subfolder whose name reflects the date

in the area that’s being synchronized. This approach results in projects being organized as

shown below:

.
|-- project_name
| |-- current
| | |-- . . .project contentas describedearlier. . .

| |-- 2016-03-01
| | |-- . . .content of 'current'on Mar 1, 2016
| |-- 2016-02-19
| | |-- . . .content of 'current'on Feb 19, 2016

Here, the project_name folder is mapped to external storage (such as Dropbox),

current is where work is being done, and other folders within project_name are old

versions.

Data are cheap, time is expensive

Copying everything like this may seem wasteful, since many files won’t have changed, but

consider: a terabyte hard drive costs about US$50 retail, which means that 50 Gigabytes

costs less than US$5. Provided large data files are kept out of the backed-up area (dis-

cussed below), this approach costs less than the time it would take to select files by hand

for copying.

This manual procedure satisfies the requirements outlined above without needing any new

tools. If multiple researchers are working on the same project, though, they will need to coor-

dinate so that only a single person is working on specific files at any time. In particular, they

may wish to create 1 change log file per contributor and to merge those files whenever a

backup copy is made.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005510 June 22, 2017 13 / 20

https://doi.org/10.1371/journal.pcbi.1005510


Version control systems

What the manual process described above requires most is self-discipline. The version control

tools that underpin our second approach—the one we use in our own projects—don’t just

accelerate the manual process, they also automate some steps while enforcing others and

thereby require less self-discipline for more reliable results.

• Use a version control system (5h) to manage changes to a project.

• Box 4 briefly explains how version control systems work. It’s hard to know what version con-

trol tool is most widely used in research today, but the one that’s most talked about is

undoubtedly Git. This is largely because of GitHub, a popular hosting site that combines the

technical infrastructure for collaboration via Git with a modern web interface. GitHub is free

for public and open source projects and for users in academia and nonprofits. GitLab is a

well-regarded alternative that some prefer, because the GitLab platform itself is free and

open source. Bitbucket provides free hosting for both Git and Mercurial repositories but

does not have nearly as many scientific users.

What not to put under version control

The benefits of version control systems don’t apply equally to all file types. In particular, ver-

sion control can be more or less rewarding depending on file size and format. First, file com-

parison in version control systems is optimized for plain text files, such as source code. The

Box 4. How version control systems work

A version control system stores snapshots of a project’s files in a repository. Users mod-

ify their working copy of the project, then save changes to the repository when they wish

to make a permanent record and/or share their work with colleagues. The version con-

trol system automatically records when the change was made and by whom, along with

the changes themselves.

Crucially, if several people have edited 1 or more files simultaneously, the version

control system will detect any overlapping changes and require conflicts to be resolved

before storing the result. Modern version control systems allow repositories to be syn-

chronized with each other, so that no 1 repository becomes a single point of failure.

Tool-based version control has several benefits over manual version control:

• Instead of requiring users to make backup copies of the whole project, version control

safely stores just enough information to allow old versions of files to be recreated on

demand.

• Instead of relying on users to choose sensible names for backup copies, the version

control system timestamps all saved changes automatically.

• Instead of requiring users to be disciplined about completing the change log, version

control systems prompt them every time a change is saved. They also keep a 100%

accurate record of what was actually changed as opposed to what the user thought they

changed, which can be invaluable when problems crop up later.

• Instead of simply copying files to remote storage, version control checks to see whether

doing that would overwrite anyone else’s work. If so, they facilitate identifying conflict

and merging changes.
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ability to see so-called "diffs" is one of the great joys of version control. Unfortunately, while

Microsoft Office files (like the .docx files used by Word) or other binary files, e.g., PDFs, can

be stored in a version control system, it is not possible to pinpoint specific changes from 1 ver-

sion to the next. Tabular data (such as CSV files) can be put in version control, but changing

the order of the rows or columns will create a big change for the version control system, even

if the actual data have not changed.

Second, raw data should not change and therefore should not require version tracking.

Keeping intermediate data files and other results under version control is also not necessary if

you can regenerate them from raw data and software. However, if data and results are small,

we still recommend versioning them for ease of access by collaborators and for comparison

across versions.

Third, today’s version control systems are not designed to handle megabyte-sized files,

never mind gigabytes, so large data or results files should not be included (as a benchmark for

"large", the limit for an individual file on GitHub is 100 MB). Some emerging hybrid systems

such as Git Large File Storage (LFS) put textual notes under version control while storing the

large data in a remote server, but these are not yet mature enough for us to recommend.

Inadvertent sharing

Researchers dealing with data subject to legal restrictions that prohibit sharing (such as

medical data) should be careful not to put data in public version control systems. Some

institutions may provide access to private version control systems, so it is worth checking

with your IT department.

Additionally, be sure not to unintentionally place security credentials such as pass-

words and private keys in a version control system where it may be accessed by others.

Manuscripts

An old joke says that doing the research is the first 90% of any project; writing up is the other

90%. While writing is rarely addressed in discussions of scientific computing, computing has

changed scientific writing just as much as it has changed research.

A common practice in academic writing is for the lead author to send successive versions of

a manuscript to coauthors to collect feedback, which is returned as changes to the document,

comments on the document, plain text in email, or a mix of all 3. This allows coauthors to use

familiar tools but results in a lot of files to keep track of and a lot of tedious manual labor to

merge comments to create the next master version.

Instead of an email-based workflow, we recommend mirroring good practices for manag-

ing software and data to make writing scalable, collaborative, and reproducible. As with our

recommendations for version control in general, we suggest that groups choose 1 of 2 different

approaches for managing manuscripts. The goals of both are to do as follows:

• Ensure that text is accessible to yourself and others now and in the future by making a single

master document that is available to all coauthors at all times.

• Reduce the chances of work being lost or people overwriting each other’s work.

• Make it easy to track and combine contributions from multiple collaborators.

• Avoid duplication and manual entry of information, particularly in constructing bibliogra-

phies, tables of contents, and lists.
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• Make it easy to regenerate the final published form (e.g., a PDF) and to tell if it is up to date.

• Make it easy to share that final version with collaborators and to submit it to a journal.

The first rule is. . .

The workflow you choose is less important than having all authors agree on the workflow

before writing starts. Make sure to also agree on a single method to provide feedback, be it

an email thread or mailing list, an issue tracker (like the ones provided by GitHub and Bit-

bucket), or some sort of shared online to-do list.

Single master online

Our first alternative will already be familiar to many researchers:

• Write manuscripts using online tools with rich formatting, change tracking, and refer-

ence management (6a), such as Google Docs. With the document online, everyone’s

changes are in one place and hence don’t need to be merged manually.

We realize that, in many cases, even this solution is asking too much from collaborators

who see no reason to move forward from graphical desktop tools. To satisfy them, the manu-

script can be converted to a desktop editor file format (e.g., Microsoft Word .docx or

LibreOffice .odt) after major changes, then downloaded and saved in the doc folder. Unfor-

tunately, this means merging some changes and suggestions manually, as existing tools cannot

always do this automatically when switching from a desktop file format to text and back

(although Pandoc can go a long way).

Text-based documents under version control

The second approach treats papers exactly like software and has been used by researchers in

mathematics, astronomy, physics, and related disciplines for decades:

• Write the manuscript in a plain text format that permits version control (6b), such as

LaTeX or Markdown, and then convert them to other formats, such as PDF, as needed using

scriptable tools like Pandoc.

Using a version control system provides good support for finding and merging differences

resulting from concurrent changes. It also provides a convenient platform for making com-

ments and performing review.

This approach reuses the version control tools and skills used to manage data and software

and is a good starting point for fully reproducible research. However, it requires all contribu-

tors to understand a much larger set of tools, including Markdown or LaTeX, Make, BiBTeX,

and Git/GitHub.

Why two recommendations for manuscripts?

We initially recommended that researchers should always use plain text in version control to

manage manuscripts. However, several members of our community felt strongly that the

learning curve associated with this recommendation was a significant barrier to entry. For

example, Stephen Turner wrote:

. . .try to explain the notion of compiling a document to an overworked physician you col-

laborate with. Oh, but before that, you have to explain the difference between plain text and

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005510 June 22, 2017 16 / 20

https://doi.org/10.1371/journal.pcbi.1005510


word processing. And text editors. And Markdown/LaTeX compilers. And BiBTeX. And

Git. And GitHub. Etc. Meanwhile, he/she is getting paged from the OR. . .

. . .as much as we want to convince ourselves otherwise, when you have to collaborate with

those outside the scientific computing bubble, the barrier to collaborating on papers in this

framework is simply too high to overcome. Good intentions aside, it always comes down

to, "just give me a Word document with tracked changes", or similar.

Similarly, Arjun Raj [19] said in a blog post:

Google Docs excels at easy sharing, collaboration, simultaneous editing, commenting, and

reply-to-commenting. Sure, one can approximate these using text-based systems and ver-

sion control. The question is why anyone would like to. . .

The goal of reproducible research is to make sure one can reproduce. . . computational

analyses. The goal of version control is to track changes to source code. These are funda-

mentally distinct goals, and while there is some overlap, version control is merely a tool to

help achieve that and comes with so much overhead and baggage that it is often not worth

the effort.

Collaborative editing in something like Google Docs does not have all the benefits of text-

based formats (notably, being able to store manuscripts in the same place, and in the same

way, as other materials). However, it does meet the requirements that we initially outlined. We

still recommend against using desktop tools like LibreOffice and Microsoft Word with either

email or file-sharing services like Dropbox, as workflows based on these do not scale beyond a

small number of participants.

Supplementary materials

Supplementary materials often contain much of the work that went into the project, such as

tables and figures or more elaborate descriptions of the algorithms, software, methods, and

analyses. In order to make these materials as accessible to others as possible, do not rely solely

on the PDF format, since extracting data from PDFs is notoriously hard. Instead, we recom-

mend separating the results that you may expect others to reuse (e.g., data in tables, data

behind figures) into separate, text-format files in formats such as CSV, JSON, YAML, XML, or

HDF5. We recommend against more innovative formats in deference to an old saying: "What’s

oldest lasts longest". The same holds for any commands or code you want to include as supple-

mentary material: use the format that most easily enables reuse (source code files, Unix shell

scripts, etc.).

What we left out

We have deliberately left many good tools and practices off our list, including some that we

use daily, because they only make sense on top of the core practices described above or because

it takes a larger investment before they start to pay off.

• Branches. A branch is a "parallel universe" within a version control repository. Developers

create branches so that they can make multiple changes to a project independently. They are

central to the way that experienced developers use systems like Git, but they add an extra

layer of complexity to version control for newcomers. Programmers got along fine in the

days of CVS and Subversion without relying heavily on branching, and branching can be
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adopted without significant disruption after people have mastered a basic edit-commit

workflow.

• Build tools. Tools like Make were originally developed to recompile pieces of software that

had fallen out of date. They are now also used to regenerate data and entire papers; when

one or more raw input files change, Make can automatically rerun those parts of the analysis

that are affected, regenerate tables and plots, and then regenerate the human-readable PDF

that depends on them. However, newcomers can achieve the same behavior by writing shell

scripts that rerun everything; these may do unnecessary work, but given the speed of today’s

machines, that is unimportant for small projects.

• Unit tests. A unit test is a small test of 1 particular feature of a piece of software. Projects rely

on unit tests to prevent regression, i.e., to ensure that a change to 1 part of the software

doesn’t break other parts. While unit tests are essential to the health of large libraries and

programs, we have found that they usually aren’t compelling for solo exploratory work

(note, for example, the lack of a test directory in Noble’s rules [3]). Rather than advocating

something which people are unlikely to adopt, we have left unit testing off this list.

• Coverage. Every modern programming language comes with tools to report the coverage of

a set of test cases, i.e., the set of lines that are and aren’t actually executed when those tests

are run. As with unit testing, this only starts to pay off as projects grow larger and is therefore

not recommended here.

• Continuous integration. Tools like Travis-CI automatically run a set of user-defined com-

mands whenever changes are made to a version control repository. These commands typi-

cally execute tests to make sure that software hasn’t regressed, i.e., that things which used to

work still do. These tests can be run either before changes are saved (in which case, the

changes can be rejected if something fails) or after (in which case, the project’s contributors

can be notified of the breakage). CI systems are invaluable in large projects with many con-

tributors but pay fewer dividends in smaller projects where code is being written to do spe-

cific analyses.

• Profiling and performance tuning. Profiling is the act of measuring where a program

spends its time and is an essential first step in tuning the program (i.e., making it run faster).

Both are worth doing but only when the program’s performance is actually a bottleneck; in

our experience, most users spend more time getting the program right in the first place.

• The semantic web. Ontologies and other formal definitions of data are useful, but in our

experience, even simplified things like Dublin Core are rarely encountered in the wild.

• Documentation. Good documentation is a key factor in software adoption, but in practice,

people won’t write comprehensive documentation until they have collaborators who will use

it. They will, however, quickly see the point of a brief explanatory comment at the start of

each script, so we have recommended that as a first step.

• A bibliography manager. Researchers should use a reference manager of some sort, such as

Zotero, and should also obtain and use an ORCID to identify themselves in their publica-

tions, but discussion of those is outside the scope of this paper.

• Code reviews and pair programming. These practices are valuable in projects with multiple

people making large software contributions, which is not typical for the intended audience

for this paper [20].
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One important observation about this list is that many experienced programmers actually

do some or all of these things even for small projects. It makes sense for them to do so because

(a) they’ve already paid the learning cost of the tool, so the time required to implement for the

"next" project is small, and (b) they understand that their project will need some or all of these

things as it scales up, so they might as well put it in place now.

The problem comes when those experienced developers give advice to people who haven’t

already mastered the tools and don’t realize (yet) that they will save time if and when their

project grows. In that situation, advocating unit testing with coverage checking and continu-

ous integration is more likely to overwhelm newcomers rather than aid them.

Conclusion

We have outlined a series of practices for scientific computing based on our collective experi-

ence and the experience of the thousands of researchers we have met through Software Car-

pentry, Data Carpentry, and similar organizations. These practices are pragmatic, accessible to

people who consider themselves new to computing, and can be applied by both individuals

and groups. Most importantly, these practices make researchers more productive individually

by enabling them to get more done in less time and with less pain. They also accelerate

research as a whole by making computational work (which increasingly means all work) more

reproducible.

However, progress will not happen by itself. The practices described here are increasingly

incentivized by requirements from journals and funding agencies, but the time and skills

required to actually do them are still not being valued.

At a local level, principal investigators (PIs) can have the most impact, requiring that the

research their lab produces follow these recommendations. Even if a PI doesn’t have a back-

ground in computation, they can require that students show and share their code in lab

meetings and with lab mates, those data are available and accessible to all in the lab, and that

computational methods sections are comprehensive. PIs can also value the time it takes to do

these things effectively and provide opportunities for training.

Universities can also support such efforts. While this is often provided by IT or high perfor-

mance computing (HPC) groups, research librarians are an often underappreciated resource.

Librarians have thought about and worked with data and provenance even before these

computational challenges, and, increasingly, universities have dedicated data librarians on

staff who have an explicit service role.

Many campuses also have self-organized groups led by students who wish to learn from

each other, which may operate independently or in concert with organizations like Software

Carpentry, Data Carpentry, or The Hacker Within.

Finally, many funding agencies now require data-management plans, education, and out-

reach activities. The true cost of implementing these plans includes training; it is unfair as

well as counterproductive to insist that researchers do things without teaching them how. We

believe it is now time for funders to invest in such training; we hope that our recommenda-

tions will help shape consensus on what "good enough" looks like and how to achieve it.
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