
1

A Python programming primer for biologists

Systems Biology/Bioinformatics

Edward Marcotte, Univ of Texas at Austin

(Named after Monty Python’s Flying Circus &

designed to be fun to use)

2

In bioinformatics, you often want to do completely new analyses.

Having the ability to program a computer opens all sorts of

research opportunities. Plus, it’s fun!

Most bioinformatics researchers use a scripting language, such as

Python, Perl, or R, rather than a compiled language like C++

These languages are not the fastest, not the slowest, nor best, nor

worst languages, but they’re easy to learn and write, and for

many reasons, are well-suited to bioinformatics.

We’ll spend the next 2 lectures introducing Python to give you a

sense for the language and help introduce the basics of

algorithms.

Python documentation: http://www.python.org/doc/

& tips: http://www.tutorialspoint.com/python

Good introductory Python books:

• Learning Python, Mark Lutz & David Ascher, O’Reilly Media

• Bioinformatics Programming Using Python: Practical

Programming for Biological Data, Mitchell Model, O'Reilly

Good intro video (from a 2 day intro class at Google):

• https://www.youtube.com/playlist?list=PLC8825D0450647509

Practical Python, a self-paced online intro course:

• https://dabeaz-course.github.io/practical-python/

An online Python tutor with a nice interactive code viewer:

• http://www.pythontutor.com/

3

By now, you should have installed Python on your computer.

If you’re using Anaconda/Jupyter, it runs in a web browser:

You can write your commands and programs here

and they will be evaluated when you press Shift-Enter

(or other options from the Cell pulldown menu)

Launch a new

notebook

Or if you installed IDLE by following the instructions in Rosalind

Homework problem #1:

Launch IDLE:

You can test out commands here

to make sure they work…

…but to actually write your programs,

open a new window.

This window will serve as a command line

interface & display your program output.

This window will serve as a text editor for

programming.

4

Let’s start with some simple programs in Python:

A very simple example is:

print("Hello, future bioinformatician!") # print out the greeting

Run the program. In Jupyter, you can just type Shift-Enter & the

output will appear below this cell of the notebook.

The output looks like this:

Hello, future bioinformatician!

FYI: This is version agnostic. Python 3 takes print(“X”). Python 2 also takes print “X” as in Rosalind

A slightly more sophisticated version:

name = input("What is your name? ") # asks a question and saves the answer

in the variable "name"

print("Hello, future bioinformatician " + name + "!") # print out the greeting

When you run it this time, the output looks like:

What is your name?

If you type in your name, followed by the enter key, the program will

print:

Hello, future bioinformatician Alice!

FYI: Python 2.x uses raw_input() instead of input()

5

GENERAL CONCEPTS

Names, numbers, words, etc. are stored as variables.

Variables in Python can be named essentially anything except

words Python uses as command.

For example:

BobsSocialSecurityNumber = 456249685

mole = 6.022e-23

password = "7 infinite fields of blue"

Note that strings of letters and/or numbers

are in quotes, unlike numerical values.

LISTS

Groups of variables can be stored as lists.

A list is a numbered series of values,

like a vector, an array, or a matrix.

Lists are variables, so you can name them just as you would name

any other variable.

Individual elements of the list can be referred to using [] notation:

The list nucleotides might contain the elements

nucleotides[0] = "A"

nucleotides[1] = "C"

nucleotides[2] = "G"

nucleotides[3] = "T"

(Notice the numbering starts from zero. This is standard in Python.)

6

DICTIONARIES

A VERY useful variation on lists is called a dictionary or dict

(sometimes also called a hash).

Groups of values indexed not with numbers (although they could

be) but with other values.

Individual hash elements are accessed like array elements:

For example, we could store the genetic code in a hash named

codons, which might contain 64 entries, one for each codon, e.g.

codons["ATG"] = "Methionine"

codons["TAG"] = "Stop codon"

etc…

Now, for some control over what happens in programs.

There are two very important ways to control the logical flow of

your programs:

if statements

and

for loops

There are some other ways too, but this will get you going for now.

7

if statements

if dnaTriplet == "ATG":

Start translating here. We’re not going to write this part

since we’re really just learning about IF statements

else:

Read another codon

Python cares about the white space (tabs & spaces) you use!

This is how it knows where the conditional actions that follow

begin and end. These conditional steps must always be

indented by the same number of spaces (e.g., 4).

Pick one (e.g. a tab or 4 spaces) and always be consistent.

== equals

!= is not equal to

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

Can nest these using parentheses and Boolean operations, such as

and, not, or or, e.g.:

if dnaTriplet == "TAA" or dnaTriplet == "TAG" or dnaTriplet == "TGA":

print("Reached stop codon")

Note: in the sense of performing a

comparison, not as in setting a value.

8

for loops

Often, we’d like to perform the same command repeatedly or with

slight variations.

For example, to calculate the mean value of the number in an array,

we might try:

Take each value in the array in turn.

Add each value to a running sum.

Divide the total by the number of values.

In Python, you could write this as:

grades = [93, 95, 87, 63, 75] # create a list of grades

sum = 0.0 # variable to store the sum

for grade in grades: # iterate over the list called grades

sum = sum + grade # indented commands are executed on

each cycle of the loop.

mean = sum / 5 # now calculate the average grade

print ("The average grade is ",mean) # print the results

In general, Python cares whether numbers are

integers or floating point (also long integers

and complex numbers).

You can tell Python you want floating point by

defining your variables accordingly

(e.g., X = 1.0 versus X = 1)

Python 2 Python 3

>>> 2 / 3 >>> 2 / 3

0 0.666666
Python 2.x: print ("The average grade is "),mean

9

In general, Python will perform most mathematical operations, e.g.

multiplication (A * B)

division (A / B)

exponentiation (A ** B)

etc.

There are lots of advanced mathematical capabilities you can explore

later on.

Note: Python expects the file to be in your working directory or that you give it a full path.

READING FILES

You can use a for loop to read text files line by line:

count = 0 # Declare a variable to count lines

file = open("mygenomefile", "r") # Open a file for reading (r)

for raw_line in file: # Loop through each line in the file

line = raw_line.rstrip("\r\n") # Remove newline

words = line.split(" ") # split the line into a list of words

Print the appropriate word:

print ("The first word of line {0} of the file is {1}".format(count, words[0]))

count += 1 # shorthand for count = count + 1

file.close() # Last, close the file.

print ("Read in {0} lines\n".format(count))

Stands for “read”

\r = carriage return

\n = newline

Placeholders (e.g., {0}) in the print

statement indicate variables listed

at the end of the line after the

format command

Increment counter by 1

10

WRITING FILES

Same as reading files, but use "w" for ‘write’:

file = open("test_file", "w")

file.write("Hello!\n")

file.write("Goodbye!\n")

file.close() # close the file as you did before

Unless you specify otherwise, you can find the new text file you created (test_file) in the

default Python directory on your computer. In Jupyter, you should see now it appear in the

Jupyter home page directory.

PUTTING IT ALL TOGETHER

11

Let’s choose the input DNA sequence in the file to be the genome of

E. coli, available the class web site (& originally from the Entrez

genomes web site)

The format of the file is ~77,000 lines of A’s, C’s, G’s and T’s:
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTC

TGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGG

TCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTAC

ACAACATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGT

etc…

Running the program produces the output:

The nucleotide A occurs 1142742 times, or 24.62 %

The nucleotide G occurs 1177437 times, or 25.37 %

The nucleotide C occurs 1180091 times, or 25.42 %

The nucleotide T occurs 1141382 times, or 24.59 %

So, now we know that the four nucleotides are present in roughly

equal numbers in the E. coli genome.

One really important aspect of Python is that there are

literally thousands of existing libraries of pre-written functions

that you can use to make life easier

Some examples you might use at some point are:

Numpy for numerical analyses (https://numpy.org/)

Scipy for scientific computation (https://scipy.org/)

BioPython for biological data analysis (https://biopython.org/)

Matplotlib for data visualization (https://matplotlib.org/)

Scikit-image for image processing (https://scikit-image.org/)

Many are preinstalled with Python (like numpy and scipy),

but if not, open the Anaconda Powershell Prompt & type:

pip install biopython

That’s it! Now you should have access to BioPython

12

Let’s use BioPython to rewrite our last program:

We get the same answer, but without having to worry about parsing lines, newlines, etc.,

& this will make life a lot easier for dealing with files with 1000’s of protein or DNA sequences

Finally, let’s give you a new programming super-power with ChatGPT

ChatGPT is (1) truly amazing and powerful, and (2) a pathological liar. Caveat emptor.

Try it out, but don’t trust it implicitly. It will give you an astonishing leg up with your

programming, with the caveat that you have to check every single piece of code or

fact supplied by it. It’s like getting programming help from a gifted psychopath.

https://chat.openai.com/

13

At this stage, I don’t want you to rely on it, especially if you’re just

getting started and don’t know enough to recognize when it’s wrong.

Please don’t ask it write full programs for you or answer homework

problems.

However, a few things you might find helpful at this stage:

(1) Ask it to explain a line of code to you

 “What does this command do?”

(2) Ask it to explain programming syntax, suggest an alternative syntax,

or a more compact way to perform the same task

(3) Debugging, debugging, debugging. Give it your code (if there’s not

too much to it) and ask it to debug.

Just as an example, here’s what chatGPT offers if we give it the example

code for reading a file from 5 slides back.

etc…

(for

several

pages)

14

A last note about programming and proper attribution of other

people’s code:

Most code is either commercial (which you usually can’t access or redistribute) or, if it’s in the

public domain, available under a license, e.g. as for most of the code on github.

Common open source licenses include CC-BY-4.0, BSD, and the MIT license (my own lab often

uses the MIT license). These are very permissive and allow you to use the code (with

attribution) and license your own project in turn however you like. Others are for non-

commercial use only, and still others are strong “copyleft” licenses (like GPL licenses) that

require you to use the identical license for any code you distribute as was on the code you

reused.

Be absolutely sure to acknowledge code that you use & check that you’re licensed to use it

(especially if you go work in industry after grad school!)

You can read more about software licenses here:

https://opensource.guide/legal/#which-open-source-license-is-appropriate-for-my-project

& specifically for Github:

https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-

features/customizing-your-repository/licensing-a-repository

