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Principal Component 
Analysis (PCA)

BCH394P/364C Systems Biology / Bioinformatics

Edward Marcotte, Univ of Texas at Austin

What is Principal Component Analysis?  What does it do?

“You do not really understand something unless you can 
explain it to your grandmother”, Albert Einstein

With thanks for many of these explanations to http://stats.stackexchange.com/questions/2691/making-
sense-of-principal-component-analysis-eigenvectors-eigenvalues

So, first let’s build some intuition.

wikipedia
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What is Principal Component Analysis?  What does it do?

Example: Christian Bueno, http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

A general (and imprecise) political example:

Suppose you conduct a political poll with 30 questions, each answered by 

1 (strongly disagree) through 5 (strongly agree). Your data is the answers 
to these questions from many people, so it’s 30-dimensional, and you want 

to understand what the major trends are.

You run PCA and discover 90% of your variance comes from one direction, 

corresponding not to a single question, but to a specific weighted 
combination of questions. This new hybrid axis corresponds to the political 

left-right spectrum, i.e. democrat/republican spectrum. 

Now, you can study that, or factor it out & look at the remaining more 

subtle aspects of the data.

So, PCA is a method for discovering the major trends in data, 
simplifying the data to focus only on those trends, or removing 
those trends to focus on the remaining information.

What is Principal Component Analysis?  What does it do?

In a general sense,
PCA rotates your axes to “line 
up” better with your data.

Because rotation is a kind of 

linear transformation, your new 
dimensions will be weighted 
sums of the old ones, like 

⟨1⟩=23%⋅[1]+46%⋅[2]+39%⋅[3]
Quotes & image adapted from Isomorphismes, http://stats.stackexchange.com/questions/2691/making-sense-

of-principal-component-analysis-eigenvectors-eigenvalues

PCA 2nd dimension

PCA 1st dimension

A more precise graphical example:
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Quotes: Shlomo Argamon, from http://stats.stackexchange.com/questions/2691/making-sense-of-principal-
component-analysis-eigenvectors-eigenvalues 

Image: http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/

PCA finds new variables which are linear combinations of the original 
variables such that in the new space, the data has fewer dimensions. 

Imagine a data set consisting of points in 3D on the surface of a flat plate held 

up at an angle. In the original x, y, z axes you need 3 dimensions to represent 
the data, but with the correct linear transformation, you only need 2. 

To summarize so far:

PCA is a technique to reduce dimension by: 

1. Taking linear combinations of the original variables. 
2. Each linear combination explains the most variance in the data it can.

3. Each linear combination is uncorrelated (orthogonal) with the others

4. Plot the data in terms of only the most important (principal) dimensions

Quote: http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

Image: http://blog.equametrics.com/2013/02/an-introduction-to-principal-component-analysis
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http://web.media.mit.edu/~tristan/phd/dissertation/chapter5.html

The first principal component 
(PC1) corresponds to the 

widest spread of the data. 

The next principal component (PC2) is 
perpendicular to the 1st, and corresponds 

to the next widest spread of the data.

& so on.  There will be as 
many PCs as data 

dimensions, but ranked by 
diminishing importance.

Linear Transformations

Adapted from http://www.engr.sjsu.edu/~knapp/HCIRODPR/PR_Mahal/linear_tr.htm
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Linear Transformations

Scaling & Rotating 

If we can 
stretch & 

rotate this 
way…

Adapted from http://www.engr.sjsu.edu/~knapp/HCIRODPR/PR_Mahal/linear_tr.htm
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Linear Transformations

Scaling & Rotating 

...then we can 
also go the 
other way.

To do this, we need 
to learn about 
covariance…

Adapted from http://www.engr.sjsu.edu/~knapp/HCIRODPR/PR_Mahal/linear_tr.htm
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More examples of different linear transformations:

http://isomorphismes.tumblr.com/post/11407834056/matrices-linear-algebra

Variance = average of the squared deviations of a feature from its mean

=  μ2 = (std deviation)2 = covar(i,i)

Covariance = average of the products of the deviations of feature values 
from their means 

covar(i,j) = [ x(1,i) - m(i) ] [ x(1,j) - m(j) ] + ... + [ x(n,i) - m(i) ] [ x(n,j) - m(j) ]

n     [or use (n-1) if sampling from a larger population]

CorrelatedAnti-correlated Uncorrelated

Covariance = measures tendency to vary together 
(to co-vary).  Similar to correlation.

Adapted from http://www.engr.sjsu.edu/~knapp/HCIRODPR/PR_Mahal/cov.htm
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All of the covariances c(i,j) between features can 
be collected together into a covariance matrix C.

This summarizes all of the correlation structure 
among all pairs of features.

c(1,1)

c(2,1)

c(n,1)

c(1,2)

c(2,2)

c(n,2)

c(1,n)

c(2,n)

c(n,n)

. . .

. . .

. . .

. 
 .

  .

. 
 .

  .

. 
 .

  .C = 

covariance between 

feature 1 and 2

covariance between 

feature 2 and n

etc.

Wikipedia

We need one last concept:
Eigenvectors and eigenvalues

The blue arrow is an eigenvector of 
this linear transformation matrix, 
since it doesn’t change direction.

Its scale is also unchanged, so its 
eigenvalue is 1.

The eigenvector answers the question: 
In which direction does my   
transformation matrix stretch?

& the eigenvalue indicates by how much

An eigenvector v of a linear transformation T
is a nonzero vector that, when T is applied to 
it, does not change direction. Applying T to 
the eigenvector only scales the eigenvector by 
the scalar value λ, called an eigenvalue. 

That is: eigenvalue

(scalar)

eigenvector
square 

transformation

matrix
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Transformation matrix A =   

Eigen vectors = purple & blue (not red)
Eigen values = 1 & 3, respectively

wikipedia

Calculating the PCA

1. Calculate the covariation matrix C between features of the data

2. Calculate the eigenvectors and eigenvalues of C
3. Order the eigenvectors according to the eigenvalues

PC1 is the eigenvector corresponding to the largest eigenvalue,
PC2 is the eigenvector corresponding to the next largest, etc.

The data can be plotted as projections along the PCs of interest.

genes

patients

PCs 

patientsPCA

Linear combinations of gene features
All orthogonal

Ranked from most important to least

mRNA abundances mRNA abundances

Now:
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Genotype ~3,000 European men

(measure ~500K SNPs each using DNA microarrays) 

Table 
of 

SNPs

1

500,000

SNPs

…
…

1 3000

Men

Calculate the most important “trends” in the data

using Principal Component Analysis

Visualize their genetic relationships by plotting 

each man as a point in “genotype space”,
emphasizing only the most dominant genetic 

trends

Plot of main 

genetic 
trends among 

European 

men

What do you think are the 
most important genetic 
trends among European 

men?

What might this picture 
look like?

Here’s a beautiful application of PCA that illustrates how it can 
simplify complicated datasets:

…

PCA
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This is a map of their DNA. It 
recapitulates the map of Europe.

In other words, the strongest 
genetic trends across European 

men relate directly to their 
geographic locations 

(note: not nationality)

The trend even holds up within a country, e.g. Switzerland:
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Why?  Genetic similarity is strongly distance dependent in 
Europe, presumably because people tend to live near where they 
were born and tend to marry locally.

The trend is so strong that it can be used to predict where the 
men are from, e.g. shown here by leave-one-out cross-validation:
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• Described by directions and lengths of 

principal (semi-)axes, e.g. the axis of a cigar or 
egg or the plane of a pancake

SUMMARY

Adapted from whuber, http://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

encyclopedia2.thefreedictionary.com

• No matter how an ellipsoid is turned, the eigenvectors point in 

those principal directions. The eigenvalues give the lengths. 

• The biggest eigenvalues correspond to the fattest directions 
(having the most data variance). The smallest eigenvalues 
correspond to the thinnest directions (least data variance).

• Ignoring the smallest directions (i.e., collapsing them) loses 
relatively little information.

In a sense, PCA fits a (multidimensional) ellipsoid to the data 

PCA tSNE & UMAP

Linear/non-linear Linear Non-linear

Are local & global 

structure preserved?

Preserves global 

structure (variance, 

general trends), but 

local depends on 

dimensionality

Preserve local 

neighborhoods (thus 

good at clustering 

similar elements), can 

be quite poor on global 

structure 

Suitable for subsequent 

data analyses on projected 

data, projection of new data 

points in the reduced dim 

space, feature selection, 

noise reduction, etc?

Yes

Not generally, 

primarily just 

visualization

Are embeddings 

interpretable in terms of 

the original features?

Yes No

Tunable parameters? YesNo (except the # dim)


