
Chromatin accessibility refers to the level of physical 
compaction of chromatin, a complex formed by DNA 
and associated proteins consisting mainly of histones, 
transcription factors (TFs), chromatin-modifying 
enzymes and chromatin-remodelling complexes1–3. 
Although eukaryotic genomes are generally packed into 
nucleosomes, which comprise ~147 bp of DNA wrapped 
around an octamer of histones4,5, nucleosome occupancy 
is not uniform in the genome, and varies across tissues 
and cell types. Nucleosomes are typically depleted at 
genomic locations that represent cis-regulatory elements — 
enhancers and promoters, among others — that interact 
with transcriptional regulators (for example, TFs), result-
ing in accessible chromatin6–10. Profiling chromatin accessi-
bility on a genome-wide scale is an excellent tool to map 
putative regulatory elements in a cell type or cell state.

Post-translational chemical modifications of chro-
matin, including DNA methylation (in vertebrates) and  
histone methylation and acetylation, are dynamic 
and change between different cell states, similar to 
nucleosome positioning. These post-translational 
modifications are often correlated with chromatin acces-
sibility and can reflect specific functionalities of genomic 

regions related to the regulation of gene expression11,12. 
Changes in these post-translational modifications, such 
as increased or decreased histone methylation and acetyl-
ation, are affected by a large set of chromatin-modifying 
enzymes that can be recruited to chromatin regions by 
TFs. These modifications alter the physico-chemical 
properties of the chromatin, which in turn can influence 
the formation of transcriptional condensates13,14. In addi-
tion, active chromatin remodelling impacts nucleosome 
occupancy; for example, the SWI/SNF complexes use 
ATP hydrolysis to alter histone–DNA contacts, thereby 
repositioning or removing nucleosomes15. Dynamic 
changes in the chromatin structure, chemical modi-
fications and nucleosome positioning form a crucial 
interplay with the TFs that drive differentiation of cells 
during development16,17. Initial changes in chromatin 
accessibility are caused by the binding of TFs, which 
outcompete histones and recruit cofactors, including 
ATP-dependent chromatin remodellers18,19, or by TFs 
that preferentially bind to their recognition sequence 
in nucleosomal DNA20,21. The binding of these initial 
TFs, known as pioneer factors, can recruit other TFs to 
co-bind and further stabilize the nucleosome-depleted 
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Nucleosomes
The basic structural unit of 
DNA packaging, consisting  
of ~147 bp of DNA wrapped 
around an octamer of histones.

Cis-regulatory elements
Non-coding DNA regions 
involved in the regulation of 
expression of neighbouring 
genes. The regions contain 
binding sites for transcription 
factors.

Accessible chromatin
A permissive state of the 
chromatin in which nuclear 
macromolecules are able to 
physically access and interact 
with the DNA.
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region, further contributing to the regulation of gene 
expression of target genes22–24. Consequently, the analysis 
of TF binding sites in regulatory regions within accessi-
ble chromatin can bring insights into cell type-specific 
lineage factors and gene regulatory networks.

Various changes in the chromatin landscape, as 
well as mutations in chromatin remodellers and in 
regulatory regions, are linked to a range of traits and 
diseases25–28. In fact, many causal genome-wide associ-
ation study variants are located in accessible regulatory 
elements29. In order to improve our understanding of 
chromatin dynamics during development and in dis-
ease contexts, researchers and large consortia, includ-
ing the Encyclopedia of DNA Elements (ENCODE) 
Consortium30, the International Human Epigenome 
Consortium (IHEC)31, the National Institutes of Health 
(NIH) Roadmap Epigenomics Mapping Consortium32 
and the BLUEPRINT epigenome project33, have col-
lected and compared chromatin landscapes across cell 
types and during disease development.

Over the past decades, several chromatin accessibil-
ity profiling methods have been developed and widely 
used34–44. Generally, these methods are based on the 
physical accessibility of the chromatin to enzymes, which 
mark the accessible DNA by fragmentation, tagmentation 
or chemical labelling (for example, methylation of GpC 
dinucleotides). Initial research in the 1970s showed 
that regions of active transcription, such as promoters 
and introns of expressed genes, are particularly sensi-
tive to digestion by DNA endonucleases such as deoxy
ribonuclease I (DNase I), indicative of a particularly 
accessible form of the chromatin45. Moreover, chromatin 
is digested at regularly spaced sites due to nucleosome 
positioning2,46. DNase I is still the reagent of choice for 
TF footprinting, which can determine the location of TF 
binding sites due to the protection of the site by the  
TF itself47–49. With the advent of next-generation sequen
cing (NGS) techniques, DNase I hypersensitive site 
sequencing (DNase-seq) was one of the first adapta-
tions to perform genome-wide profiling of accessible 
chromatin35,40, which was followed by a handful of other 
methods. Assay for Transposase-Accessible Chromatin 
using sequencing (ATAC-seq) and variants36–38 together 
with DNase-seq are the two most commonly used 
chromatin accessibility profiling methods today50.

Importantly, as regulatory regions co-define a 
cell type, their chromatin accessibility is cell type- 
dependent10,51–53. When investigating heterogeneous 

samples, it is therefore advisable to measure chroma-
tin accessibility in isolated subpopulations — by flow 
cytometry-based purification53 — or at the single-cell 
level to avoid averaging over heterogeneous cell pop-
ulations (Fig.  1). Currently, the field of single-cell 
omics, including single-cell epigenomic assays such 
as single-cell ATAC-seq (scATAC-seq) and single-cell 
DNase-seq (scDNase-seq), provides exciting new oppor-
tunities to study genome regulation in complex tissues 
such as the brain, whole embryos and tumours54–61. 
Accompanied by the rise of single-cell chromatin acces-
sibility profiling, a wide range of bioinformatics tools 
have been developed that allow analysis of the gener-
ated data, which is intrinsically sparse due to experi-
mental limitations. Indeed, single-cell epigenomics is 
technically more challenging compared with single-cell 
transcriptomics because most loci in a diploid cell are 
present in only two copies of DNA that can be assayed.

Although chromatin accessibility profiling methods 
may serve as an analytic foundation to identify regulatory 
regions, it is reported that often less than 50% of acces-
sible regions in human DNA are active as enhancers62,63. 
Interestingly, however, work in both the Drosophila 
embryo55 and the Drosophila eye imaginal disc64 shows 
that when a genomic region is uniquely accessible in a 
specific cell type, more than 80% of the accessible enhanc-
ers are also active in the corresponding cell type55,64,65.  
In addition, linking active accessible regulatory regions 
to their target genes solely based on accessibility data 
remains a challenge. Therefore, additional data, includ-
ing those from transcriptomics, enhancer–reporter 
assays and 3D chromatin conformation maps, help to 
determine the function of an accessible region and iden-
tify its putative target genes, especially when combined 
in a multi-omics way64,66–71.

This Primer provides an overview of the commonly 
used and most recently developed chromatin accessibil-
ity profiling methods, both in bulk and at the single-cell 
level (Experimentation). In addition, it provides an 
outline of computational analysis techniques (Results) 
and examples of use in diverse organisms and fields 
(Applications). Finally, the Primer discusses standards 
for data sharing (Reproducibility and data deposition), 
and examines currently unmet needs (Limitations and 
optimizations) and future opportunities for technologi-
cal development (Outlook) that will increase our under-
standing of chromatin accessibility landscapes and their 
functional role in gene regulation during development, 
during evolution and in disease contexts.

Experimentation
Bulk chromatin accessibility
Chromatin accessibility is traditionally probed by assays 
such as digestion by nucleases or restriction enzyme 
digestion, typically at a few selected genomic regions 
each time46. However, NGS has revolutionized the way 
chromatin is investigated by allowing us to study its 
accessibility genome-wide. In this section, we will briefly 
describe the principles and the pros and cons of several 
commonly used experimental techniques to assess 
chromatin accessibility or nucleosome positioning in 
bulk, including DNase-seq, ATAC-seq and micrococcal 
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Transcriptional condensates
Membraneless compartments 
of the genome formed by 
liquid–liquid phase separation, 
in which the transcription 
machinery is concentrated  
to efficiently activate 
transcription.

Pioneer factors
Transcription factors that can 
recognize and bind their target 
sequence in closed chromatin 
and trigger opening of the 
chromatin, allowing binding  
of other transcription factors.

Tagmentation
Transposases cut DNA into 
fragments while simultaneously 
adding adaptor sequences. 
Used in Assay for Transposase- 
Accessible Chromatin using 
sequencing (ATAC-seq), as well 
as for general sequencing 
library construction to 
randomly fragment 
double-stranded DNA.

TF footprinting
Small stretches of nucleotides 
that are protected from 
cleavage or tagmentation and 
represent the location of 
transcription factor (TF) binding 
sites. TF footprints can be 
inferred from the analysis  
of high-resolution chromatin 
accessibility data.
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nuclease sequencing (MNase-seq) as well as several  
single-molecule chromatin accessibility profiling 
methods (Table 1). In addition, we discuss chromatin 
immunoprecipitation followed by sequencing (ChIP–
seq) and related methods, as these are powerful tech-
niques to gain further insights into chromatin landscapes 
and TF binding. Finally, various less commonly used 
chromatin accessibility and nucleosome positioning 
methods are described in Box 1.

DNase-seq. One of the first genome-wide profiling 
experiments of accessible chromatin was published in 
2008 by sequencing genomic DNA fragments following 
digestion by DNase I, an endonuclease that preferen-
tially introduces double-stranded breaks in accessible 
chromatin — a technique referred to as DNase-seq35,40 
(Fig. 2a). In DNase-seq, nuclei are first isolated and 
permeabilized using a mild detergent such as 0.1% 
Triton X-100, such that the DNase I enzyme can enter 
the nucleus efficiently. After digestion, the small DNA 
fragments (50–100 bp) are purified and size-selected 
for downstream library construction and sequenc-
ing. As DNase I digestion is an enzymatic process, the 
amount of the enzyme can significantly affect the diges-
tion efficiency and, thereby, also the quality of the data. 
Therefore, it is necessary to titrate the amount of DNase I  
to achieve optimal activity when using a new type of 

cells, or when using DNase I from a different manufac-
turer or from a different batch. In addition to fresh cells, 
DNase-seq has also been performed on formalin-fixed 
paraffin-embedded samples10,35.

Beyond this requirement of careful enzyme titra-
tions, major limitations of the traditional DNase-seq 
assay include the large number of cells (tens of millions) 
required as input material and its tedious and lengthy 
protocol that takes several days72. However, recently, 
a modified DNase-seq assay (scDNase-seq) has been 
developed to analyse single cells or a small number of 
cells58,73. scDNase-seq requires only hundreds to thou-
sands of either fresh or fixed cells for a bulk cell assay and 
takes 1 day for library construction, without the need 
for fractionation of DNA fragments74. Caution must 
be taken when interpreting DNase-seq results because 
they show some intrinsic bias in cleavage sites. The DNA 
minor groove shows variation in width depending on the 
sequence, and a narrower groove is preferentially cleaved 
by DNase I. Also, CpG methylation enhances adjacent 
DNase I cleavage75,76. These factors should be considered 
when interpreting the footprint of a TF77. DNase-seq is 
the method of choice to detect TF footprints78.

ATAC-seq. ATAC-seq emerged as an alternative assay 
to investigate accessible chromatin profiles36. In this 
assay, a genetically engineered hyperactive DNA 
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Fig. 1 | Chromatin accessibility profiling in bulk and at single-cell level reveals putative regulatory regions. 
a | Representation of a chromatin landscape is shown in which transcription factor (TF)-bound enhancers and the 
promoter of a gene are nucleosome depleted and thus accessible. The TFs are represented as coloured circles and the 
arrows represent 3D looping of the enhancers to the promoter of the target gene. b | Bulk and single-cell chromatin 
accessibility profiles of a heterogeneous sample containing three different cell populations. When performing single-cell 
chromatin accessibility profiling, sparse single-cell data are used to cluster cells, often followed by aggregating the reads 
per cluster, thereby reconstituting pseudo-bulk profiles per cluster or cell type. H3K27ac, histone H3 acetylated at lysine 27; 
Pol II, polymerase II; TSS, transcription start site.
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transposase (Tn5) preloaded with monovalent mosaic end  
adapters simultaneously cleaves and tags accessible or 
nucleosome-depleted chromatin regions36,79,80 (Fig. 2b). 
The hyperactive Tn5 mutant includes three mutations 
that increase the relatively low activity of the wild-type 
Tn5 and allows for efficient in vitro integration of the 
mosaic end adapters80. The target DNA fragments are 
purified, PCR-amplified and sequenced by NGS. As both 
Tn5 transposase and DNase I recognize accessible chro-
matin, the sequences detected by ATAC-seq have been 
found to be highly enriched in DNase I hypersensitive 
sites (DHSs)81–83.

A major advantage of ATAC-seq and its variants37,38 
is that they are very sensitive assays that work well on 
low-input samples (for example, 500–50,000 cells, com-
pared with millions of cells for DNase-seq) and use a 
simpler protocol due to the simultaneous chromatin 
fragmentation and tagging36. If fresh cells are difficult 
to obtain, slowly cooled cryopreserved cells can also 
be profiled by ATAC-seq. In addition, it is possible 
to generate high signal to background profiles from 
formaldehyde-fixed cells using an adapted method84, 
as well as from clinically relevant snap-frozen samples 
using the improved Omni-ATAC protocol38 or from 
nuclei collected via flow cytometry85. The Omni-ATAC 
protocol improves the signal to noise ratio by mainly 
using a combination of multiple mild detergents to 
improve permeabilization across a wide array of cell 
types and to remove mitochondria from the reaction.

Similar to the enzyme-specific cleavage bias of  
DNase I, the Tn5 enzyme shows steric hindrance and 
sequence bias in chromatin tagmentation79,86,87. Accurate 
prediction of TF footprints from ATAC-seq data requires 
Tn5 bias correction that is different from DNase-seq bias 
correction88. An initial limitation of the first ATAC-seq 
protocol was the profiling of contaminating organel-
lar DNA, such as mitochondrial DNA and/or chloro-
plast DNA for plants, or Wolbachia DNA in infected 
Drosophila stocks36,89. Large amounts of sequencing 
reads can be consumed by these contaminations, 

meaning that deeper sequencing is necessary to reach 
a good signal-to-noise ratio at regions of interest in 
the data. However, this limitation can be significantly 
reduced either by improved lysis conditions (as is the 
case in Omni-ATAC38), by purification of nuclei via 
flow cytometry85 or by applying clustered regularly 
interspaced short palindromic repeats (CRISPR) tech-
nology to cleave mitochondrial ribosomal DNA prior 
to the experiment82,90. Another deficiency of the original 
procedure is that half of all fragments are lost as they 
contain two adapter sequences of the same kind. The 
transposome hypersensitive sites sequencing (THS-seq) 
version of ATAC-seq attempts to rescue the other half 
of fragments by using a T7 RNA polymerase linear 
amplification protocol91.

Given the speed (a few hours) and straightforward 
nature of the protocol, combined with its sensitivity and 
requirement for low numbers of cells, ATAC-seq and its 
newer variants (for example, OmniATAC-seq) are cur-
rently the most commonly used methods to generate 
comprehensive chromatin accessibility maps in research 
laboratories (~400 data sets in PubMed in 2019 com-
pared with <100 data sets for DNase-seq, MNase-seq 
and FAIRE-seq (formaldehyde-assisted isolation of 
regulatory elements) combined)50. In addition to profil-
ing accessible chromatin, ATAC-seq can also be used to 
detect TF footprints and to map nucleosome positioning.

MNase-seq. Nucleosome positioning and occupancy 
in the genome play key roles in chromatin accessibility. 
MNase is an endo-exonuclease that cleaves the DNA 
regions without nucleosome protection and leaves 
the nucleosome core particles undigested, which can 
be purified, ligated to adaptors, PCR-amplified and 
sequenced (MNase-seq)42 (Fig. 2c). MNase-seq is thus 
an orthogonal assay compared with DNase-seq and 
ATAC-seq as it measures nucleosome-occupied regions 
and is the most widely used method to map nucleosome 
positions genome-wide. A recently developed quantita-
tive protocol for MNase-seq involves subjecting aliquots 

Table 1 | Comparison of the three most commonly used chromatin accessibility profiling methods

 Feature DNase-seq ATAC-seq MNase-seq

Type of data produced Accessible chromatin Accessible chromatin Nucleosomes/
inaccessible chromatin

Type of input Fresh, fixed paraffin-embedded 
samples or formaldehyde 
cross-linked samples

Fresh, slowly cooled 
cryopreserved, snap-frozen 
or formaldehyde cross-linked 
samples

Fresh or formaldehyde 
cross-linked samples

Number of input cellsa 1–10 million 500–50,000 10,000–100,000

Sequencing depth (for 
human samples)

20–50 million uniquely mapping 
reads (200 million for transcription 
factor footprinting analysis)

25 million non-mitochondrial 
uniquely mapping reads for 
standard analysis

150–200 million reads

Enzyme-specific 
cleavage bias?

Yes Yes Yes

Difficulty Requires careful enzyme 
calibration and complicated 
sample preparations

Simple protocol, requires 
limited or no experimental 
calibration

Requires careful enzyme 
calibration

Time Lengthy protocol (1–3 days) Fast protocol (<1 day) Lengthy protocol (2 days)

ATAC-seq, Assay for Transposase-Accessible Chromatin using sequencing; DNase-seq, deoxyribonuclease I (DNase I) hypersensitive 
site sequencing; MNase-seq, micrococcal nuclease sequencing. aNote that these numbers refer to the amount of input cells needed 
for standard bulk methods, but it is possible to go to a lower number of cells when using low-input or single-cell methods.

Mosaic end adapters
Hyperactive versions of the  
two inverted 19-bp end 
sequences of the wild-type  
Tn5 transposon that, during  
an Assay for Transposase- 
Accessible Chromatin using 
sequencing (ATAC-seq) 
experiment, are end-joined  
to accessible DNA by the 
transposase.
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of a sample to different levels of digestion by MNase, 
allowing clearer distinction of nucleosome positions 
and occupancy from higher-order chromatin prop-
erties, which can also be summarized in a theoretical 
framework92.

In MNase-seq, 10,000–100,000 either fresh or for-
maldehyde cross-linked cells can be used for library 
construction. Digestion of chromatin by MNase typi-
cally results in a nucleosome ladder consisting of mon-
onucleosome, dinucleosome, trinucleosome and so 
on, depending on the concentration of MNase in the 
reaction. The optimal range of digestion usually leads 
to about 70–80% mononucleosomes and 20–30% 
higher nucleosome ladders42. Similar to DNase-seq, 
MNase-seq requires careful enzyme titrations and is 
time-consuming (2-day protocol). Another limitation of 
MNase-seq is that it requires a large number of sequenc-
ing reads, preferably 150–200 million reads for human 
samples93. MNase-seq also suffers from enzyme-specific 
cleavage biases, specifically a preferential cleavage of A/T 
versus G/C94.

MNase-seq has been applied to investigate the dynam-
ics of the nucleosome landscape and their function in 
transcriptional regulation95. However, as nucleosome 
positioning and occupancy revealed by MNase-seq are 
based on the average profile of a large number of cells, 
caution should be taken when interpreting the results, 
particularly at inactive chromatin regions96.

Assays for single-molecule chromatin accessibility pro-
filing. An emerging class of methods aim to map chro-
matin accessibility and TF binding in single molecules. 
The advantage of such approaches is that they do not 
rely on enrichment and provide information about the 
distribution of accessibility states within the popula-
tion of chromatin fibres. The assays in this class rely on 
methyltransferase enzymes that preferentially modify 
accessible DNA (Fig. 2d). For years, the only read-out that 
such methods could rely on was bisulfite conversion of 
unmethylated cytosines followed by Sanger sequencing 
(for localized analysis of particular loci)97–100 and, later, 
NGS (for both local and genome-wide coverage). The 
first genome-wide assay of this kind was the methyl-
ation accessibility protocol for individual templates 
(MAPit101), followed by nucleosome occupancy and 
methylome sequencing (NOMe-seq)41,102, which both 
use an m5C methyltransferase that modifies cytosines 
in a GpC context.

As genomes of many eukaryotes contain abundant 
endogenous CpG methylation, and bisulfite sequenc-
ing measures methylation on cytosines, exogenous 
enzymes are required that methylate other dinucleo-
tide contexts. The approach has limited spatial reso-
lution, as it relies on GpC nucleotides that are rare in 
mammalian genomes, only found once every 20–30 bp, 
and it is common to find much larger stretches of 
sequence having no informative positions at all103. 
However, in species such as yeast and Drosophila, 
which lack endogenous methylation, a combination of 
both a GpC and a CpG methyltransferase can be used, 
which increases assay resolution down to ∼10 bp. This 
method is known as dual-enzyme single-molecule 
footprinting104. This approach has proven to be very 
powerful in enumerating the distinct functional states 
of individual promoters, down to the ability to foot-
print the occupancy of individual components of the 
basal transcriptional machinery. The approach has also 
been recently extended to mammalian genomes with 
sufficient resolution to quantify the single-molecule 
occupancy patterns of individual TFs at regulatory 
regions105. This requires knock out of endogenous 
methyltransferases and is limited to the fraction of reg-
ulatory regions (typically 30–50%) that contain enough 
informative GpC dinucleotides. Moreover, bisulfite 
sequencing-based methods only provide information 
about the state of individual molecules within, at most, 
600-bp stretches of DNA, which is the current limit of 
combined fully sequenced paired-end read length for 
Illumina sequencing.

The limited length of the single-molecule read-out 
obtained via Illumina sequencing reads has been 
addressed by the advent of long-read sequencing plat-
forms such as PacBio and Oxford Nanopore106. In addi-
tion to generating multikilobase reads (current record 
of 2.3 Mbp)107, these technologies are capable of reading 
modified bases directly within individual molecules, 
although with significantly decreased accuracy108–110. 
Base modification detection by long-read sequencing 
remains challenging, as it may require high coverage 
as well as training and control data sets to reduce erro-
neous calls111. The accuracy can be increased by using 

Box 1 | Less commonly used bulk chromatin accessibility profiling methods

•	Nicking enzyme assisted sequencing (NicE-seq)370 uses a nicking enzyme to probe 
accessible DNA.

•	Formaldehyde-assisted isolation of regulatory elements (FAIRE-seq)39,371 profiles 
accessible chromatin based on its preferential release during sonication of 
cross-linked cells.

•	Transposase-mediated analysis of chromatin looping (TrAC-looping)372 uses Tn5 
transposase and a bivalent mosaic end adaptor to detect genome-wide chromatin 
accessibility in addition to providing genome-wide chromatin interaction information 
on regulatory regions.

•	Protect-seq373 measures strongly heterochromatinized genomic regions, based  
on their resistance to nuclease digestion.

•	Differential viral accessibility (DIVA)374,375 uses preferential viral insertion into 
accessible DNA to map accessible chromatin regions.

•	Chromatin accessibility profiling using targeted DamID (CATaDa)376 labels open 
chromatin using ectopic expression of the Escherichia coli Dam methyltransferase.

•	Dimethyl sulfate sequencing (DMS-seq)377 probes protein-bound regions based on 
their escape from DMS attacks.

•	Methidiumpropyl-EDTA sequencing (MPE-seq)378 uses the chemical MPE-Fe(II) to map 
nucleosome positions.

•	Nuclease-accessible site sequencing (NA-seq)379 uses HpaII and NlaIII restriction 
enzymes to cleave and select for accessible sites in isolated nuclei.

•	Restriction endonuclease digestion of chromatin coupled to deep sequencing 
(RED-seq)380 is a modified NA-seq method, applicable to permeabilized cells.

•	Quantitative DNA accessibility assay (qDA-seq)381 uses restriction enzyme AluI to 
measure absolute accessibility and the rate at which accessible sites are cut.

•	Occupancy measurement via restriction enzymes and high-throughput sequencing 
(ORE-seq)382 uses restriction enzymes and has been applied to profile chromatin 
accessibility in yeast.

•	Methods developed by Brogaard et al.383, Voong et al.384 and Chereji et al.385 use 
chemical cleavage or modification reactions for direct mapping of nucleosome 
positions and are conceptually based on the original method by Flaus et al.386.

Nucleosome ladder
A characteristic ‘ladder’ 
pattern that originates from 
the cleavage of the linker DNA 
between nucleosomes, due to 
the periodic arrangement of 
nucleosomes.
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PacBio circular consensus sequencing, although this 
reduces the effective read length as there is trade-off 
between the number of sequencing passes and insert 
sizes112. nanoNOMe-seq and methyltransferase treat-
ment followed by single-molecule long-read sequencing 
(MeSMLR–seq) assays use GpC methylation and nano-
pore sequencing to map accessibility on a multikilobase 
scale, although they are still limited in resolution by 
available informative positions113,114.

The limit in the number of informative positions 
can be overcome by taking advantage of the ability 
of long-read platforms to read any modification, not 
just methylated cytosines. For instance, non-specific 
methylation, such as m6A deposited via EcoGII, or other 
modifications (Tet-assisted pyridine borane sequenc-
ing (lrTAPS)115) can be combined with nanopore or 
PacBio sequencing to obtain a fine-scale read-out of 
chromatin accessibility at the single-molecule level.  

Methylation fraction

b  ATAC-seq

Read coverage

c  MNase-seq

Read coverage

Read coverage

a  DNase-seq d  DNA methyltransferase-based approaches

Tn5 enzyme

CpG, GpC, m6A
methyltransferases

DNase cleavage

Tn5 tagmentation

MNase digestion

Single-molecule read-out 
(CpG/GpC, Illumina short reads)

Single-molecule read-out
(GpC/CpG/m6A, Oxford Nanopore/PacBio long reads)

Fig. 2 | Experimental approaches for measuring chromatin accessibility 
and nucleosome positioning. a | In deoxyribonuclease I (DNase I) 
hypersensitive site sequencing (DNase-seq), the DNase I enzyme 
(represented as yellow scissors) is used to preferentially cleave accessible 
chromatin, generating fragments that can then be amplified into 
sequencing libraries. b | In Assay for Transposase-Accessible Chromatin 
using sequencing (ATAC-seq), a hyperactive version of the Tn5 transposase 
(represented by the dark grey circle) is used to preferentially insert into 
accessible chromatin while simultaneously attaching adapters (represented 
by the red and blue lines on the Tn5 transposase) to the resulting fragments 
that can be used to directly amplify sequencing libraries. Both DNase-seq 
and ATAC-seq generate peaks in read coverage over accessible regions in 
the genome. c | In micrococcal nuclease sequencing (MNase-seq), the 
MNase enzyme (represented as red scissors) is used to digest DNA that is 
not protected by bound proteins, leaving intact fragments protected by 
protein occupancy (primarily nucleosomes). These fragments are then 

amplified, resulting in increased read coverage over positioned 
nucleosomes. d | DNA methyltransferase-based approaches rely on the 
labelling of accessible DNA with DNA methylation modifications 
(represented by drawing pins), which can either be sequenced using 
Illumina platforms following bisulfite conversion or via long-read 
sequencing platforms that directly read the modified bases (unmodified and 
modified bases are represented as light and dark blue circles, respectively). 
These single-molecule chromatin accessibility profiling approaches tend to 
provide a simultaneous read-out of both nucleosome positioning and 
accessible chromatin regions. Accessible chromatin regions represent 
themselves as higher peaks due the fact that they have more nucleotides 
that are accessible to the methyltransferases and are therefore more 
frequently methylated, compared with the internucleosomal sequences 
that are thus not methylated in every single-molecule read. In all four 
panels, bound transcription factors (TFs) are visualized via coloured circles 
on the accessible chromatin.
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This can be done either on total genomic DNA — with 
the single-molecule long-read accessible chromatin 
mapping sequencing (SMAC-seq) assay103 or mapping 
chromatin fibres onto a DNA template using methyl-
transferases (Fiber-seq)116 — or in combination with a 
phasing MNase digestion step (single-molecule ade-
nine methylated oligonucleosome sequencing assay 
(SAMOSA)117). The large number of informative posi-
tions allows for fine-scale footprinting almost every-
where in the genome. Although the higher error rate in 
base calling for long-read sequencing technologies does 
not yet allow nucleotide resolution for these assays, in 
practice, the biologically relevant scale of chromatin 
accessibility typically is larger than that of an individual 
base. Due to high error rates in the calling of the nucleo-
tides in a read, obtaining a fully correct single-nucleotide 
read-out is still a challenge. For instance, if 1 in every 
20 bp is wrongly identified, then multiple modified 
nucleotides are taken together to obtain an estimate of 
the accessibility of that part of the DNA, thereby com-
promising on the resolution. Nevertheless, the resolution 
is much higher compared with ATAC-seq, for instance.

ChIP–seq. ChIP–seq is used to detect the occupancy 
of chromatin-binding factors (such as TFs) or histone 
modifications at a genome-wide level34,118–120. The amino- 
terminal tails of core histones are enriched with  
various covalent modifications — including methyla-
tion, phosphorylation, acetylation, ubiquitylation and 
sumoylation — that serve as the docking sites for many 
chromatin-binding proteins121,122. Typical histone marks 
used to define regulatory elements include histone H3 
acetylated at lysine 27 (H3K27ac), which correlates with 
DNase-seq and ATAC-seq data at transcription start 
sites, active promoters and distal active enhancers123,124; 
H3 dimethylated at lysine 4 (H3K4me2), which has a 
similar genomic distribution to H3K27ac; and H3 mon-
omethylated at lysine 4 (H3K4me1), which correlates 
with poised or active enhancer regions in animals125,126 
when it co-occurs with H3K27me3 or H2K27ac, 
respectively126–128.

For ChIP–seq analysis of chromatin modifications, 
chromatin can be isolated from either formaldehyde- 
fixed cells or non-fixed cells (native chromatin), and 
fragmented to 100–500 bp by sonication or through 
MNase digestion to profile histone modifications129–131. 
For profiling of protein-bound chromatin, for exam-
ple to determine TF occupancy, the chromatin is 
cross-linked to stabilize protein–chromatin interactions. 
Through the use of specific antibodies, the target pro-
teins or histone modifications are captured along with 
the associated DNA fragments by protein A/G-coupled 
agarose beads or magnetic beads. Chromatin is then 
reverse cross-linked and the DNA fragments are eluted, 
end-repaired, ligated to adaptors, PCR-amplified and 
sequenced by NGS.

Traditionally, ChIP–seq requires at least hundreds 
of thousands of cells for profiling histone modifications 
and millions of cells for profiling TFs. ChIP–seq data 
quality critically depends on antibody specificity, effi-
ciency of chromatin fixation and residence time of the 
TF on DNA. Each antibody should therefore be screened 

for ChIP efficiency, and the fixation and sonication 
conditions need to be optimized for different cell types. 
The entire procedure for ChIP–seq is time-consuming 
(spanning multiple days) and laborious.

In the past decade, several ChIP–seq derivatives 
have been developed involving a lower cell input, detec-
tion of TF binding at higher resolution and/or provid-
ing a streamlined workflow. These derivatives include 
ULI-NChIP–seq132, μChIP–seq133, small-scale ChIP–
seq134, STAR ChIP–seq135, ChIPmentation136, ACT-seq137, 
ChIL–seq138 and CUT&RUN139. ChIPmentation com-
bines aspects of ChIP–seq and ATAC-seq by perform-
ing tagmentation on immunoprecipitated chromatin 
fragments, which reduces the input requirement and 
leads to a simpler, faster assay136. CUT&RUN combines 
antibody-tagging with MNase cleavage in a simple, 
robust and less expensive protocol for high-resolution 
profiling of chromatin binding139. Recently, some of the 
above-mentioned methods and other ChIP-derived 
techniques have even been applied at single-cell resolu-
tion, including iACT-seq137, ChIL–seq138, scCUT&Tag140, 
scChIC-seq141,  CoBATCH142, uliCUT&RUN143, 
Drop-ChIP144 and scChIP–seq145.

Single-cell chromatin accessibility
Innovations in barcoding and microfluidics have 
recently enabled high-throughput biochemical pro-
filing of chromatin accessibility at single-cell resolu-
tion, including scDNase-seq58, single-cell MNase-seq 
(scMNase-seq96) and scATAC-seq146–150. Of these proto-
cols, scATAC-seq has emerged as a popular and rela-
tively simple approach to profile chromatin accessibility 
across hundreds to thousands of individual cells, and we 
will focus on the multiple experimental implementations 
of this technique. Current scATAC-seq methods rely on 
either droplet microfluidic or fluorescence cytometri-
cal/plate-based partitioning to uniquely label nuclei 
in isolation. Procedures characteristic to both types of 
scATAC-seq, as well as consideration for experimental 
design (Box 2), are described below.

Microfluidics-based scATAC-seq. Droplet-based single- 
cell partitioning via microfluidic devices has emerged 
as a powerful approach for single-cell data generation 
owing to its reproducibility and relative ease of use. In 
combination with standard sequencing library reagents 
and instruments, popular microfluidic approaches 
for scATAC-seq, such as those commercially availa-
ble from 10x Genomics (Chromium Next Gem Single 
Cell ATAC-seq Library Kit)150 and BioRad (SureCell 
ATAC-seq Library Preparation Kit)149, provide all of 
the reagents needed to produce scATAC-seq libraries. 
However, these commercial applications require the 
acquisition of proprietary robotic sample processing 
devices (Chromium Controller, 10x Genomics; ddSEQ 
single-cell isolator, BioRad) that are non-standard in 
most laboratories.

Droplet microfluidic-based scATAC-seq methods 
generally start by performing Tn5 adapter integration on 
a bulk nuclei suspension, while keeping the nuclei intact, 
similar to traditional ATAC-seq. Transposed nuclei are 
then loaded onto an aqueous channel with PCR reagents 
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and suitable buffers and mixed with gel beads contain-
ing distinct barcodes. To encapsulate individual nuclei in 
picolitre reaction compartments with a single gel bead, 
the aqueous flow is restricted to channels measuring 
~55 μm in width150. Droplets are produced by exposing 
the aqueous flow to a continuous stream of oil. Nuclei 
droplet loading follows a Poisson distribution, and nuclei 
are loaded at low concentrations. Barcoded sequences 
with P5 adapters and tail sequences complementary to 
Tn5-inserted adapters are released from gel beads fol-
lowing droplet generation, enabling PCR amplification 
and barcoding of accessible chromatin fragments within 
each droplet in isolation. Finally, the droplet emulsion 
is broken, and the fragments are purified with magnetic 
beads and subjected to bulk PCR to attach sequencing 
indices and P7 sequences149,150.

Plate-based scATAC-seq. An alternative to the micro-
fluidics approach is to physically separate cells into the 
wells of plates. Straightforward 96-well and 384-well 
scATAC-seq protocols have been published147, but 
their throughput remains limited by the low number 
of wells available. The adaptation of scATAC-seq to 
the ICELL8 Single Cell System (Takara Bio), which has 
5,084 nanolitre wells, known as µATAC-seq, increased 
the throughput of the assay to a few thousand cells151.

Combinatorial indexing (sciATAC-seq). Higher through-
put can be achieved using a combinatorial indexing strategy,  
as implemented in single-cell combinatorial indexing 
ATAC-seq (sciATAC-seq)55,56,148. In contrast to micro-
fluidic approaches, sciATAC-seq can be performed 
with access to standard instruments and reagents 
(for example, 96-well or 384-well plates, flow cytometry, 
Nextera TF buffer and so on). Whereas earlier versions 
of sciATAC-seq require custom-made Tn5, the latest 

version has been adapted to work with commercially 
available Tn5 (ref.152). The core idea behind combina-
torial indexing is the repeated pooling and splitting of 
cells or nuclei coupled with labelling of DNA fragments 
at each step, in such a way that statistically each cell or 
nucleus is tagged with a unique combination of bar-
codes. In the simplest implementation of sciATAC-seq, 
nuclei are distributed into wells containing uniquely 
indexed Tn5 transposomes, in which tagmentation 
is performed. Nuclei are then pooled and distributed 
into the wells of a second plate at numbers sufficiently 
low to minimize the generation of doublets. The reac-
tions in these wells are then subjected to indexed PCR, 
generating statistically unique barcode combinations 
for each cell. Additional rounds of barcoding are also 
possible, using the ligation of barcodes to transposed 
fragments153–155, vastly increasing potential through-
put. Another approach for increasing throughput is to 
combine upstream transposition of barcoded Tn5 with a 
droplet-based scATAC platform such as those from 10x 
Genomics or BioRad, in the form of droplet combinato-
rial indexing or droplet-based single-cell combinatorial 
indexing for ATAC-seq (dsciATAC-seq)149.

Results
In general, a chromatin accessibility analysis workflow 
consists of three main steps: preprocessing, peak calling 
and downstream analysis (Fig. 3). The latter can include 
differential accessibility analysis, annotation, foot-
printing, motif enrichment and integration with other 
omics data. Additional computational steps are needed 
for scATAC-seq data. We will discuss each of the steps 
in more detail and mention commonly used bioinfor-
matics tools (Supplementary Table 1). Although there 
is not yet a gold standard in the field, we will mention 
parts of some general pipelines, such as the ENCODE 
ATAC-seq Data Standards and Processing Pipeline156, 
and we propose specific tools and a guided workflow 
for analysis of chromatin accessibility data. In this sec-
tion, we focus on bioinformatic tools that are used for 
the analysis of the three most commonly used chroma-
tin profiling methods: bulk ATAC-seq, DNase-seq and 
MNase-seq — we will not discuss the analysis pipeline 
for the methods based on single-molecule chromatin 
accessibility profiling as these are still in their infancy.

Preprocessing
As with most high-throughput sequencing data (Fig. 3a), 
pre-alignment quality control is recommended for 
chromatin accessibility data and can be performed 
using FastQC, which produces an HTML to exam-
ine sequencing quality, GC bias and over-represented 
sequences (Fig. 3b). The FastQC report is also produced 
by MultiQC157, which includes visualization of further 
processing steps such as the mapping percentage, align-
ment scores and number of reads passing filtering. Next, 
sequencing adaptors should be removed using tools such 
as cutadapt158, trimmomatic159 and fastq-mcf160, which 
require the input of known Illumina adaptor sequences. 
For certain experimental techniques or computational 
goals (for instance, for MNase-seq data and footprinting 
analysis in DNase-seq data), and given that sequencing 

Box 2 | Experimental design for scATAC-seq

Similar to other chromatin profiling methods, single-cell Assay for Transposase- 
Accessible Chromatin using sequencing (scATAC-seq) is susceptible to batch effects 
that can obscure biological variation. Careful attention to experimental design is 
central to mitigating batch effects and other sources of technical variation, but this 
depends on the goals of the experiment248,387. For example, in atlas mapping and in 
case–control studies, a common objective is to contrast regulatory patterns within and 
between cell types found in different tissues and organs, or between treatments and 
control samples. To allow for robust statistical tests on such contrasts, the inclusion of 
at least two biological replicates is highly recommended. Replicates are useful to 
identify failed runs and batch effects, and to increase cell counts. Indeed, independent 
scATAC-seq experiments are often done under the same condition, and subsequently 
computationally combined to increase the number of cells in the final data set, for 
instance to yield more power to distinguish small cell populations. Prioritizing sample 
type diversity in preparations from individual batches aids in the mitigation of technical 
effects and allows researchers to average environmental and genotype influences 
across replicates. By contrast, comparison of two scATAC-seq libraries produced from 
separate preparations and from different samples will be confounded by batch effects, 
resulting in misleading or even erroneous results due to inflated variance between 
samples. Computational removal of batch effects from single-cell data has been a 
major focus of many informatics laboratories and shows promise in correcting mistakes 
stemming from poorly constructed experimental design248. However, there is currently 
no accepted method to reliably remove all batch effects while preserving biological 
variation in the absence of true biological replicates. Thus, in cases where generating 
and sequencing scATAC-seq libraries in different batches is unavoidable, it is pertinent 
that the researcher takes note of possible sources of variation among samples.

Combinatorial indexing
A technique that uniquely 
labels a large number of  
single molecules or single  
cells by split-pool barcoding  
of nucleic acids.

Doublets
Artefactual libraries generated 
from two cells in single-cell 
omics experiments. For 
instance, in droplet-based 
methods, doublets arise  
if two cells are captured in  
a single droplet.
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was done in a paired-end fashion, selecting reads with 
a desired read length — also referred to as computa-
tional size selection — is recommended at this point. 
For instance, removal of multi-nucleosomal reads is 
advised for MNase-seq data. This is based on the size of 
the paired-end reads, as mononucleosomal reads should 
be ~147 ± 30 bp in length161. For DNase-seq, as well as 
removing multi-nucleosomal reads, an additional in sil-
ico filtering step for fragment inserts between 50 and 
100 bp for TF binding site detection can be performed, 
along with the gel-based or solid-phase reversible 
immobilization-based experimental size selection74,77. 
Trimmed and filtered reads are mapped, or aligned, 
to an organism-specific reference genome, generating 
an alignment file (represented in a BAM file format). 
The most widely used aligners for chromatin accessi-
bility data are Bowtie2 (ref.162) (used in the ENCODE 
ATAC-seq pipeline156) and bwa-mem163 (used in the Cell 
Ranger ATAC Algorithm) (Fig. 3c). Following alignment, 
some additional filtering steps are advised to discard 
reads with low mapping quality or multi-mapped reads, 
PCR-duplicated reads, ENCODE blacklisted regions164 
and mitochondrial reads. This is particularly important 
for ATAC-seq data in which mitochondrial reads can 
make up as high as 75% of the total amount of mapped 
reads when using the original protocol36 (Fig. 3d).

A post-alignment quality control step is recom-
mended at this point, involving visualizing accumulated 
read abundance around transcription start sites, which 
are generally highly accessible165 (Fig. 3e). Other quality 
control metrics include the number of reads, mapping 
percentages, duplication percentages and visualization 
of nucleosome patterning via a fragment size distribu-
tion plot50. Such diagnostic plots can, for instance, be 
generated using the package ATACseqQC165. In addition, 
visually inspecting the distribution of reads across the 
genome using genome browsers such as IGV166, UCSC167, 
Ensembl168 or JBrowse169,170 can further increase insight 
into the quality of the samples (Fig. 3e).

Peak calling
Following initial read processing and quality control 
comes one of the crucial steps in chromatin accessibility 
data analysis, namely defining ‘peaks’, which are genomic 
regions with a high accumulation of reads compared 
with the background (Fig. 3f). These peaks form the basis 
for most of the downstream analyses. The most widely 
used tool for peak calling is MACS2 (ref.171), which is 
also the default in the ENCODE ATAC-seq pipeline156. 
MACS2 is a model-based algorithm originally designed 
for ChIP–seq data analysis. It implements a dynamic 
Poisson distribution to capture local background biases 
in the genome and to effectively detect peaks171. As 
MACS2 was originally designed for ChIP–seq data, 
specific parameters (for example, --nomodel) need to 
be used for peak calling in ATAC-seq or DNase-seq 
data. The ENCODE ATAC-seq pipeline contains more 
detailed information on the parameters. Other general 
and method-specific peak callers exist, for example, 
ZINBA172 (general), HMMRATAC173 and Genrich174 
(ATAC-seq), and F-seq175 and Hotspot176 (DNase-seq 
and ATAC-seq). The signal threshold, which influences 

the sensitivity and specificity of peak retrieval, is an 
important parameter to consider during the peak calling 
step. The default minimum false discovery rate cut-off 
of 0.05 for MACS2 has been shown to be optimal for a 
range of DNase-seq data sets177.

To ensure reproducibility in the data, ENCODE 
guidelines recommend that each ATAC-seq experiment 
should have two or more biological replicates and that 
replicate concordance should be checked by calculating 
irreproducible discovery rate (IDR) values. The IDR val-
ues can also help to define an independent threshold for 
peak calling178. Specifically, following a lenient peak call-
ing with, for instance, MACS2, a core set of IDR peaks 
can be defined by only retaining peaks that pass a set 
IDR threshold, such as, for example, 5% (ref.179).

As data sets often comprise different samples, 
the construction of a common set of features, or 
genomic intervals, is crucial in order to be able to compare 
samples with each other in downstream steps. Usually, a 
consensus peak file is used for this purpose, which com-
prises the set of peaks that are shared between samples, 
and in which the start and end location of overlapping 
peaks are adjusted (through the so-called merging of 
peaks) to thus yield one consensus peak. The ENCODE 
pipeline provides a workflow with merge and filter steps 
for constructing a consensus peak file156, although other 
tools can serve the same purpose (for example, consen-
susSeekeR180). Alternatively, a predefined set of regions 
or a binned genome can be used as features in down-
stream analyses55,64. For human and mouse studies, the 
ENCODE SCREEN regions181 provide comprehensive 
sets of intervals, as well as two recently published cat-
alogues of consensus DHS regions (926,535 for human 
and 339,815 for mouse). For species with more com-
pact genomes and higher regulatory density, such as 
Drosophila, a set of 134,000 regions covering the entire 
non-coding genome may be used64. Although these com-
pendia of accessible regions cover a large fraction of the 
regulatory genome, some condition-specific accessible 
regions could potentially be missing.

Finally, an important quality control step is the cal-
culation of the signal to noise ratio, which can done 
by calculating the fraction of reads in called peaks (FRiP 
score). For ATAC-seq, the FRiP score should pref-
erably be greater than 0.2–0.3 for mammalian spe-
cies, and the signal proportion of tags (SPOT score) for 
DNase-seq should exceed 0.4 for mammalian species, 
which signifies that 40% of mapped reads are located 
within DHSs128,156. These metrics vary depending on the 
organism, and they can be dependent on the size and 
complexity of the genome.

Downstream analysis
Usually, chromatin accessibility profiling is performed on 
multiple samples, comparing treatment versus control, 
multiple tissues or cells during a differentiation process. 
A central question is to define the set — or signature — 
of peaks that is differentially accessible in each sample 
(Fig. 3g). For a pairwise comparison between two condi-
tions, differential peak calling can be performed, for exam-
ple using MACS2 (ref.171), in which mapped BAM files 
representing treatment and control samples are provided, 

BAM file
An alignment file format that is 
the compressed binary version 
of a SAM file, used to represent 
aligned sequences.

Irreproducible discovery rate
(IDR). A measure of consistency 
between biological replicates  
of high-throughput sequencing 
experiments. Also used to 
determine highly stable peak 
calling thresholds based on 
reproducibility.

Genomic intervals
Consecutive stretches on a 
genomic sequence, specified 
as a chromosomal location 
range or as a cytoband 
designation.

Fraction of reads in  
called peaks
(FRiP score). The fraction of  
all mapped reads that fall into 
the called peak regions.

Signal proportion of tags
(SPOT score). The fraction of 
reads that fall in tag-enriched 
regions identified using the 
Hotspot algorithm.

Signature
A set of peaks that is 
differentially accessible 
between studied samples  
and can be used to define  
a studied cell type or state.

Differential peak calling
A process in which peaks  
with significantly differentially 
accessibility between samples 
are identified.

	  9NATURE REVIEwS | METhODS PrimErS | Article citation ID:            (2021) 1:10 

P r i m e r

0123456789();



a b  QC and trimming c  Mapping d  Filtering e  QC and visualization f

Downstream analysis

i  Visual inspection of tracks

bigWigs visualized in, for example, IGV or UCSC

m  Integration with RNA-seq/ChIP–seq

Gene regulatory networksTrans-omics

Input Peak callingPreprocessing

Raw 
sequencing 
reads

QC: FastQC
Adaptor trimming: 
cutadapt, fastq-mcf, 
trimmonmatic 

Remove reads:
• Low mapping quality 
• Multi-mapped
• PCR duplicates
• chrM
• Blacklisted

• Mapping %
• Fragment size
 distribution plot
• TSS aggregation plot
• Generation of tracks

Peak/accessible region

MACS2, ZINBA, 
HMMRATAC, F-seq, 
Hotspot

k  Footprinting analysis

C
ut

s/
in

se
rt

io
ns

Motif

Wellington, 
CENTIPEDE, 
DBFP, DNase2TF, 
HINT(-ATAC), 
DeFCoM

De novo
MEME, HOMER deep learning

j  Motif enrichment analysis

Predefined 
HOMER, MEME, cisTarget

PWM databases
JASPAR, CIS-BP, ...

l  Nucleosome positioning

GeneTrack, DANPOS, NucleoATAC

N
uc

le
os

om
e

m
id

po
in

ts

h  Annotation

GREAT, ChIPseeker, ChIPpeakAnno, LOLA

IntronicPromoterIntergenic

Gene A Gene Ontology

Reference 
genome

Read

Bowtie2, bwa-mem

g  Differential accessibility
Samples

A
ccessibility

Open

Closed

lo
g 2 fo

ld
 c

ha
ng

e

Mean read counts

All Up Down

PC
A

/t
SN

E/
U

M
A

P 
2

PCA/tSNE/UMAP 1

Condition 
A versus B:
HOMER,
DBChIP,
DiffBind,
ChIPDiff

More than two states:
• Hierchical clustering
• k-means clustering
• Factor analysis
• Topic modelling

Differential accessibility Dimensionality reduction Clustering
Position relative to motif

Fe
at

ur
es

 c
on

se
ns

us
 p

ea
ks

or
 b

in
ne

d 
ge

no
m

e

10 | Article citation ID:            (2021) 1:10 	 www.nature.com/nrmp

P r i m e r

0123456789();



and for which biological replicates are combined prior to 
differential accessibility analysis. Alternatively, statistical 
analyses can be performed on the count matrix, a data 
table containing the number of reads per feature across  
the samples, yielding a matrix with features as rows and the  
different samples as columns. As explained above, these 
features can be the set of consensus peaks, a predefined 
set of regions or a binned genome. For pairwise compar-
isons, several approaches have been borrowed from the 
RNA-seq field, including MA plots and statistical analyses 
based on the negative binomial distribution, which are 
implemented in the DESeq2 (ref.182) and edgeR183 packages 
or in more chromatin accessibility-specific tools such as 
DiffBind184, HOMER185 or DBChIP186 (Fig. 3g). Data nor-
malization is recommended when comparing conditions 
or tissues, as library-specific biases or global chromatin 
accessibility differences can affect differential accessibil-
ity results. Multiple data normalization methods exist, 
for instance normalization for library size or for FRiP 
scores, quantile normalization and trimmed means of  
M value normalization187. Often, the differential accessi-
bility tools mentioned above already include one of these 
normalization methods188. The choice of data normali-
zation method can alter differential accessibility results. 
A typical way to visually assess the effectiveness of nor-
malization is through an MA plot: a single cloud should 
be present and the MA distribution should not display an 
upward or downward shift188,189.

For differential accessibility analysis in multi-sample 
studies, several options are possible. One way is to use 
the normalized count matrix for dimensionality reduc-
tion and clustering, for example by hierarchical clustering  
and k-means clustering (Fig. 3g). Clustering allows one to 
group together samples with similar chromatin acces-
sibility profiles, as well as to distinguish sets of regions 
that are differentially accessible across the samples and 
to generate groups of co-accessible regions (meaning 
regions that show concordant accessibility patterns 
across the different samples). Such clustering algorithms 
are, for instance, implemented in the deepTools pack-
age190 and can be visualized with a heat map (Fig. 3g). 
Other researchers have drawn inspiration from tools 
designed for clustering of regions in single-cell epig-
enomics data using factor analysis and unsupervised 
learning in order to identify differentially accessible 
regions. For instance, topic modelling or non-negative 

matrix factorization, in which a high-dimensional data 
set is approximated by a reduced number of represent-
ative components, can be applied directly to bulk data 
sets, or to a matrix with simulated single cells, created 
from bulk samples using a bootstrapping procedure191,192.

To gain biological insight into the sets of cell type- 
specific regions identified via differential accessibility 
analysis, region set enrichment analysis using GREAT193, 
ChIPseeker194, ChIPpeakAnno195, Enrichr196, cisTarget197,198, 
GIGGLE199 and LOLA200 is used to identify correlations 
of peak sets with genome annotation (for example, pro-
moter, intronic, intergenic) or with existing ChIP–seq 
data sets and to couple peaks to the nearest gene, fol-
lowed by Gene Ontology or pathway enrichment (Fig. 3h). 
In addition, chromatin segmentation approaches such 
as ChromHMM201, EpicSeg202 and Segway203 are used 
for genome-wide classification of genomic regions into 
chromatin states (such as ‘active promoter’ or ‘weak/
poised enhancer’) based on epigenomic marks. These 
enrichment analyses and genome or chromatin state 
annotations can be useful in interpreting gained or lost 
accessible regions in a study. Finally, the generation of 
tracks — which are a way to display data per sample 
across the genome, specifically, here, chromatin accessi-
bility data — and visually inspecting them together with 
such annotations or other public ChIP–seq or RNA-seq 
data can help to gain further biological insights, such as 
providing indications on the putative functionality of 
accessible regions or of the TFs bound to them (Fig. 3i).

As combinatorial binding of TFs to accessible reg-
ulatory regions forms the basis of gene regulation, one 
of the major downstream analysis steps is unravelling 
which TFs are bound to a set of cell type-specific or dif-
ferentially accessible regions. As many TFs recognize 
and bind to TF-specific DNA sequences, we can leverage 
the enrichment of TF motifs in a set of sequences (Fig. 3j). 
Two major classes of motif analysis tools exist. The first 
class includes HOMER185, MEME204 and cisTarget197,198, 
and relies on databases of predefined TF motifs (posi-
tion weight matrices205) such as JASPAR206, CIS-BP207, 
TRANSFAC208 and HOCOMOCO209. These approaches 
scan the DNA sequences of accessible regions with posi-
tion weight matrices and perform an enrichment analy
sis compared either with a background set or with the 
entire genome as background. The second class of tools 
includes RSAT210, MEME204, Weeder211 and HOMER185, 
and performs de novo motif discovery, allowing unsu-
pervised identification of enriched TF motifs. Although 
the identification of de novo motifs does not require a 
motif database, motif databases are still needed to link 
de novo motifs to known TFs.

Recently, machine learning methods such as the con-
volutional neural network models Basset212, DeepSea213, 
DeepLIFT214 and DeepMEL215 have shown promising 
results to predict TF motifs in accessible regions in a 
more precise and unbiased manner. Such models are 
trained on large sets of co-accessible peaks per cell 
type, can capture important TF motifs across the train-
ing regions and are able to predict their importance 
at single-nucleotide resolution within the regulatory 
sequences. Altogether, motif detection on a set of specif-
ically accessible regulatory regions allows the decoding 

Fig. 3 | Overview of common tasks in the analysis of bulk chromatin accessibility  
data. a | Starting from raw sequencing reads. b | Bulk chromatin accessibility data generally 
undergo several preprocessing steps, including a pre-mapping quality control (QC) and 
adaptor trimming step. c | Mapping of the trimmed reads to a reference genome for the 
studied species. d | Mapped reads are filtered. e | An additional post-alignment QC step  
is recommended through several metrics and data visualizations. f | An important step  
in chromatin accessibility data analysis is calling peaks, as these usually form the basis  
of several downstream analyses. g | Differentially accessibility analysis can be performed 
pairwise (condition A versus B) or across multiple conditions. h–m | Additional downstream 
analyses include annotation and enrichment analysis for the identified peaks (part h), visual 
inspection of chromatin accessibility data tracks (part i), motif enrichment within peaks 
(sets) using predefined databases or de novo (part j), transcription factor (TF) footprinting 
analysis (part k), mapping of nucleosome positions (part l) and integration with RNA 
sequencing (RNA-seq) or chromatin immunoprecipitation followed by sequencing  
(ChIP–seq) data to link different omics layers or to generate gene regulatory networks  
(part m). TSS, transcription start site.

MA plots
Visual representations of 
genomic data used to compare 
two samples or two groups of 
samples. The x axis represents 
the base mean value of the 
samples and the y axis the 
difference between them.

Hierarchical clustering  
and k-means clustering
Clustering algorithms that 
group similar objects in a data 
set into groups called clusters. 
In k-means clustering, the data 
are divided into a predefined 
number (‘k’) of clusters, 
whereas in hierarchical 
clustering, a hierarchy of 
clusters is built without 
requiring a predefined  
number of clusters.
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of genome sequences and may reveal possible master 
regulators that bind to these regions.

An alternative approach to identify TF binding sites 
from chromatin accessibility data is TF footprinting 
(Fig. 3k). TF footprints are small regions (8–30 bp) that 
display relative protection from cleavage due to binding 
of a TF and thus correspond to dips in the accessibility 
peak47,216,217. DNase I has been, and is still, the preferred 
footprinting reagent. Analytic genomic footprinting 
approaches such as the Wellington algorithm218, HINT219, 
DBFP220 and DNase2TF (ref.221) de novo annotate DNase I  
footprints, or they determine TF occupancy at a specific 
genomic location, such as CENTIPEDE222 and the foot-
print likelihood ratio223,224. TF footprinting comes with 
some limitations as it requires extremely deep sequenc-
ing, ideally at least 200 million uniquely mapped reads 
from a DNase-seq experiment for human samples224. In 
addition, TF footprinting is biased by the short residence 
times of some TFs on DNA and by intrinsic sequence 
preferences of the cleavage enzymes, which should be 
corrected for78. In general, ATAC-seq footprinting has 
been shown to be less accurate than DNase-seq foot-
printing225, which might be attributed to the large size of 
the Tn5 dimer and Tn5-specific cleavage biases that are 
not accounted for in DNase-seq-designed footprinting 
algorithms36,226. Nevertheless, footprinting analysis on 
ATAC-seq data has been performed with success by sev-
eral groups, for instance in the initial ATAC-seq publica-
tion36, using DeFCoM227 or by using ATAC-seq-specific 
footprinting algorithms (such as HINT-ATAC226 and 
TOBIAS228) that consider ATAC-seq artefacts and, for 
instance, correct for Tn5 transposase cleavage biases.

MNase-seq is orthogonal compared with the other 
discussed chromatin accessibility profiling methods as 
it measures nucleosome-occupied regions. It is there-
fore the method of choice to map nucleosome positions 
genome-wide, for which specific tools (for example, 
DANPOS229) have been developed229,230 (Fig. 3l). Note 
that similar to TF footprinting analysis, correction for 
enzymatic cleavage bias should be performed in nucle-
osome footprinting analysis. ATAC-seq also lends itself 
to nucleosome positioning by partitioning paired-end 
reads based on their size to separate putative nucleosome 
free reads and mononucleosomal, dinucleosomal and 
trinucleosomal reads36 or by using specific tools such 
as NucleoATAC231. In addition, Zhong et al. have shown 
that DNase-seq data can also be used to infer nucle-
osome positions with high accuracy by using a Bayes 
factor-based nucleosome scoring method232. Therefore, 
all three commonly used chromatin accessibility pro-
filing methods lend themselves to detect nucleosome 
positioning genome-wide (provided that the data are 
sequenced paired-end), although MNase-seq is still the 
most frequently method for this purpose.

Single-cell data analysis
Single-cell chromatin accessibility data require sim-
ilar upstream processing steps to bulk data, includ-
ing alignment, feature definition and the generation 
of a count matrix (Fig. 4a). However, due to the sub-
stantial scale and sparsity of the region by cell count 
matrix, specialized bioinformatics tools have been 

developed — mostly for scATAC-seq data — to han-
dle these assay-specific challenges191,233–242. One major 
point in which these tools differ is the way they define 
genomic regions to be used as features, either as peaks 
from bulk or aggregated single-cell data (chromVar239, 
Cicero238, cisTopic191, scABC241, Scasat233, MAESTRO242), 
peaks from pseudo-bulk samples56 or fixed-size bins56 
(SnapATAC243). Another difference between the bulk 
and single cell-based algorithms is what the count fea-
tures represent, for example, counting reads in peaks 
(cisTopic56,191, scABC241, Scasat233, MAESTRO242), count-
ing gapped k-mers under peaks or around transposase 
cut sites (BROCKMAN234, chromVAR239), or counting 
reads overlapping TF motifs in peaks or genome-wide 
(chromVar239, SCRAT237)244. ArchR236 uses an iterative fea-
ture definition method; it first defines a feature-by-cell 
count matrix of the number of reads per feature (in this 
case, 500-bp genomic bins) across all single cells, which 
then undergoes an iterative latent semantic indexing 
reduction to generate the cell clusters and pseudo-bulk 
samples on which peaks are called.

Important follow-up steps are transformation and 
dimensionality reduction of the feature by cell count 
matrix to visualize the cells in a 2D or 3D space and per-
forming further downstream analyses, for example clus-
tering, to uncover the different populations in the sample 
and their specifically accessible regions (Fig. 4b,c). Once 
cell clusters are obtained, BAM files of all cells belong-
ing to the same clusters can be aggregated to generate 
pseudo-bulk BAM files and tracks to visualize the data 
(Fig. 4d). Recently, ten computational methods for the 
analysis of scATAC-seq data have been benchmarked244, 
demonstrating that SnapATAC243, the method used in 
ref.56 and cisTopic191 performed best in distinguishing 
cell populations. Next to these, extensions of popular 
scRNA-seq analysis toolkits specifically designed for 
single-cell chromatin accessibility data, including Signac 
(an extension to Seurat245) and EpiScanpy246 (an extension  
to Scanpy247), are used in the field.

There are currently no designated tools that correct 
for batch effects in scATAC-seq data. Inexplicit batch 
correction is performed during the processing steps 
such as during feature selection or dimensionality reduc-
tion248. Batch correction tools designed for scRNA-seq 
data249–252 may be used with precautions not to remove 
biological variance, for instance by assessing the retain-
ment of biological variation between easily defined cell 
labels and cell trajectories253. To avoid overcorrection, it 
is recommended to compare multiple batch correction 
methods to obtain the best result for a given data set. 
Batch correction becomes especially important when 
combining multiple runs into atlases or when integrat-
ing scRNA-seq data, for which BBKNN249, Scanorama250 
and scVI251 performed best in a recent benchmark253. As 
in scRNA data, reconstruction of a pseudo-time trajectory 
based on scATAC-seq data can be helpful when studying 
a system following a cellular differentiation, for instance 
during embryonic development254 or haematopoiesis255 
(Figs 4f,g). Tools such as Cicero238 (which implements 
modified aspects of the scRNA-seq trajectory inference 
tool Monocle256, and STREAM255) have been used to infer 
such trajectories from scATAC-seq data.

Pseudo-time trajectory
A computational reconstructed 
path of a dynamic biological 
process, such as differentiation, 
undergone by the cells in a 
single-cell omics experiment. 
Single cells are ordered along 
the trajectory based on their 
‘pseudo-time’, or their inferred 
progression through the 
biological process.
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As the complexity of a system or disease exists across 
all molecular layers, computationally integrating mul-
tiple omics modalities holds great promise to achieve a 
systems biology view and to reconstruct gene regulatory 
networks. The integration of chromatin accessibility pro-
files with ChIP–seq and RNA-seq data is of particular 
interest for inferring the binding of specific TFs and 
for reconstruction of regulatory networks (Fig. 3m). The 
integration of epigenomics and transcriptomics may 
predict links between accessible regulatory regions and 
target genes (Fig. 4e). An example from the single-cell 
field involves the use of a least absolute shrinkage and 
selection operator (LASSO) model to correlate a gene’s 
expression level with the accessibility of all peaks within 
100 kbp around its transcription start site, linking 1,260 
distal regions to 321 potential target genes257. This 
improved the prediction of gene expression based on 
accessibility profiles fourfold compared with only using 
chromatin accessibility at promoters.

Applications
Chromatin accessibility profiling is widely useful for 
applications in biology and biomedicine, ranging from 
the analysis of gene regulation and cellular states to the 
dissection of healthy and diseased tissues and organs, 
and the investigation of populations and species. These 
applications benefit from the high genomic resolution 
of chromatin accessibility profiling, from robust and 
straightforward assays with low input requirements 
and from the ability to process many samples in a 
fast and reasonably cost-efficient manner.

Regulation of chromatin accessibility
As nucleosome occupancy of DNA is refractory to 
TF binding and transcription, regulation of chroma-
tin accessibility is key to gene regulatory mechanisms. 
Multiple mechanisms for accomplishing chromatin 
accessibility have been proposed. Nucleosomes appear 
to have clear preference for certain sequences, and this 
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Fig. 4 | Overview of common tasks in the analysis of scATAC-seq data. a | Outline of key steps in processing 
single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq) data sets, six of which are 
illustrated in panels b–g. b | An important step in the analysis of scATAC-seq data is clustering the cells via dimensionality 
reduction of the feature by cell matrix (via UMAP, for example) to discover the different cell populations. In the given 
example, dots represent the single cells, and their colours and numbers represent the nine identified cell clusters or  
cell populations. c | Identification of marker genes and/or peaks for each of the cell clusters allows further study of 
the putative cell populations. d | By aggregating the accessibility profiles of all cells within a cluster, pseudo-bulk 
genome browser tracks can be generated for each cell population. e | Specific tools allow the identification of peak 
to gene links, which can reveal putative target genes of identified peaks. f | Assessing peak co-accessibility allows 
grouping peaks into sets of co-regulated regions. g | When analysing scATAC-seq from a time-series or differentiation 
experiment, trajectory analysis allows study of the dynamic changes in chromatin accessibility along a pseudo-time 
axis. QC, quality control.
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bias seems to play some role in establishing nucleo
some positions in yeast258,259. However, as this bias is 
less predictive of nucleosome positioning in metazoan 
genomes260,261 and accessible regions are mostly relatively 
large (that is, hundreds of base pairs) and associated with 
active cis-regulatory elements, sequence preference of 
nucleosomes is likely not a major contributor to the 
regulation of chromatin accessibility. Controlling regu-
latory element accessibility and activity is accomplished 
through the combined action of TFs, RNA polymerases, 
chromatin-remodelling complexes, histone chaperones 
and histone variants1,262.

Many developmental processes involve chromatin 
remodelling, especially to make previously inaccessi-
ble regions accessible. This process is most noticeable 
in zygotic genome activation during embryonic devel-
opment, when transcription of the zygotic genome is 
turned on. Chromatin remodelling is also important 
for subsequent lineage-specifying developmental tran-
sitions, responses to many external and internal stim-
uli, and cellular reprogramming. Pioneer factors are 
particularly important in regulating these processes as 
they are capable of binding at previously inaccessible 
chromatin and they subsequently initiate the forma-
tion of an accessible state23. Well-known examples of 
pioneer factors include Zelda, which acts upon zygotic 
genome activation in Drosophila263–265, the Nanog/Oct/
Sox pluripotency factors266–268, FoxA21 and numerous 
others269. Pioneer factors do not create and maintain 
an active and accessible state on their own. Rather, 
they recruit other TFs and chromatin remodellers, and 
reposition nucleosomes and chromatin modifiers that 
deposit histone marks characteristic of active regulatory 
elements23,269. Note that general TF binding can form 
a constraint for the reappearance of nucleosomes in 
accessible regions.

Cell state transitions also involve the decommission-
ing of previously active regulatory elements, which is 
accomplished by recruiting transcriptional repressors 
and chromatin-modifying complexes removing active 
chromatin histone marks and depositing repressive ones 
such as H3K27me3, H3K9me3 and, eventually, DNA 
methylation270. This process effectively remodels the 
chromatin to an inaccessible state.

Cell types and organs
Chromatin accessibility at gene-regulatory regions 
is highly dynamic during cellular differentiation and 
organ development17,271. Chromatin accessibility profil-
ing has contributed to our understanding of chromatin 
regulation across a broad range of organs and cell types 
in human, mouse, Drosophila and other model organ-
isms53,56,128. The haematopoietic lineage, in particular, has 
served as a blueprint for deciphering the role of chroma-
tin accessibility and epigenetic changes in cellular differ-
entiation33,272. Application of ATAC-seq and/or ChIP–seq 
to flow cytometry-purified haematopoietic cell popula-
tions has established comprehensive maps of regulatory 
regions and their dynamic changes in the haematopoie-
tic lineage of human and mouse37,125,273,274. Detailed inves-
tigations of macrophages have connected the regulation 
of these immune cells to their tissue environment275,276, 

whereas analyses of CD4+ T cells36,277,278 and innate lym-
phoid cells279,280 have uncovered a striking degree of 
plasticity in these immune cell populations. Chromatin 
regulation in immune cells also contributes to the gen-
eration of memory T cells281 that are poised to actively 
respond upon re-exposure to pathogens, as well as to 
the more limited memory of inflammation in regula-
tory T cells282. Importantly, immune cell memory is not 
restricted to B cells and T cells but also includes mono-
cytes and natural killer cells283, and the regulation of such 
trained immunity appears to involve tightly regulated 
changes in the epigenomes of the affected cells284,285.

Beyond the haematopoietic lineage, RNA-seq, 
ATAC-seq and ChIPmentation profiling in epithelial 
cells, endothelial cells and fibroblasts from many dif-
ferent organs have uncovered widespread immune gene 
regulation in these structural cells, and an epigenetic 
potential that appears to preprogramme these cells 
for contributing to pathogen response286. Chromatin 
accessibility has also been studied in neural develop-
ment61,287–289 and in brain samples of humans57,59,290 and 
non-human primates291. Notable applications of chroma-
tin accessibility profiling to other cell types and organs 
include the analysis of cardiac development292,293, epi-
dermal progenitor cells in the skin294 and mammary 
gland development295. Finally, initial single-cell atlases 
of chromatin accessibility across tissues and organs are 
emerging55,56,60,152, which have the potential to discover 
new cell types and to define the chromatin states of cell 
types that are difficult to purify or enrich using flow 
cytometry. In summary, chromatin accessibility profiling 
has uncovered a transcription-regulatory landscape that 
is cell type-specific and organ-specific, and dynamically 
changes over the course of cellular differentiation and 
organ development.

Human diseases
Changes in chromatin accessibility are implicated in 
multiple diseases, where they reflect disease-linked 
changes in cell composition, gene regulation and epi-
genetic cell states. Alterations in gene regulation are 
ubiquitous in cancer296. In blood cancers, chromatin 
accessibility patterns are shown to reflect the cancer’s cell 
of origin as well as regulatory changes that appear to con-
tribute to the process of malignant transformation and 
cancer evolution37,297–300. Changes in chromatin accessi-
bility have been investigated over the course of targeted 
therapy in patients with chronic lymphocytic leukae-
mia301 and combined with chemosensitivity screening 
to identify promising drug combination therapies302. 
Chromatin accessibility landscapes have also been 
mapped in solid tumours, including breast cancer145,  
colon cancer303,304, glioblastoma305,306, gastric cancer307 and  
lung cancer308,309. Paediatric cancers tend to carry par-
ticularly pronounced regulatory changes, contrasting 
with their comparatively low rate of somatic mutations. 
For example, the EWS-FLI1 fusion oncogene in Ewing 
sarcoma has been shown to impose de novo enhanc-
ers and super-enhancers on the tumour cells310,311; and 
epigenome profiling has uncovered subtype-specific 
regulatory mechanisms in atypical teratoid rhabdoid 
tumours312 and in Langerhans cell histiocytosis313.

Zygotic genome activation
A process by which 
transcription is turned on  
after fertilization, making the 
switch from an unfertilized 
oocyte with nearly any gene 
expression to a state where  
up to thousands of genes are 
transcribed.
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An interesting line of research has investigated the role 
of the tumour-associated immune cells in solid tumours. 
Regulatory changes are implicated in T cell exhaustion 
in the context of chronic inflammation and the tumour 
microenvironment314,315, which compromises the ability 
of these T cells to fight the tumour. Immunotherapy, 
most notably blocking of the PD1/PDL1 pathway, can 
revert some of the regulatory changes associated with 
T cell exhaustion150,316,317 and is widely useful for the treat-
ment of those solid tumours that have a high degree of 
immunogenicity318. However, not all exhausted T cells are 
rejuvenated by immune checkpoint blockade, as some 
T cells appear to transition to a fixed regulatory state that 
renders them resistant to reprogramming314.

Beyond cancer, where chromatin accessibility has 
been studied most extensively, changes in chromatin 
accessibility have also been observed in immune diseases 
such as inflammatory bowel disease319 and rheumatoid 
arthritis320. Changes in epigenome and chromatin acces-
sibility profiles have been observed in post-mortem brain 
tissue from patients with Alzheimer disease321, schizo-
phrenia322 and autism spectrum disorder323. In summary, 
chromatin accessibility profiling of primary patient sam-
ples is already widely used for identifying disease-linked 
changes in chromatin structure and transcription regu-
lation, and there is substantial scope for new discoveries 
as researchers move beyond cancer and are investigating 
regulatory mechanisms in many diseases that have as yet 
received little attention.

Variation within populations
Extension of chromatin accessibility assays to popu-
lations of diverse genetic backgrounds is valuable for 
advancing our understanding of how sequence vari-
ation impacts cis-regulation within a species. A strik-
ing 90% of disease-associated variants in humans, 
identified via genome-wide association studies, local-
ize to non-coding loci distant from the affected gene, 
obfuscating functional predictions29,324,325. Mounting 
evidence implicates the alteration of gene regulation as 
a key driver of phenotypic evolution and disease prolif-
eration. Quantitative trait loci (QTL) mapping of molecu-
lar traits, such as gene expression variation (expression 
QTL), provides an attractive approach for deciphering 
the gene regulatory potential of genetic variants within a  
population. Leveraging a molecular QTL framework,  
a large-scale DNase-seq panel of 70 lymphoblastoid cell 
lines from the Yoruba HapMap showed that approximately 
50% of chromatin accessibility-associated variants coin-
cide with variants associated with expression variation, 
with the allele conferring increased accessibility gener-
ally associated with increased gene expression326. This 
study also provided evidence that sequence alterations 
underlying cis-regulatory elements perturb TF binding 
affinities, leading to weakened or ablated binding.

An analysis of CD4+ T cell chromatin accessibil-
ity from 105 healthy donors revealed that only 15% of 
genetic variants embedded within accessible chroma-
tin regions affect the relative accessibility of the related 
locus327. Thus, the majority of genetic variants located 
within accessible chromatin appear to lack functional 
consequences on gene regulation. The same study 

further demonstrated that pairwise correlations of acces-
sible regions (co-accessible regions) readily recapitulate 
3D higher-order chromatin interactions as defined by 
in situ Hi-C (high-throughput chromosome conformation 
capture). This similarity suggests that local chromatin 
accessibility among pairs of regions is coordinated with 
higher-order genome structure, particularly within the 
same topologically associated domains. In line with 
these findings, local chromatin accessibility in a subset 
of regions has been associated with variants located tens 
to hundreds of kilobase pairs away, reflecting putative 
long-distance functional interactions. Importantly, inte-
gration of population-scale accessibility data captured 
10–30% of previously reported autoimmune-associated 
variants and explained 1–7% of disease heritability. In 
model organisms, chromatin accessibility can be per-
formed across a cohort of homozygous inbred individu-
als, making the identification of chromatin accessibility QTL 
more straightforward. A critical subset of chromatin 
accessibility QTL could be explained by making or creat-
ing binding motifs for pioneer factors328. In an alternative 
approach, chromatin accessibility can also be compared 
between alleles, within the same individual, to identify 
allele-specific chromatin accessibility329.

Taken together, population-based and/or allele- 
specific analysis of chromatin accessibility provides a 
powerful approach for dissecting the regulatory poten-
tial of genetic variants associated with a trait of interest. 
Future studies in other tissues and disease states lever-
aging single-cell technologies have the potential to sys-
tematically map all chromatin accessibility-modifying 
variants in a cell type-specific fashion.

Evolution of chromatin accessibility
Chromatin accessibility profiling facilitates the identifi-
cation of causal genetic variants underlying disease and 
trait variation. Similar methods and analyses have also 
proven useful to study the evolution of gene regulation 
and morphological evolution between species. For exam-
ple, major morphological transitions, such as the loss of 
limbs in snakes and eye degeneration in subterranean 
mammals, are linked to loss of regulatory elements330. 
These regulatory regions were discovered using a com-
bination of tissue-specific ATAC-seq and comparative 
genomics. In another study, chromatin accessibility data 
in combination with H3K27ac and H3K4me3 were used 
to identify promoters and enhancers in the liver tissue 
of 20 mammalian species259. The rate of sequence varia-
tion was much greater for enhancers in comparison with 
promoters. This was reflected in a lower conservation of 
enhancers between species, yet newly evolved enhanc-
ers are more likely to be under positive selection in a 
lineage-specific manner.

In plants, incorporating chromatin accessibility data 
into evolutionary studies helps with the identification 
of cis-regulatory elements, as this identification through 
sequence-based alignment alone is often hindered by the 
high proportion of DNA sequence variation in inter-
genic regions331,332. Chromatin accessibility profiling 
can help reveal important clues about the evolution of 
gene regulation. For instance, a comparative epigenom-
ics study of numerous flowering plant species, ranging 

Quantitative trait loci
(QTL). Small regions of the 
genome at which a genetic 
variant is associated with  
a quantitative trait of a cell  
or an organism, based on 
statistical association between 
genetic markers and the 
measurable trait.

Yoruba HapMap
A resource set up by the 
Yoruba HapMap project  
that aims to catalogue the 
common patterns of human 
genetic variation and associate 
SNPs with genotypes across 
human populations.

Hi-C
(High-throughput chromosome 
conformation capture).  
A genome-wide sequencing 
technique used to investigate 
3D chromatin conformation.

Chromatin accessibility QTL
Quantitative trait loci (QTL) 
associated with chromatin 
accessibility. Specifically, 
chromatin accessibility QTL 
represent an SNP that is 
correlated significantly with 
accessibility changes in their 
encompassing region.
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in genome size from ~150 to 5,000 Mbp, revealed rapid 
evolution of cis-regulatory sequences within accessible 
chromatin regions where DNA sequence conservation 
was detected333. The frequency of distal accessible chro-
matin regions was correlated with genome size and their 
distance from genes was mostly due to transposon and 
repeat expansion in these plants69,330,334.

The lack of distal regulatory regions in Capsaspora 
owczarzaki, a unicellular eukaryotic organism sister to 
other animal species, has led to the hypothesis that dis-
tal regulation is a feature of animal multicellularity335. 
However, with the increase in profiles of chromatin 
accessibility across taxa, it seems more likely that distal 
regulation is a consequence of genome size333. Additional 
comparative epigenomic studies of chromatin accessibility 
across diverse taxa and of species that represent key nodes 
in the tree of life will further unveil diverse mechanisms in 
the evolution of gene regulatory mechanisms.

Reproducibility and data deposition
The genomics community has been leading the way 
in creating standards for data information, data qual-
ity and data deposition for decades (Table 2). Many 
genome-wide data sets serve as community resources 

and, as a result, are repeatedly used and incorporated 
into future studies by individual laboratories. To increase 
the usability of epigenomics data, it is common practice 
to submit the data to well-funded and stable data archive 
facilities such as the Gene Expression Omnibus (GEO) 
repository336 at the National Center for Biotechnology 
Information (NCBI) or the ArrayExpress database337 
at the European Bioinformatics Institute (EBI). These 
databases host records of genomics data containing not 
only count matrices and other useful processed output 
files (for example, bigWig files or BED files enriched for 
chromatin modification or accessibility) but also a short 
description of the experimental design and processing 
steps to reach the submitted output files, as well as a link 
to the archived raw sequencing data. For both bulk and 
single-cell chromatin accessibility data, researchers are 
expected to submit their FASTQ files to specific data-
bases. In the case of scATAC-seq, specifically for data 
generated via the 10x Genomics platform, preferably 
three FASTQ files are submitted, namely the FASTQ file 
containing the barcode read and the two FASTQ files 
containing the paired-end feature reads. For non-human 
species and open-consent human donors, the raw 
sequencing data should be submitted to, for instance, the 

Table 2 | Commonly used databases for archiving and distributing chromatin accessibility data

Database type Database Description

General epigenomic databases Gene Expression Omnibus (GEO) Repository that archives and distributes microarray and high-throughput 
sequencing data submitted by the research community

ArrayExpress Repository that stores and allows sharing of data from high-throughput 
functional genomics experiments

Databases to deposit raw 
sequencing data

Sequence Read Archive (SRA) Largest publicly available repository of high-throughput sequencing data

European Nucleotide Archive (ENA) Database for archiving and sharing all types of nucleotide sequencing data

DNA Data Bank of Japan (DDBJ) Database for archiving and sharing all types of nucleotide sequencing data

European Genome–phenome 
Archive (EGA)

Database for archiving and sharing all types of personally identifiable 
genetic and phenotypic data resulting from biomedical research projects

Database of Genotypes and 
Phenotypes (dbGaP)

Repository for archiving and distributing individual-level human data and 
results from studies that have investigated the interaction of genotype and 
phenotype

Databases to deposit code GitHub Platform on which researchers can host software development and perform 
version control using Git

Zenodo Repository for the deposition of both code and data

Kipoi Repository of ready to use trained machine learning models for genomics

Databases that make processed 
data easily accessible: portals of 
large consortia

Encyclopedia of DNA Elements 
(ENCODE)

Consortium with the goal of building a comprehensive list of functional 
genomic elements in the human genome using various omics assays

Roadmap Epigenomics Consortium aiming to deliver a collection of normal epigenomes (via 
histone ChIP–seq, DNase-seq, etc.) across a broad range of cell types that 
can serve as a reference for future studies

BLUEPRINT Consortium effort to map epigenomes of the haemopoietic system for 
healthy and diseased individuals

Databases that make processed 
data easily accessible: portals 
based on meta-analyses

ChIP-Atlas Integrative database for visualizing and making use of public ChIP–seq data

ReMap Platform of integrative analysis of Homo sapiens and Arabidopsis thaliana 
transcriptional regulators from DNA-binding experiments, including 
ChIP–seq

Databases that make processed 
data easily accessible: 
study-specific portals

Many, e.g. mouse sci-ATAC-seq 
Atlas

Laboratory-specific, often include several tabs covering, e.g., data 
visualization and data download

For each of the databases, a short description of the goal or properties is given. sciATAC-seq, single-cell combinatorial indexing for Assay for Transposase-Accessible 
Chromatin using sequencing; ChiP–seq, chromatin immunoprecipitation followed by sequencing; DNase-seq, deoxyribonuclease I (DNase I) hypersensitive site 
sequencing.
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Sequence Read Archive (SRA)338, European Nucleotide 
Archive (ENA)339 or DNA Data Bank of Japan (DDBJ)340. 
For human donors where controlled access is required 
for adequate data protection, the raw sequencing data 
should be submitted, for instance, into the European 
Genome–phenome Archive (EGA)341 or the database of 
Genotypes and Phenotypes (dbGaP)342 from the NCBI.

To facilitate interpretation and reproducibility, the 
deposited data should include metadata. For example, 
data entry requirements that are useful to address issues 
associated with reproducibility could include sources 
of possible biological and technical variation. Sources of 
biological variation include genotype, sex of samples, age 
and tissue/organ/cell type, whereas sources of technical 
variation could relate to antibodies (requiring reporting 
of the lot number) and nucleases/integrases (requiring 
reporting of the lot number, sequencing library pro-
cedure, instrument used for sequencing and type of 
sequencing run). These possible sources of technical and 
biological variation are important variables that can be 
incorporated into data analyses as covariates or to cor-
rect for batch effects. The versions of genome assemblies 
and genome annotations used in data analyses should 
also be provided.

As well as the mentioned general epigenomic data-
bases (GEO336 and ArrayExpress337), several second-
ary databases make chromatin accessibility data, or 
other types of omics data, easily available — often by 
including an experiment matrix providing a visual 
representation of the available data, classified based 
on assay type, tissue type, organism and so on. Such 
databases include data portals set up by large consortia 
that produce large numbers of epigenomes (for exam-
ple, ENCODE30, Roadmap Epigenomics32, IHEC343 and 
BLUEPRINT33), data portals that originate from rea-
nalysis or meta-analysis (ChIP-Atlas344 and ReMap345), 
UCSC track hubs346 or interactive web-based tools 
hosted by individual laboratories. The latter, although 
useful for initial exploration of the generated data, are  
often less sustainable and vary in their set-up, and  
are therefore not the preferred platform to disseminate 
epigenomics data in a reproducible way. Nevertheless, 
custom websites often provide integrated downstream 
analysis results that are context-specific and go beyond 
standard data formats56,347. There exist dedicated tools 
and websites to host and visualize single-cell chromatin 
accessibility data, including the use of SCope348, a Shiny 
app237 or ASAP349. Specifically for single-cell chromatin 
accessibility data, we envision that in the near future 
specific platforms will arise that provide an overview of 
large amounts of public data and facilitate their easy dis-
semination, similar to the Single Cell Expression Atlas350, 
a data portal hosted by the Human Cell Atlas.

Finally, the distribution of custom code and the doc-
umentation of computational methods are also para-
mount to reproducibility. The ENCODE Consortia has 
developed extensive open-source software that is accom-
panied with a document of best practices and descriptive 
details on the rationale for data processing steps, thresh-
olds and quality metrics for data evaluation. In general, 
software used for data analyses should include the soft-
ware version and parameter options applied. Custom 

code should be disseminated through public hosts such 
as GitHub, or can be archived in a static digital reposi-
tory such as Zenodo or in more specialized repositories 
such as Kipoi351 for ready to use trained machine learn-
ing models for genomics. Efforts to address the biologi-
cal, experimental and computational variables described 
above will increase reproducibility in addition to the 
usability of these data for years to come.

Limitations and optimizations
Although chromatin accessibility has proven a powerful 
and informative window into gene regulation, it is often 
combined with other measurements and with pertur-
bations to build a causal or mechanistic understanding 
of genomic function. Whereas accessibility dynamics 
can be readily profiled, the specific molecular factors 
that drive accessibility changes may only be inferred by 
changes in the accessibility or footprints associated with 
DNA motifs. However, directly inferring the specific TF 
that is possibly bound based just on the observed DNA 
motifs is tricky, as a DNA motif may be bound by vari-
ous related TFs, often within a TF family of structurally 
similar DNA binding domains. One way of narrowing 
down the specific TF of a TF family that is bound to 
DNA motifs enriched in regions undergoing accessibility 
changes is by determining which of the TFs undergoes 
concomitant changes in gene expression. Still, to mecha
nistically link the binding of a specific TF, subsequent 
experiments are needed, such as TF knockdown or 
ChIP–seq targeting the specific TF implicated.

Additionally, chromatin accessibility of a putative 
regulatory locus is usually necessary but not in itself 
sufficient for bona fide functional regulation. Other 
marks, such as H3K27ac or the presence of nascent 
transcription of enhancer RNA, appear to mark a sub-
set of accessible elements that are more highly enriched 
for function352–354. Therefore, chromatin accessibility 
data should be combined with other genomic assays to 
build a stronger set of inferences on the functionality of 
specific elements.

Finally, chromatin accessibility profiling using 
DNase-seq and, to a lesser extent, ATAC-seq may 
require optimization of the reaction time, lysis proto-
cols, cell handling and freezing or thawing, as well as 
library purification, to produce optimal data. For meth-
ods such as ATAC-seq, numerous quality metrics exist 
prior to sequencing, such as relative PCR cycles required 
to amplify the library or the periodicity of the length 
distribution of fragments generated by the transposition 
reaction, which allow for relatively rapid and inexpensive 
optimization of sequencing libraries.

Outlook
The current and future challenge in the study of chroma-
tin accessibility is to dissect the function of these regu-
latory regions in relation to other regulatory layers and 
gene expression (Fig. 5). Chromatin accessibility alone 
provides no information on the functional properties of 
the region — whether it acts as a promoter, enhancer, 
silencer or replication origin — or its activity state. 
Information on which TF factors are likely bound to 
the region must be inferred through sequence analysis. 
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Many of these challenges can be overcome by a more 
holistic multi-omics approach, by profiling the tran-
scriptome, histone modifications and TF occupancy 
from the same sample, in addition to chromatin acces-
sibility. A common approach is to run multiple omics 
methods on fractions of the same sample, using proto-
cols optimized separately for each assay, thus generating 
comparable data sets355,356.

Chromatin accessibility profiling in single cells has 
surged dramatically in recent years, and we expect fur-
ther improvements in the coming years as this trend 
increases. The analysis of accessibility and other regu
latory features at the single-cell level is challenging. 
There are only two loci that can be measured simulta-
neously in a diploid genome by single-cell regulatory 
genomics-based methods. As a result, the data are mostly 
binary and very sparse due to the low coverage per cell. 
A certain degree of data aggregation across cells or fea-
tures is usually required. Specialized computational tools 
have been developed that address the sparsity and binary 
nature of scATAC-seq data and facilitate more integrated 
analyses across groups of cells191,233–241. However, tools 
designed for scATAC-seq for specific analysis tasks, such 
as pseudo-time and trajectory inference, remain limited. 
Although comparisons of performance and applicability 
of scATAC-seq methods have been performed244, there 
are no uniform pipelines being widely used by the com-
munity, which complicates the systematic comparison 
and interpretation of results coming from different lab-
oratories. In the coming years, we foresee major efforts 
in the standardization of comprehensive computational 
pipelines for the analyses of single-cell epigenomic data. 
In addition, it is difficult to estimate the sensitivity of 
scATAC-seq. Roughly, ~10–15% of known peaks are 

recovered per single cell146, but it is not known how many 
regulatory elements are accessible in any given cell at 
any instance in time. Technical advances have improved 
cell coverage, which ameliorates both issues and has led 
to a significant increase in assay sensitivity, allowing a 
sharper distinction between cell types as well as regula-
tory changes. Nevertheless, when homogeneous or flow 
cytometry-purified samples are used as input, then bulk 
ATAC-seq will likely remain the preferred assay.

Recent advances in single-cell methods are pushing 
technologies to perform multi-omics measurements 
simultaneously from the same single cell. Multiple 
methods have already been published for simultaneous 
scATAC-seq and transcriptome profiling. These include 
sci-CAR257, Paired-seq155 and SHARE-seq153, which are all 
based on combinatorial indexing, as well as SNARE-seq357 
and 10x Genomics Chromium Single Cell Multiome358, 
which are droplet-based microfluidics methods. Other 
achievements include joint profiling of chromatin 
accessibility with either protein-level quantification 
(Pi-ATAC359) or with DNA methylation (scNOMe-seq360, 
COOL-seq361, EpiMethylTag362, methyl-ATAC-seq363, 
ATAC-Me364) and chromatin accessibility profiling with 
both DNA methylation and transcriptome measurements 
(scNMT-seq365).

Several technical challenges have so far limited the 
widespread application of multi-omic methods. Sample 
fixation, reaction conditions and other experimental 
parameters are often not compatible for multiple omic 
assays, complicating the optimization of joint protocols. 
Given that single-cell omic methods often suffer from 
sensitivity issues — meaning a low number of detected 
features (such as genes or regions) per single cell —  
running and combining two such methods could result 
in a very small set of overlapping features. Profiling 
multiple molecular layers raises the non-trivial compu-
tational challenge of integrating the data sets. Methods 
that can handle the harmonization of bulk and single-cell 
multi-omic measurements have recently been developed 
(MOFA366, Seurat v3 (ref.240)). A key feature required for 
future computational methods is flexibility; methods 
need to handle data sets coming from very different 
modalities, coming from the same cell or from the same 
sample, and will need to impute missing molecular 
layers based on the ones that were profiled. Measuring 
multiple parameters from the same single cell should 
greatly advance our ability to link regulatory properties 
and deconstruct regulatory connections. Having infor-
mation on coordinated changes in distal open chromatin 
regions, such as putative enhancers, and gene transcrip-
tion from the same cell, for example, would facilitate 
the linking of enhancers to their potential target genes. 
We anticipate important developments in both experi-
mental and computational multi-omics approaches in 
the coming years.

The function of accessible chromatin regions can 
also be probed by perturbation, for example by mutat-
ing key TFs. Single-cell accessibility profiling can detect 
the impact of the mutations directly in the affected cell 
types, revealing both changes in regulation as well as 
alterations in cell fate decisions. Large-scale pertur-
bation and profiling of regulatory networks has been 

Single-cell multi-omics
Optimization and further integration of 
multiple modalities in single-cell assays 
(transcriptome, proteome, chromatin 
modifications, TF binding and more)

Cis-regulatory element–gene linkage
Simultaneous measurement of multiple 
regulatory layers in the same cell will lead 
to more accurate and systematic 
inference of enhancer–gene relationships

Spatial mapping
Coupling of chromatin accessibility 
profiling with imaging-based methods 
to interrogate the regulation of 
complex systems in the native spatial 
context

Functionality and activity
Incorporation of perturbations and 
evolutionary approaches with chromatin 
accessibility will shed light on the 
functionality and requirement of 
regulatory regions

Chromatin accessibility
profiling methods

Fig. 5 | Schematic overview of future roads and opportunities for chromatin 
accessibility profiling. In the coming years, our ability to measure chromatin accessibility 
concurrently with multiple regulatory layers in the same single cell will continue to 
expand. New insights into regulatory biology will be gained by applying these methods  
in the native spatial context and in systems undergoing perturbations. Development of 
computational tools that can dive into the complexity of the emerging data sets will be 
crucial for the success of these endeavours. Ultimately, these approaches will empower  
us to functionally dissect the role of regulatory elements and their relationship to gene 
expression. TF, transcription factor.
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performed in cell culture models by coupling CRISPR 
screening with scATAC-seq (Perturb-ATAC367). In 
more complex systems, where high-throughput tar-
geted mutagenesis is not feasible, natural sequence var-
iation can be exploited for large-scale perturbation. In 
this context, profiling accessibility within and between 
species provides insights into regulatory variation and 
functionality. These approaches, in combination with 
multi-omics measurements, may lead to more accurate 
and predictive models of gene expression, and to a causal 
understanding of enhancer and TF function.

Finally, a particularly exciting area of future devel-
opment is the integration of chromatin accessibility 
profiling with imaging-based approaches. Current 
chromatin accessibility profiling protocols involve tissue 
dissociation to extract cells or nuclei, which leads to the 
loss of the native spatial context. ATAC-see84 mitigates 
this problem by performing the Tn5 reaction in situ on 
microscope slides and using fluorescent adaptors that 
are compatible with both imaging and sequencing. 
sciMAP-ATAC368 provides medium-level spatial map-
ping of single-cell chromatin accessibility profiles for a  
tissue by taking a select amount of microbiopsies of  
a tissue prior to the sciATAC-seq workflow. Further inte-
gration of ATAC-seq with high-throughput fluorescence 

in situ hybridization and other imaging-based methods 
will lead to new ways of interrogating the genome of 
complex systems in situ after stimuli and perturba-
tions368,369. Such developments hold promise to advance 
discovery in multiple fields. For example, in the con-
text of developmental biology, it would help to decode 
the functional impact of morphogen gradients and cel-
lular signal transduction by measuring the regulatory 
response in the cells receiving the signal while main-
taining information on each cell’s spatial positioning 
to both the source signal and their neighbouring cells. 
Integration with multi-omics measurements will lead to 
the generation of virtual models of developing embryos 
with enhanced resolution and predictive power. In 
the medical setting, this could reveal the relationship 
between cell growth and spatial positions within a 
tumour, the dependencies between the point of injury 
or infection, and the efficacy of drugs to elicit cellular 
responses depending on the cells’ position, to name but a 
few. Given the sensitivity of these methods and the rapid 
speed with which they are being developed, this will 
open up new, exciting avenues for diagnosis, prognosis 
and therapeutic intervention.

Published online xx xx xxxx

Morphogen gradients
Gradients of signalling 
molecules within developing 
tissues and embryos, which 
illicit different responses  
across the gradient, leading to 
diverse outcomes in terms of 
cell fate decisions, controlling 
pattern formation during 
embryogenesis.
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