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Recent advances in machine learning have leveraged evolutionary information in multiple sequence
alignments to predict protein structure. We demonstrate direct inference of full atomic-level
protein structure from primary sequence using a large language model. As language models of
protein sequences are scaled up to 15 billion parameters, an atomic-resolution picture of protein
structure emerges in the learned representations. This results in an order-of-magnitude acceleration
of high-resolution structure prediction, which enables large-scale structural characterization of
metagenomic proteins. We apply this capability to construct the ESM Metagenomic Atlas by
predicting structures for >617 million metagenomic protein sequences, including >225 million
that are predicted with high confidence, which gives a view into the vast breadth and diversity of
natural proteins.

T
he sequences of proteins at the scale of
evolution contain an image of biolog-
ical structure and function. The biolog-
ical properties of a protein constrain
the mutations to its sequence that are

selected through evolution, recording biol-
ogy into evolutionary patterns (1–3). Protein
structure and function can therefore be in-
ferred from the patterns in sequences (4, 5).
This insight has been central to progress in
computational structure prediction starting
from classical methods (6, 7) through the intro-
duction of deep learning (8–11) up to present
high-accuracy structure prediction (12, 13).
Languagemodels have the potential to learn

patterns in protein sequences across evolu-
tion. This idea motivates research on evolu-
tionary-scale language models (14), in which
basic models (15–17) learn representations
that reflect aspects of the underlying biology
and, with greater representational capacity,
capture secondary structure (14, 18) and ter-
tiary structure (14, 19–21) at a low resolution.
Beginning with Shannon’s model for the

entropy of text (22), language models of in-
creasing complexity have been developed,
which has culminated in modern large-scale
attention-based architectures (23–25). Despite
the simplicity of their training objectives, such
as filling in missing words or predicting the
next word, language models of text are shown
to exhibit emergent capabilities that develop
as a function of scale in increasing compu-
tational power, data, and number of param-
eters. Modern language models containing
tens to hundreds of billions of parameters

show abilities such as few-shot language trans-
lation, commonsense reasoning, and math-
ematical problem solving, all without explicit
supervision (26–29).
We posit that the task of filling in missing

amino acids in protein sequences across evo-
lution will require a language model to under-
stand the underlying structure that creates the
patterns in the sequences. As the representa-
tional capacity of the language model and
the diversity of protein sequences seen in its
training increase, we expect deep information
about the biological properties of the protein
sequences to emerge because those proper-
ties give rise to the patterns that are observed
in the sequences. To study this kind of emer-
gence, we scale language models from 8 mil-
lion parameters up to 15 billion parameters.
We discover that atomic-resolution structure
emerges and continues to improve in language
models over the four orders of magnitude in
parameter scale. Strong correlations between
the language model’s understanding of the
protein sequence (perplexity) and the accu-
racy of the structure prediction reveal a close
link between language modeling and the learn-
ing of structure.
We show that language models enable fast

end-to-end atomic-resolution structure pre-
diction directly from sequence. Our approach
leverages the evolutionary patterns that are
captured by the language model to produce
accurate atomic-level predictions. This removes
costly aspects of the current state-of-the-art
structure prediction pipeline, which eliminates
the need for a multiple sequence alignment
(MSA) while greatly simplifying the neural
architecture used for inference. This results
in an improvement in speed of up to 60× on
the inference forward pass alone while also
removing the search process for related pro-
teins entirely, which can take >10 min with

the high-sensitivity pipelines used by Alpha-
Fold (12) andRoseTTAFold (13) and is amean-
ingful part of the computational cost even
with recent lower-sensitivity fast pipelines
(30). In practice, this means the speedup over
the state-of-the-art prediction pipelines is up
to one to two orders of magnitude.
This speed advantage makes it possible to

expand structure prediction to metagenomic
scale datasets. The past decade has seen efforts
to expand knowledge of protein sequences to
the immense microbial natural diversity of
Earth through metagenomic sampling. These
efforts have contributed to an exponential
growth in the size of protein sequence data-
bases, which now contain billions of proteins
(31–33). Computational structural character-
izations have recently been completed for
∼20,000 proteins in the human proteome (34)
and the ∼200 million cataloged proteins of
Uniprot (35), but the vast scale of metagenomic
proteins represents a far greater challenge
for structural characterization. The extent and
diversity of metagenomic structures is un-
known and is a frontier for biological knowl-
edge, as well as a potential source of discoveries
for medicine and biotechnology (36–38).
We present an evolutionary-scale structural

characterization ofmetagenomic proteins that
folds practically all sequences in MGnify90 (32),
>617 million proteins. We were able to complete
this characterization in 2 weeks on a hetero-
geneous cluster of 2000 graphics processing
units (GPUs), which demonstrates scalability
to far larger databases. High-confidence pre-
dictions are made for >225 million structures,
which reveals and characterizes regions of
metagenomic space distant from existing
knowledge. Most (76.8%) high-confidence pre-
dictions are separate fromUniRef90 (39) by at
least 90% sequence identity, and tens of mil-
lions of predictions (12.6%) do not have any
match to experimentally determined struc-
tures. These results give a large-scale view into
the vast extent and diversity of metagenomic
protein structures. These predicted structures
can be accessed in the ESMMetagenomic Atlas
(https://esmatlas.com) open science resource.

Atomic-resolution structure emerges in
language models trained on protein sequences

We begin with a study of the emergence of
high-resolution protein structure. We trained a
family of transformer protein language models,
ESM-2, at scales from 8 million parameters
up to 15 billion parameters. Relative to our
previous generation model ESM-1b, ESM-2
introduces improvements in architecture, train-
ing parameters, and increases computational
resources and data [supplementary mate-
rial (SM) sections A.1.1 and A.2]. The resulting
ESM-2 model family outperforms previously
state-of-the-art ESM-1b (a ∼650 million pa-
rameter model) at a comparable number of
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parameters, and on structure prediction bench-
marks it also outperforms other recent pro-
tein language models (table S1).
ESM-2 is trained to predict the identity of

amino acids that have been randomly masked
out of protein sequences:

LMLM ¼ �
X

i∈M
log p xijxnMÞð ð1Þ

where for a randomly generated mask M that
includes 15% of positions i in the sequence x,
the model is tasked with predicting the iden-
tity of the amino acids xi in the mask from
the surrounding context xnM , excluding the
masked positions. This masked language mod-
eling objective (25) causes the model to learn
dependencies between the amino acids. Al-
though the training objective itself is simple
and unsupervised, solving it over millions

of evolutionarily diverse protein sequences
requires the model to internalize sequence
patterns across evolution. We expect that this
training will cause biological structure to
materialize in the language model because it
is linked to the sequence patterns. ESM-2 is
trained over sequences in the UniRef (39)
protein sequence database. During training,
sequences are sampled with even weighting
across ∼43 million UniRef50 training clusters
from ∼138 million UniRef90 sequences, so
that over the course of training, the model sees
∼65 million unique sequences.
As we increase the scale of ESM-2 from 8mil-

lion to 15 billion parameters, we observe large
improvements in the fidelity of its modeling
of protein sequences. This fidelity can be
measured by using perplexity, which ranges
from 1 for a perfect model to 20 for a model

that makes predictions at random. Intuitively,
the perplexity describes the average number
of amino acids that the model is choosing
among for each position in the sequence.Math-
ematically, perplexity is defined as the ex-
ponential of the negative log-likelihood of the
sequence (SM A.2.2). Figure S1 shows perplex-
ity for the ESM-2 family as a function of the
number of training updates, evaluated on a
set of ∼500,000 UniRef50 clusters that have
been held out from training. Comparisons
are performed at 270,000 training steps for all
models in this section. The fidelity continues
to improve as the parameters increase up to the
largest model. The 8-million-parameter mod-
el has a perplexity of 10.45, and the 15 billion
model reaches a perplexity of 6.37, which in-
dicates a large improvement in the under-
standing of protein sequences with scale.
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Fig. 1. Emergence of
structure when scaling
language models to
15 billion parameters.
(A) Predicted contact
probabilities (bottom
right) and actual contact
precision (top left) for
PDB 3LYW. A contact is
a positive prediction if
it is within the top L
most likely contacts for a
sequence of length L.
(B to D) Unsupervised
contact prediction per-
formance [long-range
precision at L (P@L)]
(SM A.2.1) for all scales
of the ESM-2 model. (B)
Performance binned by
the number of MMseqs
hits when searching the
training set. Larger ESM-2
models perform better
at all levels; the 150-
million-parameter ESM-2
model is comparable to
the 650-million-
parameter ESM-1b
model. (C) Trajectory of
improvement as model
scale increases for
sequences with differ-
ent numbers of MMseqs
hits. (D) Left-to-right
shows models from
8 million to 15 billion
parameters, comparing
the smaller model (x axis) against the next larger model (y axis) through
unsupervised contact precision. Points are PDB proteins colored by change
in perplexity for the sequence between the smaller and larger model. Sequences
with large changes in contact prediction performance also exhibit large
changes in language model understanding measured by perplexity. (E) TM-score
on combined CASP14 and CAMEO test sets. Predictions are made by using

structure module–only head on top of language models. Points are colored
by the change in perplexity between the models. (F) Structure predictions
on CAMEO structure 7QQA and CASP target 1056 at all ESM-2 model scales,
colored by pLDDT (pink, low; teal, high). For 7QQA, prediction accuracy
improves at the 150-million-parameter threshold. For T1056, prediction
accuracy improves at the 15-billion-parameter threshold.
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This training also results in the emergence
of structure in the models. Because ESM-2’s
training is only on sequences, any informa-
tion about structure that develops must be
the result of representing the patterns in se-
quences. Transformer models that are trained
with masked language modeling are known to
develop attention patterns that correspond to
the residue–residue contact map of the protein
(19, 20). We examine how this low-resolution
picture of protein structure emerges as a
function of scale. We use a linear projection

to extract the contact map from the atten-
tion patterns of the language model (SM
A.2.1). The precision of the top L (length of the
protein) predicted contacts (long-range con-
tact precision) measures the correspondence
of the attention pattern with the structure
of the protein. Attention patterns develop in
ESM-2 that correspond to tertiary structure
(Fig. 1A), and scaling leads to large improve-
ments in the understanding of structure (Fig.
1B). The accuracy of the predicted contacts
varies as a function of the number of evolu-

tionarily related sequences in the training set.
Proteins with more related sequences in the
training set have steeper learning trajectories
with respect to model scale (Fig. 1C). Improve-
ment on sequences with high evolutionary
depth thus saturates at lower model scales,
and improvement on sequences with low evo-
lutionary depth continues as models increase
in size.
For individual proteins, we often observe

nonlinear improvements in the accuracy of
the contact prediction as a function of scale.
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CASP14 T1057 (7M6B)
TM-score ESMFold: 0.98, Perplexity ESM-2: 4.4

TM-score Alphafold: 0.97

Glucosamine-6-phosphate deaminase (7LQM)
DockQ Score ESMFold: 0.91, Perplexity ESM-2: 2.3

L-asparaginase (7QYM)
DockQ Score ESMFold: 0.97, Perplexity ESM-2: 3.2

D

E

CASP14 T1074 (7OC9)
TM-score ESMFold: 0.64, Perplexity ESM-2: 16.6

TM-score Alphafold: 0.93

Fig. 2. Single sequence structure prediction with ESMFold. (A) ESMFold
model architecture. Arrows show the information flow in the network from the
language model to the folding trunk to the structure module that outputs 3D
coordinates and confidences. LM, language model. (B) ESMFold produces accurate
atomic resolution predictions, with similar accuracy to RoseTTAFold on CAMEO. When
MSAs are ablated for AlphaFold and RoseTTAFold, performance of the models
degrades. Scatterplots compare ESMFold (x axis) predictions with AlphaFold2 (y axis),
colored by language model perplexity. Proteins with low perplexity score similarly
to AlphaFold2. AF, AlphaFold2. (C) Model pLDDT versus true LDDT (left) and relative
performance against AlphaFold (right) on CAMEO. pLDDT is a well-calibrated
estimate of prediction accuracy. (D) Successful examples: Top shows test-set
predictions of T1057, with ESMFold (left) and AlphaFold2 (right). Coloring shows

predicted LDDT for both models (ESMFold high confidence, teal; AlphaFold2 high
confidence, green; both low confidence, pink). Ground truth is shown in gray.
The bottom two show complex predictions on a dimer (PDB: 7LQM) and a tetramer
(PDB: 7QYM); ESMFold predictions are colored by chain ID and overlaid on ground
truth (gray). DockQ (50) scores are reported for the interactions; in the case of
the tetramer 7QYM, the score is the average of scores over interacting chain pairs.
(E) Unsuccessful example: test-set predictions of T1074, with ESMFold (left)
and AlphaFold2 (right). Coloring shows predicted LDDT for both models (ESMFold
high confidence, teal; AlphaFold2 high confidence, green; both low confidence,
pink). Ground truth is shown in gray. ESMFold TM-score is substantially below
AlphaFold2 TM-score. The perplexity of the unsuccessful sequence is 16.6,
meaning the language model does not understand the input sequence.
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Plotting the change in the distribution of long-
range contact precision at each transition
to a higher level of scale reveals an overall shift
in the distribution toward better performance
(Fig. 1D), as well as a subset of proteins that
undergo greater improvement. The accuracy
of the contact map prediction and perplex-
ity are linked, with proteins undergoing large
changes in contact map accuracy also under-
going large changes in perplexity [normalized
discounted cumulative gain (NDCG) = 0.87]
(SM A.2.6). This link indicates that the lan-
guage modeling objective is directly correlated
with the materialization of the folded struc-
ture in the attention maps.
To identify atomic-resolution information

in the model, we project out spatial coordi-
nates for each of the atoms from the internal
representations of the language model using
an equivariant transformer (SM A.3.3). This
projection is fitted by using experimentally

determined protein structures from the Pro-
tein Data Bank (PDB) (40) and evaluated on
194 CAMEO proteins (41) and 51 CASP14 pro-
teins (42). TM-score, which ranges from 0 to 1,
measures the accuracy of the projection in
comparison to the ground truth structure,
with a value of 0.5 corresponding to the thresh-
old for correctly predicting the fold (43). The
evaluation uses a temporal cutoff, which en-
sures that the proteins used for testing are held
out from those used in fitting the projection.
Thismakes it possible tomeasure how atomic-
level informationemerges in the representations
as a function of the parameter scale.
We discover that an atomic-resolution struc-

ture prediction can be projected from the rep-
resentations of the ESM-2 language models.
The accuracy of this projection improves with
the scale of the language model. The 15 billion
parameter model reaches a TM-score of 0.72
on the CAMEO test set and 0.55 on the CASP14

test set, a gain of 14 and 17% respectively rel-
ative to the 150 million parameter ESM-2
model (Fig. 1E). At each increase in scale a
subset of proteins undergoes large changes
in accuracy. For example, the protein 7QQA
improves in root mean square deviation
(RMSD) from 7.0 to 3.2 Å when the scale is
increased from 35 million to 150 million pa-
rameters, and the CASP target T1056 im-
proves in RMSD from 4.0 to 2.6 Å when the
scale is increased from 3 billion to 15 billion
parameters (Fig. 1F). Before and after these
jumps, changes in RMSD are much smaller.
Across all models (table S1), there is a cor-
relation of −0.99 between validation perplex-
ity and CASP14 TM-score and −1.00 between
validation perplexity and CAMEO TM-score,
which indicates a strong connection between
the understanding of the sequence measured
by perplexity and the atomic-resolution struc-
ture prediction. Additionally, there are strong
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Fig. 3. Mapping metagenomic structural space. (A) ESMFold calibration with
AlphaFold2 for metagenomic sequences. Mean pLDDT is shown on the x axis, and
LDDT to the corresponding AlphaFold2 prediction is shown on the y axis.
Distribution is shown as a density estimate across a subsample of ∼4000
sequences from the MGnify database. (B) Distribution of mean pLDDT values
computed for each of ∼617 million ESMFold-predicted structures from the MGnify
database. (C) The distribution of the TM-score to the most similar PDB structure
for each of 1 million randomly sampled high-confidence (mean pLDDT > 0.7 and
pTM > 0.7) structures. Values were obtained by a Foldseek search, which does

not report values under 0.5 TM-score (53). (D) Sample of 1 million high-
confidence protein structures is visualized in two dimensions by using the UMAP
algorithm and colored according to distance from the nearest PDB structure, in
which regions with low similarity to known structures are colored in dark blue.
Example protein structures and their locations within the sequence landscape are
provided; see also Fig. 4 and table S2. (E) Additional UMAP plot in which the
1 million sequences are plotted according to the same coordinates as in (D) but
colored by the sequence identity to the most similar entry in UniRef90 according
to a blastp (60) search.
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correlations between the low-resolution pic-
ture of the structure that can be extracted from
the attention maps and the atomic-resolution
prediction (0.96 between long-range contact
precision and CASP14 TM-score and 0.99 be-
tween long-range contact precision andCAMEO
TM-score). These findings connect improve-
ments in language modeling with the increases
in low-resolution (contact map) and high-
resolution (atomic-level) structural information.

Accelerating accurate atomic-resolution
structure prediction with a language model

Language models greatly accelerate state-of-
the-art high-resolution structure prediction.
The language model internalizes evolutionary
patterns linked to structure, which eliminates
the need for external evolutionary databases,
MSAs, and templates. We find that the ESM-2
language model generates state-of-the-art
three-dimensional (3D) structure predictions
directly from the primary protein sequence,
which results in a speed improvement for
structure prediction of more than an order of
magnitude while maintaining high-resolution
accuracy.
We developed ESMFold, a fully end-to-end

single-sequence structure predictor, by train-
ing a folding head for ESM-2 (Fig. 2A). At
prediction time, the sequence of a protein is
inputted to ESM-2. The sequence is processed
through the feedforward layers of the lan-
guage model, and the model’s internal states
(representations) are passed to the folding
head. The head begins with a series of fold-
ing blocks. Each folding block alternates be-
tween updating a sequence representation
and a pairwise representation. The output of
these blocks is passed to an equivariant trans-
former structure module, and three steps of
recycling are performed before outputting
a final atomic-level structure and predicted
confidences (SM A.3.1). This architecture rep-
resents a major simplification in comparison
with current state-of-the-art structure predic-
tion models, which deeply integrate the MSA
into the neural network architecture through
an attention mechanism that operates across
the rows and columns of the MSA (12, 44).
Our approach results in a considerable im-

provement in prediction speed. On a single
NVIDIA V100 GPU, ESMFold makes a predic-
tion on a protein with 384 residues in 14.2 s,
six times faster than a single AlphaFold2 model.
On shorter sequences, the improvement in-
creases up to ∼60× (fig. S2). The search process
for related sequences, which is required to con-
struct the MSA, can take >10 min with the
high-sensitivity protocols used by the published
versions of AlphaFold and RoseTTAFold; this
time can be reduced to <1 min, although with
reduced sensitivity (30).
We train the folding head on ∼25,000 clus-

ters covering a total of ∼325,000 experimen-

tally determined structures from the PDB,
which is further augmented with a dataset
of ∼12 million structures that we predicted
with AlphaFold2 (SM A.1.2). The model is
trained with the same losses that are used for
AlphaFold (45). To evaluate the accuracy of
structure predictions, we use test sets that
are held out from the training data by a May
2020 cutoff date; as a result, all structures that
are used in evaluation are held out from the
training, and the evaluation is representative
of the performance that would be expected
in regular usage as a predictive model on the
kinds of structures that are selected by ex-
perimentalists for characterization. This also
makes it possible to compare with AlphaFold
and RoseTTAFold because these models also
have not been trained on structures depos-
ited after May 2020. We use two test sets: The
CAMEO test set consists of 194 structures that
are used in the ongoing CAMEO assessment
(between April 2022 and June 2022); the CASP14
test set consists of 51 publicly released struc-
tures that have been selected for their dif-
ficulty for the biannual structure prediction
competition.
We compare the results of ESMFold on these

evaluation sets toAlphaFold2 andRoseTTAFold
(Fig. 2B). ESMFoldachieves anaverageTM-score
of 0.83 on CAMEO and 0.68 on CASP14. Using
the search protocols releasedwithAlphaFold2,
including MSAs and templates, AlphaFold2
achieves 0.88 and 0.85 on CAMEO and CASP14,
respectively. ESMFold achieves competitive
accuracywithRoseTTAFold onCAMEO,which
averages a TM-score of 0.82. When evaluat-
ing AlphaFold2 and RoseTTAFold on single
sequences by ablating the MSA, their per-
formance degrades substantially and falls
well below that of ESMFold. This is an arti-
ficial setting because AlphaFold2 has not been
explicitly trained for single sequences; how-
ever, it has recently emerged as important in
protein design, in which these models have
been used with single-sequence inputs for de
novo protein design (46–48).
Although the average performance on the

test sets is belowAlphaFold2, the performance
gaps are explained by the languagemodel per-
plexity. On proteins for which perplexity is
low, ESMFold results match AlphaFold2. On
the CAMEO test set, the 3-billion-parameter
ESM-2 model used in ESMFold achieves an
average perplexity of 5.7. On the CASP14 test
set, the same model only has an average per-
plexity of 10.0. Performance within each set
is also well correlated with perplexity. On the
CAMEO test set, language model perplexity
has a Pearson correlation of −0.52 with the TM-
score between the predicted and experimental
structures; on CASP14, the correlation is −0.71
(Fig. 2B). On the subset of 18 CASP14 pro-
teins for which ESM-2 achieves perplexity <7,
ESMFold matches AlphaFold in performance

(average TM-score difference <0.03 and no
TM-score differences >0.1). The relationship
between perplexity and structure prediction
suggests that improvements in the language
model will translate into improvements in
single-sequence structure prediction accuracy,
which is consistentwith observations from the
scaling analysis (Fig. 1, D and E). Additionally,
this means that the language model’s perplex-
ity for a sequence can be used to predict the
quality of the ESMFold structure prediction.
Ablation studies indicate that the language

model representations are critical to ESMFold
performance (fig. S3). With a folding trunk of
eight blocks, performance on the CAMEO test
set is 0.74 local distance difference test (LDDT)
(baseline). Without the language model, this
degrades substantially, to 0.58 LDDT. When
removing the folding trunk entirely (i.e., only
using the language model and the structure
module), the performance degrades to 0.66
LDDT. Other ablations, such as only one block
of a structure module, turning off recycling,
not using AlphaFold2 predicted structures as
distillation targets, or not using triangular up-
dates, result in small performancedegradations
(change in LDDT of −0.01 to −0.04).
ESMFold provides state-of-the-art structure

prediction accuracy, matching AlphaFold2 per-
formance (<0.05 LDDT difference) on more
than half the proteins (Fig. 2B). We find that
this is true even on some large proteins—T1076
is an example with 0.98 TM-score and 540 res-
idues (Fig. 2D). Parts of the structure with low
accuracy do not differ notably between ESM-
Fold and AlphaFold, which suggests that lan-
guage models are learning information similar
to that contained in MSAs. We also observe
that ESMFold is able to make good predic-
tions for components of homo- and hetero-
dimeric protein-protein complexes (Fig. 2D).
In a comparison with AlphaFold-Multimer
(49) on a dataset of 2,978 recent multimeric
complexes deposited in the PDB, ESMFold
achieves the same qualitative DockQ (50) cat-
egorization for 53.2% of chain pairs, despite not
being trained on protein complexes (fig. S4).
Confidence is well calibrated with accuracy.

ESMFold reports confidence in the form of pre-
dicted LDDT (pLDDT) and predicted TM (pTM).
This confidence correlateswell with the accuracy
of the prediction, and for high-confidence pre-
dictions (pLDDT > 0.7), the accuracy is compa-
rable to AlphaFold2 (ESMFold LDDT = 0.83,
AlphaFold2 LDDT = 0.85 on CAMEO) (Fig. 2C
and fig. S5). High-confidence predictions ap-
proach experimental-level accuracy. On the
CAMEO test set, ESMFold predictions have a
median all-atom RMSD95 (RMSD at 95% resi-
due coverage) of 1.91 Å and backbone RMSD95

of 1.33Å.Whenconfidence is very high (pLDDT
> 0.9), predictions havemedian all-atomRMSD95

of 1.42 Å and backbone RMSD95 of 0.94 Å. The
confidence can thus be used to predict how
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likely it is that a given structure prediction
will match the true structure if it were to be
experimentally determined.
Recent work has investigated the use of

language models for the direct prediction of
protein structure from sequence, without a
learned full atomic-level structure projection,
but the accuracy has not been competitive
with the use of MSAs (21, 51). An approach
developed concurrently with ours that uses
a similar attention-based processing of lan-
guagemodel representations to output atomic
coordinates also appears to show results that
are MSAs (52).

Evolutionary-scale structural characterization
of metagenomics

This fast and high-resolution structure predic-
tion capability enables the large-scale structural
characterization of metagenomic proteins.
We fold >617 million sequences from the
MGnify90 database (32). This is the entirety
of the sequences of length 20 to 1024 and
covers 99% of all the sequences inMGnify90.

Overall, the characterization produces ∼365mil-
lion predictions with good confidence (mean
pLDDT>0.5 andpTM>0.5),which corresponds
to ∼59% of the database, and ∼225 million pre-
dictionswith high confidence (mean pLDDT>
0.7 and pTM > 0.7), which corresponds to ∼36%
of total structures folded (Fig. 3). We were able
to complete the predictions in 2 weeks on a
cluster of ~2000 GPUs (SM A.4.1).
For structure prediction at scale, it is crit-

ical to distinguish well-predicted proteins from
those that are poorly predicted. In the previous
section, we evaluated calibration against ex-
perimentally determined structures on held-out
test sets and found that the model confidence
is predictive of the agreement with experimen-
tally determined structures. We also assess
calibration against AlphaFold predictions on
metagenomic proteins. On a random subset
of ∼4000 metagenomic sequences, there is a
high correlation (Pearson r = 0.79) between
ESMFold pLDDT and the LDDT to AlphaFold2
predictions (Fig. 3A). When combined with
results on CAMEO showing that when con-

fidence is very high (pLDDT > 0.9), ESMFold
predictions often approach experimental ac-
curacy, these findings mean that ESMFold’s
confidence scores provide a good indication
of the agreement with experimental struc-
tures and with the predictions that can be
obtained from AlphaFold2. Across the ∼617 mil-
lion predicted structures, ∼113 million structures
meet the very high-confidence threshold.
Many of the metagenomic structure pre-

dictions have high confidence (Fig. 3B) and
are not represented in existing structure data-
bases (Figs. 3, C to E). On a random sample
of 1 million high-confidence structures, 76.8%
(767,580) of the proteins have a sequence iden-
tity below 90% to any sequence in UniRef90,
which indicates that these proteins are dis-
tinct from existing UniRef90 sequences (Fig.
3E). For 3.4% (33,521 proteins), no match is
found in UniRef90 at all (SM A.4.2). We use
Foldseek (53) to compare the predicted struc-
tures with known structures in the PDB. At
thresholds of 0.7 and 0.5 TM-score, Foldseek
reports 25.4% (253,905 proteins) and 12.6%

Lin et al., Science 379, 1123–1130 (2023) 17 March 2023 6 of 8

A

B C

Fig. 4. Example ESMFold structure predictions of metagenomic sequences.
(A) Example predicted structures from six different metagenomic sequences;
also see table S2. Left of each subfigure: The prediction is displayed with
the AlphaFold2 prediction (light green). Right of each subfigure: The prediction
is displayed with the Foldseek-determined nearest PDB structure according
to TM-score. (B and C) Examples of two ESMFold-predicted structures that have

good agreement with experimental structures in the PDB but that have low
sequence identity to any sequence in UniRef90. (B) Predicted structure
of MGYP000936678158 aligns to an experimental structure from a bacterial
nuclease (light brown, PDB: 3H4R), whereas (C) the predicted structure of
MGYP004000959047 aligns to an experimental structure from a bacterial sterol
binding domain (light brown, PDB: 6BYM).
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(125,765 proteins) without a match, respec-
tively (Fig. 3, C andD). For 2.6% (25,664) there
is both low structural similarity (TM-score
≤0.5) and no close sequence homolog (>30%
identity). On the basis of these subsampled es-
timates, there are ~28million proteins (12.6%
of 225 million) with both high-confidence
predictions and TM-score < 0.5 to known
protein structures (examples in Fig. 4A and
table S2). These results demonstrate that
ESMFold can effectively characterize regions
of protein space that are distant from existing
knowledge.
Large-scale structural characterization also

makes it possible to identify structural sim-
ilarities in the absence of sequence similarity.
Many high-confidence structures with low sim-
ilarity to UniRef90 sequences do have similar
structures in the PDB. This remote homology
often extends beyond the limit detectable by
sequence similarity. For example, MGnify se-
quence MGYP000936678158 has no matches
to any entry in UniRef90 or through a jackhm-
mer (54) reference proteome search, but it has
a predicted structure conserved across many
nucleases (PDB: 5YET_B, TM-score 0.68; PDB:
3HR4_A, TM-score 0.67) (Fig. 4B and table S2);
similarly, MGnify sequence MGYP004000959047
has no UniRef90 or jackhmmer reference pro-
teome matches, but its predicted structure has
a high similarity to the experimental structures
of lipid binding domains (PDB: 6BYM_A, TM-
score 0.80; PDB: 5YQP_B, TM-score 0.78) (Fig.
4C and table S2). The ability to detect remote
similarities in structure enables insight into
function that cannot be obtained from the
sequence.
All predicted structures are available in the

ESMMetagenomicAtlas (https://esmatlas.com)
as an open science resource. Structures are
available for bulk download, by means of an
application programming interface (API), and
through a web resource that provides search
by structure and by sequence (53, 55). These
tools facilitate both large-scale and focused
analysis of the full scope of the hundreds of
millions of predicted structures.

Conclusions

Fast and accurate computational structure
prediction has the potential to accelerate
progress toward an era in which it is possible
to understand the structure of all proteins
discovered in gene sequencing experiments.
Such tools promise insights into the vast
natural diversity of proteins, most of which
are discovered in metagenomic sequencing.
To this end, we have completed a large-scale
structural characterization of metagenomic
proteins that reveals the predicted structures
of hundreds of millions of proteins, mil-
lions of which are expected to be distinct in
comparison to experimentally determined
structures.

As structure prediction continues to scale to
larger numbers of proteins, calibration be-
comes critical because, when the throughput
of prediction is limiting, the accuracy and
speed of the prediction form a joint frontier
in the number of accurate predictions that can
be generated. Very high-confidence predic-
tions in the metagenomic atlas are expected
to often be reliable at a resolution sufficient for
insight similar to experimentally determined
structures, such as into the biochemistry of
active sites (56). For many more proteins for
which the topology is predicted reliably, in-
sight can be obtained into function through
remote structural relationships that could not
be otherwise detected with sequence.
The emergence of atomic-level structure in

language models shows a high-resolution pic-
ture of protein structure encoded by evolution
into protein sequences that can be captured
with unsupervised learning. Our current mod-
els are very far from the limit of scale in pa-
rameters, sequence data, and computing power
that can in principle be applied. We are op-
timistic that as we continue to scale, there will
be further emergence. Our results showing the
improvement in the modeling of low depth
proteins point in this direction.
ESM-2 results in an advance in speed that

in practical terms is up to one to two orders
of magnitude, which puts far larger numbers
of sequences within reach of accurate atomic-
level prediction. Structure prediction at the
scale of evolution can open a deep view into
the natural diversity of proteins and accel-
erate the discovery of protein structures and
functions.
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