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Designing proteins with language models

Jeffrey A. Ruffolo & Ali Madani

Protein language models learn from diverse 
sequences spanning the evolutionary tree and 
have proven to be powerful tools for sequence 
design, variant effect prediction and structure 
prediction. What are the foundations of 
protein language models, and how are they 
applied in protein engineering?

Proteins are composed of a linear chain of residues, with 20 canonical 
amino acids making up the vocabulary of most natural proteins. The 
ordering of these amino acids determines the tertiary structure of 
proteins in their environment and subsequently enables their specific 
function. Understanding the relationships between protein sequence, 
structure, and function is a major focus of biological research. In this 
Primer, we focus on a class of machine learning models that operate 
only on sequences yet capture the structural and functional properties 
of proteins. Protein language models (PLMs) are trained on vast data-
sets of protein sequences spanning the evolutionary tree of life. From 
these sequences, PLMs learn the underpinnings of protein structure and 
function, enabling a wide range of protein modeling and design tasks.

Evolution of protein sequences
Advances in high-throughput DNA sequencing technology ena-
bled the collection of billions of protein sequences from a wide 
variety of sources. The growth in the number of observed protein 
sequences (billions) has outpaced the rate of structural data collection  
(hundreds of thousands). As we observe greater numbers of protein 
sequences, we can begin to identify the patterns underlying the evo-
lutionary process. From a structural perspective, certain mutations 
may cause larger disruptions to secondary or tertiary structure by 
breaking α-helices, introducing unsatisfied hydrogen bonds, or bury-
ing charged atoms. In general, none of these mutations are entirely 
restricted, but the bias toward maintenance of the existing fold is 
sufficiently strong to imprint upon the evolutionary process. From a 
functional perspective, particular amino acids (or residues) must be 
carefully coordinated to carry out the biological role of a protein. For 
example, in the case of zinc finger motifs, several residues must be 
present and properly oriented to bind the metal ion (Fig. 1a). As with 
structural constraints, violation of these functional arrangements 
can occur and give rise to new functionalities. However, such events 
are exceedingly improbable, meaning we will typically observe few 
changes at key functional positions, and if such changes occur, they 
are often compensated by changes at other positions that together 
define the functional arrangement.

These soft constraints on protein sequences are often referred 
to as coevolution. Exploitation of this coevolutionary information 
has enabled advances in protein modeling, most notably for protein 
structure prediction. With language models, we aim to explicitly model 
the interdependencies between residues in proteins.

Foundations of protein language models
Fundamentally, protein language models aim to predict how likely 
we are to observe a particular protein sequence S given all the pro-
tein sequence data collected thus far. We denote a protein sequence  
S = (s1, s2,… sN), where si represents the amino acid at position i in the 
sequence. As a first approximation, we might consider the probability 
of observing a protein as the joint probability of observing each of its 
constituent amino acids. Under this model, referred to as unigram, we 
calculate the probability of a sequence S as

P(S) =∏
N
i P(si)

In practice, to compute P(S), we simply tabulate the frequency 
of each amino acid occurring in our sequence database and multiply 
the probabilities for the specific sequence S. However, proteins are 
not unordered collections of amino acids. Rather, the specific order 
in which we observe the amino acids is a critical determinant of struc-
ture and function. To capture this order dependency, we can use the 
preceding residues to inform the probability of the next amino acid. 
In an n-gram model, we multiply these contextualized probabilities to 
form the overall probability of the sequence:

P(S) =∏
N
i P(si|si−(n−1),… , si−1)

In the above equation, the initial residues of the sequence may 
have fewer than n preceding residues (or none, for s1). When n = 2, this 
model is called a bigram, and we can tabulate the frequency of each 
amino acid occurring after the preceding amino acid in our sequence 
dataset to calculate P(S).

Bigram models may begin to capture the patterns of secondary 
structure, which display varying amino acid propensities, but are 
insufficient to model dependencies separated by long stretches of 
sequence, as exemplified by the zinc finger domain in Fig. 1a. To capture 
long-range dependencies, we could simply increase the number of pre-
ceding residues considered by the model. However, in practice, as the 
model is extended to consider more context, the number of sequences 
necessary to inform the statistical measurements grows exponentially. 
For the zinc finger domain in Fig. 1a, the active site spans 21 consecutive 
residues, meaning the specific arrangement we observed is one of 2021 
possibilities. To address this challenge, modern language models typi-
cally use a neural network architecture called Transformer, capable of 
learning sequence dependencies over arbitrary-length contexts from 
data rather than tabulation.

Transformers incorporate the entire sequence context
The Transformer model was first proposed for machine translation of 
natural languages — for example, translation of English text to German. 
The original Transformer model included an encoder to summarize 
the source text and a decoder to produce text in the target language. 
However, for many applications in natural language processing and 
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another position j (typically measured by a dot product), the network 
assigns high attention from i to j. The attention values for all pairs of 
positions are collected into an attention matrix with dimension N × N. 
Each position also emits a value vector. To update the sequence repre-
sentation, we calculate a weighted sum for each position i according 
to the attention from i to all other positions j and their respective value 
vectors. This process can be summarized using matrix multiplication as

Attention(Q,K,V) = softmax(QKT)V

where Q, K and V are matrices in which the ith rows are the query, key 
and value vectors for each sequence position, respectively, and softmax 
is a normalizing operation to ensure that the attention from each posi-
tion sums to 1; KT denotes the transpose of K. In practice, each attention 
layer typically performs several independent attention operations in 
parallel (referred to as multi-head attention), allowing the model to 
learn multiple distinct connectivity patterns.

In practice, encoder-only and decoder-only models trained on 
protein sequences have proven quite useful. Encoder-only models are 

protein sequence modeling, these components are employed individu-
ally as encoder-only and decoder-only language models. The network 
architecture is largely the same for both types of models (Fig. 1b). First, 
the input sequence of amino acids is projected to a ‘hidden’ or latent 
sequence by an input embedding layer. Next, a series of repeating 
attention layers (see below) and feed-forward networks process the 
sequence representation. Finally, a residue prediction layer projects 
the processed sequence representation back to a predicted distribu-
tion over amino acids. Ultimately, the model is trained to fill in missing 
amino acids either at the end of a sequence (decoder-only) or in the 
middle of the sequence (encoder-only).

Among the key innovations of the Transformer is the use of atten-
tion to model global dependencies across sequences. Intuitively, the 
attention mechanism enables models to learn which parts of sequence 
context are relevant for a given prediction, much as a human might pay 
attention to specific portions of an essay more than other portions when 
asked a reading comprehension question. When a sequence representa-
tion is passed to an attention layer, each position emits a set of query 
and key vectors. If the query from one position i matches the key from 
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Fig. 1 | Application of language models to protein design. a, The co-evolving zinc 
finger functional residues are localized in spatial proximity but discontinuous 
in sequence. b, Autoregressive and masked language models are typically based 
on the Transformer architecture but use different types of attention for their 
respective objectives. NN, neural network. c, An NTF2 protein dimer is shown 
with side chain polar interactions indicated by red lines. In the magnified panels, 

three potential amino acids are shown for one position. The most favorable 
amino acid for this position is an asparagine forming two hydrogen bonds with 
a nearby residue. With atomically precise tertiary understanding, models can 
recapitulate such interactions. d, Schematic for designing protein sequences 
through autoregressive generation with a language model (LM). e, Schematic for 
optimizing sequences through Markov chain Monte Carlo sampling with an LM.
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generally employed for learning representations of sequences, which 
are then adapted to various downstream tasks, while decoder-only 
models are used for generation and scoring of protein sequences.

Autoregressive language models generate and  
score proteins
Decoder models are sometimes referred to as autoregressive language 
models because they are trained in a manner that allows them to gener-
ate sequences by iteratively predicting the next residue based on their 
previous output (see also the Primer by Hsu et al.). They are trained 
using a next-token prediction objective where the probability of the 
next amino acid is informed by the entire preceding sequence:

P(S) =∏
N
i P(si|s<i)

We train the autoregressive model on a database of sequences to 
predict P(si|s<i). To facilitate this task, causal masking is used to restrict 
the attention operations throughout the model such that information 
flows only from earlier positions to later, and not the reverse (Fig. 1b, 
decoder self-attention). Prominent examples of autoregressive models 
for protein sequences include UniRep, ProGen and ProtGPT2. Autore-
gressive models can generate diverse sequences adopting a wide vari-
ety of folds, and the predicted P(S) has also been shown to correlate 
with the functional fitness of proteins. Sequences are generated by 
iteratively sampling the next residue from the predicted distribution 
P(si | s<i), with each sampled residue being appended to the sequence 
to inform the following prediction. In a similar fashion, sequences can 
be scored by computing the likelihood of a sequence P(S) according 
to the model, which can be considered the likelihood of a given 
sequence being produced by the evolutionary forces that gave rise to 
the training data. These models have been trained on a wide variety of 
datasets, including genomic, metagenomic and immune-repertoire 
sequences. By modifying the training data composition, we can vary 
the types of sequences generated by the model, as well as learn better 
fitness predictors. This alignment between the training data and the 
intended application of the model is a critical consideration that has 
large impacts on performance.

Masked language models learn generalizable 
representations
For encoder models, the training objective is modified to predict the 
identities of residues throughout the sequence. Specifically, a subset 
of residues is randomly selected and replaced with a special mask  
token, and the model (termed a masked language model) is tasked  
with predicting their identities. This objective can be expressed as 
P(S−M) = ∏i∈MP(si|S−M), where M is a set of masked positions and −M 
is the remaining unmasked positions. Unlike autoregressive models, 
masked language models use bidirectional attention and consider all 
residues throughout the sequence to make predictions (Fig. 1b, encoder 
self-attention). Prominent examples of masked language models for 
protein sequences include the ESM and ProtTrans families of models.

To perform well on the masked language modeling objective, mod-
els must learn a broad set protein features. For example, to predict the 
identity of a masked residue, models are implicitly encouraged (that 
is, without supervision) to build up secondary and tertiary structure 
representations (Fig. 1c). The attention matrices from masked language 
models have also been shown to directly encode protein structure, in 
the form of residue–residue contact maps. Beyond structural features, 

masked protein language models capture biophysical properties, 
evolutionary context and alignment within families. Since they learn 
generalizable representations, masked language models are often used 
to encode a given protein for a multitude of downstream sequence pre-
diction tasks such as prediction of functional activity or interactions.

Generating and optimizing functional proteins
Madani et al. (2023) used a language model to generate functional 
protein enzymes. An autoregressive language model with over  
1 billion parameters was trained on over 280 million protein 
sequences from more than 19,000 families. The training was aug-
mented with tags derived from a given protein’s associated metadata 
to enable efficient learning and primarily provide a method for control-
lable — that is, conditional — sequence generation from desired input 
arguments (for example, to generate a library of artificial sequences 
that likely reside within a predefined protein family). A library of over 
a million artificial sequences was generated by iteratively sampling 
the next amino acid with the previously sampled residue context fed 
as input to the model (Fig. 1d). A variety of decoding strategies for 
language models have been developed to improve diversity and qual-
ity of sequences, including beam search, top-k sampling and nucleus 
sampling. Each of these techniques reshapes the probability distribu-
tion at each step of autoregressive decoding, balancing computing cost 
against the diversity and quality of generated sequences.

In contrast to de novo sequence generation, most protein engi-
neering efforts aim to optimize the functionality of a protein if access 
to a high-fidelity assay is available. In this scenario, the starting point, or 
parent sequence, is known and iteratively optimized through directed 
evolution. Language models can be trained in a supervised setting with 
sequence-label pairs derived from experimental data. Biswas et al. 
(2021) used as little as 24 functionally assayed mutant sequences to 
train a fitness predictor with a supervised language model. A Markov 
chain Monte Carlo procedure was used to optimize the sequences of 
green fluorescent protein and β-lactamase (Fig. 1e). In Markov chain 
Monte Carlo modeling, random mutations are generated, the likeli-
hood of the resulting protein is scored by the PLM, and the proposed 
mutation is accepted or rejected with a probability based on the like-
lihood. These in silico designed sequences have been shown to have 
improved functionality in the wet lab.

Protein language models have proven effective at generating 
functional proteins and facilitating optimization of a given protein. 
Looking forward, controllable generation of functionally specified pro-
tein sequences remains an area of great promise. Current techniques 
require fine-tuning on a curated set of natural proteins, which can be 
challenging to assemble for poorly represented families or impossible 
for novel functions. Removing this constraint may enable on-demand 
generation of functional proteins.
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