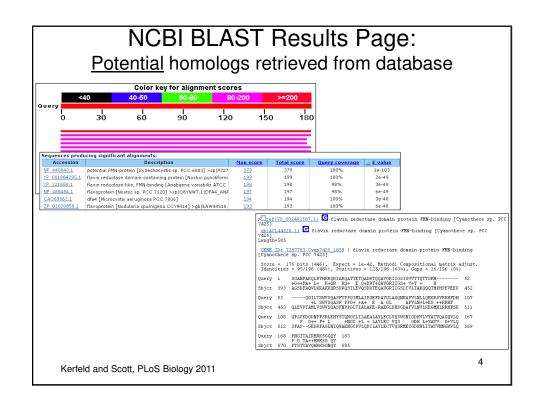
BLAST

(and MMSeqs2 & Foldseek)

Slides adapted & edited from a set by Cheryl A. Kerfeld (UC Berkeley/JGI) & Kathleen M. Scott (U South Florida)

Kerfeld CA, Scott KM (2011) Using BLAST to Teach "E-value-tionary" Concepts. *PLoS Biology* 9(2):e1001014

Starts with a Query Sequence in FASTA Format


Amino acid sequence:

>ribosomal protein L7/L12 [Thiomicrospira crunogena XCL-2] MAITKDDILEAVANMSVMEVVELVEAMEEKFGVSAAAVAVAGPAGDAGAA GEEQTEFDVVLTGAGDNKVAAIKAVRGATGLGLKEAKSAVESAPFTLKEG VSKEEAETLANELKEAGIEVEVK

Nucleotide sequence:

Note the description line Starts with ">", ends with carriage return Not read as sequence data

NCBI BLAST Interface (blastp: for protein-protein alignments) blastn blastp blastx tblastn tblastx Enter Query Sequence Enter accession number, gi, or FASTA sequence 🥹 (Paste FASTA format To sequence here) Or, upload file Browse... Enter a descriptive title for your BLAST search @ Align two or more sequences (Database Organism Enter organism name or id-completions will be suggested Exclude Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown. Exclude ☐ Models (XM/XP) ☐ Uncultured/environmental sample sequences Entrez Query 3 Kerfeld and Scott, PLoS Biology 2011

Overview of BLAST

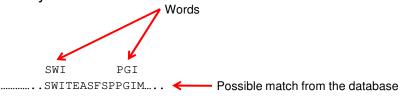
- 1. Segment the query sequence into short "words"
- 2. Use the query sequence segments to scan the database for matching sequences
- 3. Extend the matched segments in either direction to find local alignments.
- 4. Create a list of hits & alignments, with best matches first

Kerfeld and Scott, PLoS Biology 2011

5

BLAST Phase 1: Segment the query sequence and identify words that could form potential alignments

Query Sequence: >gi|16329320 (residues 412 to 594) SGANFARQLRTHKRQRIARQATTETQADRTQQAVGRIIGSIGVVTTQTTG RHQGILTSWVSQASFTPPGIMLAIPGEFDAYGLAGQNKAFVLNLLQEGRS VRRHFDHQPLPKDGDNPFSRLEHYSTQNGCLILAEALAYLECLVQSWSNI GDHVLVYÄTVQAGQVLQPNGITAIRHRKSGGQY Fragmentation into words: SWVSQASFTPPGIM _____ SWV WVS VSQ SQA QAS ASF SFT ... Selection of words scoring above threshold (for word SWV):
Substitution Matrix* SWV (4+11+4 = 19) SWI (4+11+3 = 18) TWV (1+11+4 = 16) Synonyms above threshold 11... GWV (0+11+4 = 15) ► KWV (0+11+4 = 15) SWS (4+11-2 = 13) SFV (4+1+4 = 9) Synonyms below threshold 11... SRV (4-3+4 = 5) (others not shown) *A portion of the BLOSUM 62 mat

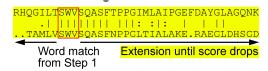

- Segment the query sequence into pieces ("words")
 - Default word length: 3 amino acids or 11 nucleic acids
- Create a list of synonyms and their scores for comparing query words to target words
 - Uses scoring matrix to calculate scores for synonyms that might be found in the database
- Save the scores (and synonyms) exceeding a given threshold T

6

Kerfeld and Scott, PLoS Biology 2011

BLAST Phase 2: Using the query sequence word list, scan the database for synonyms (hits)

- Scan the database for matches to the word list with acceptable T values
- Require two matches ("hits") within the target sequence
- Set aside sequences with matches above T for further analysis



Kerfeld and Scott, PLoS Biology 2011

7

BLAST Phase 3: Extending the hits

- Search 5' and 3' of the word hit on both the query and target sequence
- Add up the score for sequence identity or similarity until value exceeds S
- Alignment is dropped from subsequent analyses if value never exceeds S

So, to summarize:

- BLAST segments query sequence into "words" and scores potential word matches
- Scans this list for alignments that meet a threshold score T
 - uses a scoring matrix to calculate this (e.g., BLOSUM62)
- Uses this list of 'synonyms' to scan the database
- Extends the alignments to see if they meet a cutoff score S
 - uses a scoring matrix to calculate this
- Reports the alignments that exceed S

Kerfeld and Scott, PLoS Biology 2011

9

PAM and BLOSUM Matrices

- Scoring matrices are calibrated to capture different degrees of sequence similarity
- In practice, this means choosing a matrix appropriate to the suspected degree of sequence identity between the query and its hits
- PAM: empirically derived for close relatives
- BLOSUM: empirically derived for distant relatives

More divergent

BLOSUM45 PAM240

BLOSUM62 PAM180

BLOSUM80 PAM120

BLOSUM90 PAM30

Less divergent

10

Kerfeld and Scott, PLoS Biology 2011

Raw Scores (S values) from an Alignment

$$S = (\Sigma M_{ii}) - cO - dG,$$

where

M = score from a similarity matrix
for a particular pair of amino acids (ij)

c = number of gaps

O = penalty for the existence of a gap

d = total length of gaps

G = per-residue penalty for extending the gap

Kerfeld and Scott, PLoS Biology 2011

11

Limitations of Raw Scores

- S values depend on the substitution matrix, gap penalties
- Impossible to compare S values from hits retrieved from BLAST searches when different matrices and gap penalties are used

Going from Raw Scores to Bit Scores

 $S' = [\lambda S - ln(K)]/ln(2)$

where

S' = bit score

(as in 0 vs 1)

 λ and K = normalizing parameters of the specific matrices and search spaces

- Larger raw scores result in larger bit scores
- Allows user to compare scores obtained by using different matrices and search spaces

Kerfeld and Scott, PLoS Biology 2011

13

Limitations of Bit Scores

- How high does a bit score have to be to suggest common ancestry?
 - Hard to evaluate hits as homologs or not, based solely on bit scores

E-value

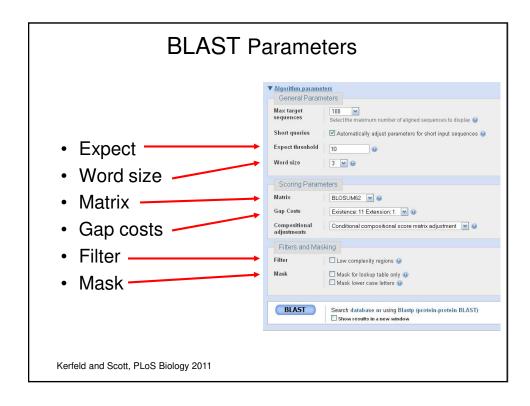
- Number of distinct alignments with scores greater than or equal to a given value expected to occur in a search against a database of known size, based solely on chance, not homology.
 - Large E-values suggest that the query sequence and retrieved sequence similarities are due to chance
 - Small E-values suggest that the sequence similarities are due to shared ancestry (or potentially convergent evolution)

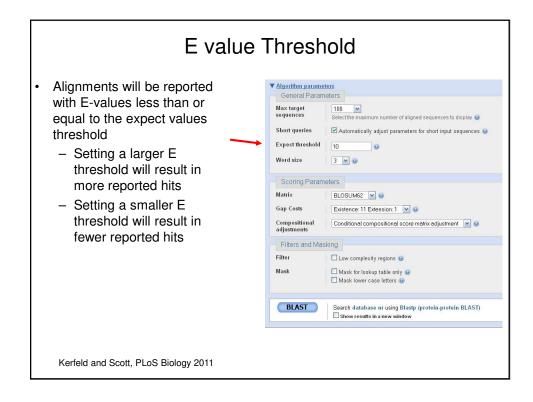
Kerfeld and Scott, PLoS Biology 2011

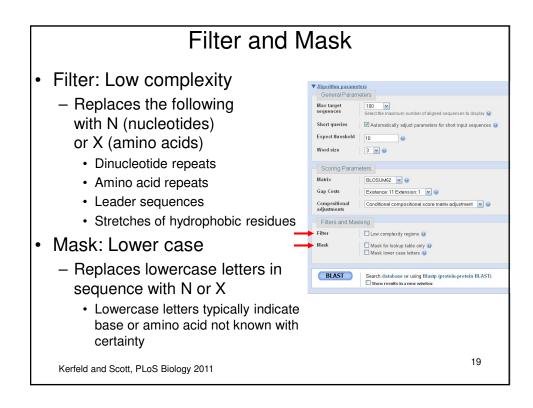
15

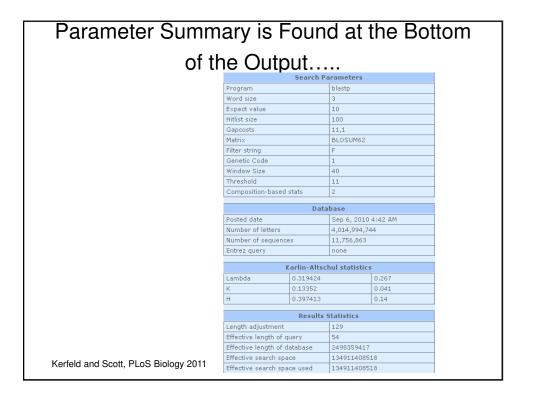
Calculating E-values

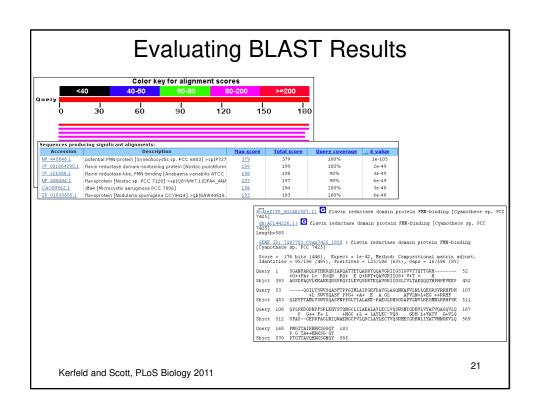
 $E = (n \times m) / 2^{S'}$


where


m = effective length of the query sequence


 length of query sequence – average length of alignments (Controls for fewer alignments occurring at the ends of the query sequence)

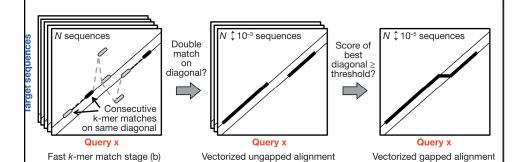

n = effective length of the database sequence (total number of bases)


The value of E decreases exponentially with increasing S

Examine the BLAST Alignment

```
> Lef | YP 002482587.1|  flavin reductase domain protein FMN-binding [Cyanothece sp. PCC 7425]

***Signature** The protein function functi
```

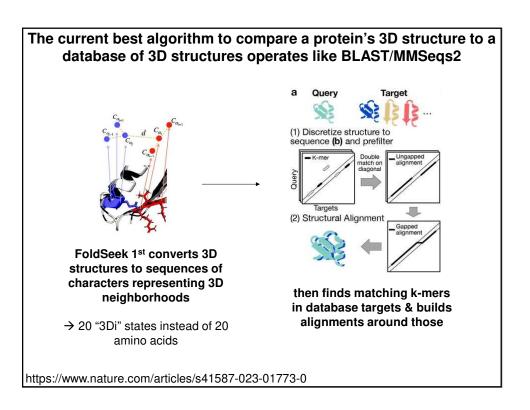

High E-value: Discovery of a Distant Homolog or Garbage?

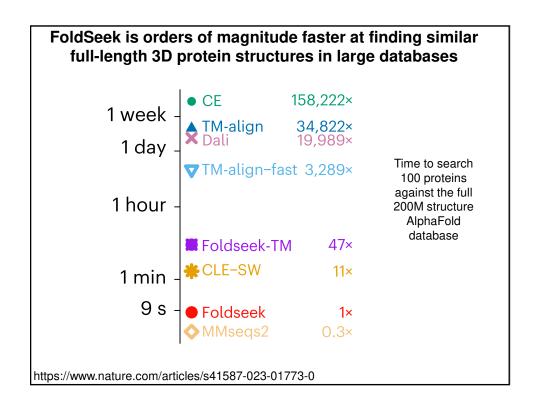
- Take another look at the target (subject) sequence(s) that have high E-values
 - Similar length?
 - Recurring motifs?
 - Similar biological functions?
- Use target sequences as query sequences for another BLAST search
 - Does the original query sequence come up in report?

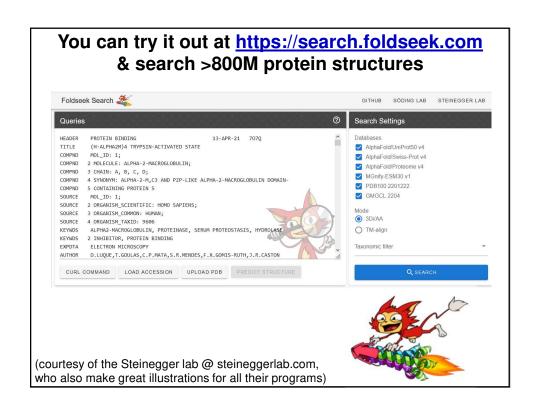
Kerfeld and Scott, PLoS Biology 2011

23

MMSeqs2 = speeding up BLAST-style database searches by >200X




Uses a combination of parallelization and clever pre-filtering:


"MMseqs2 searching is composed of three stages: a short word ('k-mer') match stage, vectorized ungapped alignment, and gapped (Smith–Waterman) alignment. The first stage is crucial for the improved performance. For a given query sequence, it finds all target sequences that have two consecutive similar-k-mer matches on the same diagonal."

Steinegger & Söding, Nature Biotech 35:1026-1028 (2017)

How might you perform fast 3D structure- structure matching instead of sequence-sequence matching?

