
nature biotechnology Volume 42 | February 2024 | 200–202 | 200

https://doi.org/10.1038/s41587-024-02123-4

Primer

Designing proteins with language models

Jeffrey A. Ruffolo & Ali Madani

Protein language models learn from diverse
sequences spanning the evolutionary tree and
have proven to be powerful tools for sequence
design, variant effect prediction and structure
prediction. What are the foundations of
protein language models, and how are they
applied in protein engineering?

Proteins are composed of a linear chain of residues, with 20 canonical
amino acids making up the vocabulary of most natural proteins. The
ordering of these amino acids determines the tertiary structure of
proteins in their environment and subsequently enables their specific
function. Understanding the relationships between protein sequence,
structure, and function is a major focus of biological research. In this
Primer, we focus on a class of machine learning models that operate
only on sequences yet capture the structural and functional properties
of proteins. Protein language models (PLMs) are trained on vast data-
sets of protein sequences spanning the evolutionary tree of life. From
these sequences, PLMs learn the underpinnings of protein structure and
function, enabling a wide range of protein modeling and design tasks.

Evolution of protein sequences
Advances in high-throughput DNA sequencing technology ena-
bled the collection of billions of protein sequences from a wide
variety of sources. The growth in the number of observed protein
sequences (billions) has outpaced the rate of structural data collection
(hundreds of thousands). As we observe greater numbers of protein
sequences, we can begin to identify the patterns underlying the evo-
lutionary process. From a structural perspective, certain mutations
may cause larger disruptions to secondary or tertiary structure by
breaking α-helices, introducing unsatisfied hydrogen bonds, or bury-
ing charged atoms. In general, none of these mutations are entirely
restricted, but the bias toward maintenance of the existing fold is
sufficiently strong to imprint upon the evolutionary process. From a
functional perspective, particular amino acids (or residues) must be
carefully coordinated to carry out the biological role of a protein. For
example, in the case of zinc finger motifs, several residues must be
present and properly oriented to bind the metal ion (Fig. 1a). As with
structural constraints, violation of these functional arrangements
can occur and give rise to new functionalities. However, such events
are exceedingly improbable, meaning we will typically observe few
changes at key functional positions, and if such changes occur, they
are often compensated by changes at other positions that together
define the functional arrangement.

These soft constraints on protein sequences are often referred
to as coevolution. Exploitation of this coevolutionary information
has enabled advances in protein modeling, most notably for protein
structure prediction. With language models, we aim to explicitly model
the interdependencies between residues in proteins.

Foundations of protein language models
Fundamentally, protein language models aim to predict how likely
we are to observe a particular protein sequence S given all the pro-
tein sequence data collected thus far. We denote a protein sequence
S = (s1, s2,… sN), where si represents the amino acid at position i in the
sequence. As a first approximation, we might consider the probability
of observing a protein as the joint probability of observing each of its
constituent amino acids. Under this model, referred to as unigram, we
calculate the probability of a sequence S as

P(S) =∏
N
i P(si)

In practice, to compute P(S), we simply tabulate the frequency
of each amino acid occurring in our sequence database and multiply
the probabilities for the specific sequence S. However, proteins are
not unordered collections of amino acids. Rather, the specific order
in which we observe the amino acids is a critical determinant of struc-
ture and function. To capture this order dependency, we can use the
preceding residues to inform the probability of the next amino acid.
In an n-gram model, we multiply these contextualized probabilities to
form the overall probability of the sequence:

P(S) =∏
N
i P(si|si−(n−1),… , si−1)

In the above equation, the initial residues of the sequence may
have fewer than n preceding residues (or none, for s1). When n = 2, this
model is called a bigram, and we can tabulate the frequency of each
amino acid occurring after the preceding amino acid in our sequence
dataset to calculate P(S).

Bigram models may begin to capture the patterns of secondary
structure, which display varying amino acid propensities, but are
insufficient to model dependencies separated by long stretches of
sequence, as exemplified by the zinc finger domain in Fig. 1a. To capture
long-range dependencies, we could simply increase the number of pre-
ceding residues considered by the model. However, in practice, as the
model is extended to consider more context, the number of sequences
necessary to inform the statistical measurements grows exponentially.
For the zinc finger domain in Fig. 1a, the active site spans 21 consecutive
residues, meaning the specific arrangement we observed is one of 2021
possibilities. To address this challenge, modern language models typi-
cally use a neural network architecture called Transformer, capable of
learning sequence dependencies over arbitrary-length contexts from
data rather than tabulation.

Transformers incorporate the entire sequence context
The Transformer model was first proposed for machine translation of
natural languages — for example, translation of English text to German.
The original Transformer model included an encoder to summarize
the source text and a decoder to produce text in the target language.
However, for many applications in natural language processing and

 Check for updates

http://www.nature.com/naturebiotechnology
https://doi.org/10.1038/s41587-024-02123-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41587-024-02123-4&domain=pdf

nature biotechnology Volume 42 | February 2024 | 200–202 | 201

Primer

another position j (typically measured by a dot product), the network
assigns high attention from i to j. The attention values for all pairs of
positions are collected into an attention matrix with dimension N × N.
Each position also emits a value vector. To update the sequence repre-
sentation, we calculate a weighted sum for each position i according
to the attention from i to all other positions j and their respective value
vectors. This process can be summarized using matrix multiplication as

Attention(Q,K,V) = softmax(QKT)V

where Q, K and V are matrices in which the ith rows are the query, key
and value vectors for each sequence position, respectively, and softmax
is a normalizing operation to ensure that the attention from each posi-
tion sums to 1; KT denotes the transpose of K. In practice, each attention
layer typically performs several independent attention operations in
parallel (referred to as multi-head attention), allowing the model to
learn multiple distinct connectivity patterns.

In practice, encoder-only and decoder-only models trained on
protein sequences have proven quite useful. Encoder-only models are

protein sequence modeling, these components are employed individu-
ally as encoder-only and decoder-only language models. The network
architecture is largely the same for both types of models (Fig. 1b). First,
the input sequence of amino acids is projected to a ‘hidden’ or latent
sequence by an input embedding layer. Next, a series of repeating
attention layers (see below) and feed-forward networks process the
sequence representation. Finally, a residue prediction layer projects
the processed sequence representation back to a predicted distribu-
tion over amino acids. Ultimately, the model is trained to fill in missing
amino acids either at the end of a sequence (decoder-only) or in the
middle of the sequence (encoder-only).

Among the key innovations of the Transformer is the use of atten-
tion to model global dependencies across sequences. Intuitively, the
attention mechanism enables models to learn which parts of sequence
context are relevant for a given prediction, much as a human might pay
attention to specific portions of an essay more than other portions when
asked a reading comprehension question. When a sequence representa-
tion is passed to an attention layer, each position emits a set of query
and key vectors. If the query from one position i matches the key from

Masked

E V Q L V S G G ...

E

Autoregressive

E V Q L V E S G

A

Residue prediction

Input embedding

E V Q L V E S G G ...

Feed-forward NN

Self-attention
× N

Decoder self-attention

Forward information �ow

Bidirectional information �ow

Encoder self-attention

TransformerObjective Attention

... C P E C ... H Q R T H ...

... H P D H ... C Q K S C ...

... H P D H ... C Q R T C ...

... C P E C ... H N R T H ...

a

c
d

e

b

LM

Generate

Designed sequences

E V Q L V E S G G ...

E V Q L V E S G G ...

E V Q Q V E A S S ...
Q V Q L V E V G S ...

E V Q L V E S G G ...

E V Q Q V E A S S ...
Q V Q L V E V G S ...

E V Q Q V E S G G ... LM

Mutate

Score

Accept or reject

Designed sequences

H
C

C

H

G ...

E V Q L V

Fig. 1 | Application of language models to protein design. a, The co-evolving zinc
finger functional residues are localized in spatial proximity but discontinuous
in sequence. b, Autoregressive and masked language models are typically based
on the Transformer architecture but use different types of attention for their
respective objectives. NN, neural network. c, An NTF2 protein dimer is shown
with side chain polar interactions indicated by red lines. In the magnified panels,

three potential amino acids are shown for one position. The most favorable
amino acid for this position is an asparagine forming two hydrogen bonds with
a nearby residue. With atomically precise tertiary understanding, models can
recapitulate such interactions. d, Schematic for designing protein sequences
through autoregressive generation with a language model (LM). e, Schematic for
optimizing sequences through Markov chain Monte Carlo sampling with an LM.

http://www.nature.com/naturebiotechnology

nature biotechnology Volume 42 | February 2024 | 200–202 | 202

Primer

generally employed for learning representations of sequences, which
are then adapted to various downstream tasks, while decoder-only
models are used for generation and scoring of protein sequences.

Autoregressive language models generate and
score proteins
Decoder models are sometimes referred to as autoregressive language
models because they are trained in a manner that allows them to gener-
ate sequences by iteratively predicting the next residue based on their
previous output (see also the Primer by Hsu et al.). They are trained
using a next-token prediction objective where the probability of the
next amino acid is informed by the entire preceding sequence:

P(S) =∏
N
i P(si|s<i)

We train the autoregressive model on a database of sequences to
predict P(si|s<i). To facilitate this task, causal masking is used to restrict
the attention operations throughout the model such that information
flows only from earlier positions to later, and not the reverse (Fig. 1b,
decoder self-attention). Prominent examples of autoregressive models
for protein sequences include UniRep, ProGen and ProtGPT2. Autore-
gressive models can generate diverse sequences adopting a wide vari-
ety of folds, and the predicted P(S) has also been shown to correlate
with the functional fitness of proteins. Sequences are generated by
iteratively sampling the next residue from the predicted distribution
P(si | s<i), with each sampled residue being appended to the sequence
to inform the following prediction. In a similar fashion, sequences can
be scored by computing the likelihood of a sequence P(S) according
to the model, which can be considered the likelihood of a given
sequence being produced by the evolutionary forces that gave rise to
the training data. These models have been trained on a wide variety of
datasets, including genomic, metagenomic and immune-repertoire
sequences. By modifying the training data composition, we can vary
the types of sequences generated by the model, as well as learn better
fitness predictors. This alignment between the training data and the
intended application of the model is a critical consideration that has
large impacts on performance.

Masked language models learn generalizable
representations
For encoder models, the training objective is modified to predict the
identities of residues throughout the sequence. Specifically, a subset
of residues is randomly selected and replaced with a special mask
token, and the model (termed a masked language model) is tasked
with predicting their identities. This objective can be expressed as
P(S−M) = ∏i∈MP(si|S−M), where M is a set of masked positions and −M
is the remaining unmasked positions. Unlike autoregressive models,
masked language models use bidirectional attention and consider all
residues throughout the sequence to make predictions (Fig. 1b, encoder
self-attention). Prominent examples of masked language models for
protein sequences include the ESM and ProtTrans families of models.

To perform well on the masked language modeling objective, mod-
els must learn a broad set protein features. For example, to predict the
identity of a masked residue, models are implicitly encouraged (that
is, without supervision) to build up secondary and tertiary structure
representations (Fig. 1c). The attention matrices from masked language
models have also been shown to directly encode protein structure, in
the form of residue–residue contact maps. Beyond structural features,

masked protein language models capture biophysical properties,
evolutionary context and alignment within families. Since they learn
generalizable representations, masked language models are often used
to encode a given protein for a multitude of downstream sequence pre-
diction tasks such as prediction of functional activity or interactions.

Generating and optimizing functional proteins
Madani et al. (2023) used a language model to generate functional
protein enzymes. An autoregressive language model with over
1 billion parameters was trained on over 280 million protein
sequences from more than 19,000 families. The training was aug-
mented with tags derived from a given protein’s associated metadata
to enable efficient learning and primarily provide a method for control-
lable — that is, conditional — sequence generation from desired input
arguments (for example, to generate a library of artificial sequences
that likely reside within a predefined protein family). A library of over
a million artificial sequences was generated by iteratively sampling
the next amino acid with the previously sampled residue context fed
as input to the model (Fig. 1d). A variety of decoding strategies for
language models have been developed to improve diversity and qual-
ity of sequences, including beam search, top-k sampling and nucleus
sampling. Each of these techniques reshapes the probability distribu-
tion at each step of autoregressive decoding, balancing computing cost
against the diversity and quality of generated sequences.

In contrast to de novo sequence generation, most protein engi-
neering efforts aim to optimize the functionality of a protein if access
to a high-fidelity assay is available. In this scenario, the starting point, or
parent sequence, is known and iteratively optimized through directed
evolution. Language models can be trained in a supervised setting with
sequence-label pairs derived from experimental data. Biswas et al.
(2021) used as little as 24 functionally assayed mutant sequences to
train a fitness predictor with a supervised language model. A Markov
chain Monte Carlo procedure was used to optimize the sequences of
green fluorescent protein and β-lactamase (Fig. 1e). In Markov chain
Monte Carlo modeling, random mutations are generated, the likeli-
hood of the resulting protein is scored by the PLM, and the proposed
mutation is accepted or rejected with a probability based on the like-
lihood. These in silico designed sequences have been shown to have
improved functionality in the wet lab.

Protein language models have proven effective at generating
functional proteins and facilitating optimization of a given protein.
Looking forward, controllable generation of functionally specified pro-
tein sequences remains an area of great promise. Current techniques
require fine-tuning on a curated set of natural proteins, which can be
challenging to assemble for poorly represented families or impossible
for novel functions. Removing this constraint may enable on-demand
generation of functional proteins.

Jeffrey A. Ruffolo     & Ali Madani 
Profluent Bio, Berkeley, CA, USA.

 e-mail: ali@profluent.bio

Published online: 15 February 2024

Competing interests
J.A.R. and A.M. are employed by Profluent Bio, Inc.

Additional information
Peer review information Nature Biotechnology thanks the anonymous reviewers for their
contribution to the peer review of this work.

http://www.nature.com/naturebiotechnology
https://doi.org/s41587-023-02115-w
https://doi.org/10.1038/s41587-022-01618-2
https://doi.org/10.1038/s41592-021-01100-y
https://doi.org/10.1038/s41592-021-01100-y
http://orcid.org/0000-0002-3385-9191
mailto:ali@profluent.bio

	Designing proteins with language models

	Evolution of protein sequences

	Foundations of protein language models

	Transformers incorporate the entire sequence context

	Autoregressive language models generate and score proteins

	Masked language models learn generalizable representations

	Generating and optimizing functional proteins

	Fig. 1 Application of language models to protein design.

