Ant:Now For Something -
Completely:Different

A Python programming primer for biologists

(Named after Monty Python’s Flying Circus &
designed to be fun to use)

Systems Biology/Bioinformatics
Edward Marcotte, Univ of Texas at Austin

In bioinformatics, you often want to do completely new analyses.
Having the ability to program a computer opens all sorts of
research opportunities. Plus, it’s fun!

Most bioinformatics researchers use a scripting language, such as
Python, Perl, or R, rather than a compiled language like C++

These languages are not the fastest, not the slowest, nor best, nor
worst languages, but they’re easy to learn and write, and for
many reasons, are well-suited to bioinformatics.

We'll spend the next 2 lectures introducing Python to give you a
sense for the language and help introduce the basics of
algorithms.

Python documentation: http://www.python.org/doc/
& tips: http://www.tutorialspoint.com/python

Good introductory Python books:

* Learning Python, Mark Lutz & David Ascher, O’Reilly Media

* Bioinformatics Programming Using Python: Practical
Programming for Biological Data, Mitchell Model, O'Reilly

Good intro video (from a 2 day intro class at Google):
* https://www.youtube.com/playlist?list=PLC8825D0450647509

Practical Python, a self-paced online intro course:
* https://dabeaz-course.github.io/practical-python/

An online Python tutor with a nice interactive code viewer:
* http://www.pythontutor.com/

By now, you should have installed Python on your computer.
If you’re using Anaconda/Jupyter, it runs in a web browser:

::' Jupyter

Select items to perform actions on them,

Clo [~ |my

T Jupyter Untitled2 vest chespoint s few seconds sgo. (u

File Edit View Inset Cell Kemel

B |+ |3 @& B+ + PR |8 C W |cose v =

N

nseved changes]

Launch a new
notebook

A Logout

Trusted |Python 2 ©

You can write your commands and programs here
and they will be evaluated when you press Shift-Enter
(or other options from the Cell pulldown menu)

Or if you installed IDLE by following the instructions in Rosalind
Homework problem #1:

Launch IDLE:

- o x

9306, Dec 18 2019, 22:39:24) [MSC v.1316 32 bit (In

£5" or "license()" for more information

You can test out commands here
to make sure they work...

...but to actually write your programs,
open a new window.

[untitled - o X
File Edit Format Run Options Window Help

This window will serve as a command line
interface & display your program output.

This window will serve as a text editor for

programming.

Let’s start with some simple programs in Python:

A very simple example is:
print("Hello, future bioinformatician!") # print out the greeting

Run the program. In Jupyter, you can just type Shift-Enter & the
output will appear below this cell of the notebook.

The output looks like this:

Hello, future bioinformatician!

A slightly more sophisticated version:

name = input("What is your name? ") # asks a question and saves the answer
#in the variable "name"
print("Hello, future bioinformatician " + name + "1") # print out the greeting

When you run it this time, the output looks like:

What is your name?

If you type in your name, followed by the enter key, the program will
print:

Hello, future bioinformatician Alice!

GENERAL CONCEPTS

Names, numbers, words, etc. are stored as variables.

Variables in Python can be named essentially anything except
words Python uses as command.

For example:

BobsSocialSecurityNumber = 456249685
mole = 6.022e-23
password = "7 infinite fields of blue"

N\

Note that strings of letters and/or numbers
are in quotes, unlike numerical values.

LISTS

Groups of variables can be stored as lists.
A list is a numbered series of values,
like a vector, an array, or a matrix.

Lists are variables, so you can name them just as you would name
any other variable.

Individual elements of the list can be referred to using [] notation:

The list nucleotides might contain the elements
nucleotides[0] = "A"
nucleotides[1] ="C"
nucleotides[2] = "G"
nucleotides[3] ="T"

(Notice the numbering starts from zero. This is standard in Python.)

DICTIONARIES

A VERY useful variation on lists is called a dictionary or dict
(sometimes also called a hash).

- Groups of values indexed not with numbers (although they could
be) but with other values.

Individual hash elements are accessed like array elements:

For example, we could store the genetic code in a hash named
codons, which might contain 64 entries, one for each codon, e.g.

codons["ATG"] = "Methionine"
codons["TAG"] = "Stop codon"
etc...

Now, for some control over what happens in programs.

There are two very important ways to control the logical flow of
your programs:

if statements
and
for loops

There are some other ways too, but this will get you going for now.

if statements

if dnaTriplet == "ATG":
Start translating here. We're not going to write this part
since we’re really just learning about IF statements

else:
Read another codon

Python cares about the white space (tabs & spaces) you use!
This is how it knows where the conditional actions that follow
begin and end. These conditional steps must always be
indented by the same number of spaces (e.g., 4).

Pick one (e.g. a tab or 4 spaces) and always be consistent.

Note: in the sense of performing a
comparison, not as in setting a value.

== equals

1= is not equal to

< is less than

> is greater than

<= is less than or equal to
>= is greater than or equal to

Can nest these using parentheses and Boolean operations, such as
and, not, or or, e.g.:

if dnaTriplet == "TAA" or dnaTriplet == "TAG" or dnaTriplet == "TGA":
print("Reached stop codon")

for loops

Often, we’d like to perform the same command repeatedly or with
slight variations.

For example, to calculate the mean value of the number in an array,
we might try:

Take each value in the array in turn.
Add each value to a running sum.
Divide the total by the number of values.

In Python, you could write this as:

grades =[93, 95, 87, 63, 75] # create a list of grades
sum=0.0 # variable to store the sum

In general, Python cares whether numbers are

il integers or floating point (also long integers
and complex numbers).

You can tell Python you want floating point by

¢ defining your variables accordingly

(e.g., X=1.0 versus X = 1)

for grade in grades:
sum =sum + grade

mean =sum /5 # now calculate the average grade

print ("The average grade is ",mean) # print the results

Python 2 | Python 3

>>>2/3|>>>2/3
0 0.666666

In general, Python will perform most mathematical operations, e.g.

multiplication (A *B)

division (A/B)

exponentiation (A ** B)
etc.

There are lots of advanced mathematical capabilities you can explore
later on.

READING FILES
You can use a for loop to read text files line by line:

I Stands for “read”

count=0 # Deflare a variable to count lines
file = open("mygenomefile", "r") # Open a file for reading (r)
for raw_line in file: # Loop through each line in the file

line = raw_line.rstrip("\r\n") <4 \r = carriage return
words = line.split(" ") # splan 7 newline list of words

Print the appropriate word:
print ("The first word of line {0} of the file is {1}".format(count, words[0])
count +=1 # shoTthand for cout = count + 1

fiIe.cIose(| Increment counter by 1 ISt, close th

rint ("Read in {0} lines\n".format(count
P (O \ ()) Placeholders (e.g., {0}) in the print

statement indicate variables listed
at the end of the line after the
format command

Note: Python expects the file to be in your working directoryortracyoorgrvereaTomrpaTr T

WRITING FILES
Same as reading files, but use "w" for ‘write’:

file = open("test_file", "w"

file.write("Hello!\n")

file.write("Goodbye!\n")

file.close() # close the file as you did before

Unless you specify otherwise, you can find the new text file you created (test_file) in the
default Python directory on your computer. In Jupyter, you should see now it appear in the
Jupyter home page directory.

PUTTING IT ALL TOGETHER

seq_filename = "EcoliGenome.txt"
total_length = @
nucleotide = {} # create an empty dictionary

seq_file = open(seq_filename, "r")
for raw_line in seq file:
line = raw_line.rstrip("\r\n")
length = len(line) # Python function to calculate the length of a string
for nuc in line:
if nuc not in nucleotide:
nucleotide[nuc] = 1
else:
nucleotide[nuc] += 1
total length += length

seq_file.close()

for n in nucleotide.keys():
fraction = 180.8 * nucleotide[n] / total_length

print ("The nucleotide {@} occurs {1} times, or {2:.2f} %".format(n, nucleotide[n], fraction))

10

Let’s choose the input DNA sequence in the file to be the genome of
E. coli, available the class web site (& originally from the Entrez
genomes web site)

The format of the file is ~¥66,000 lines of A’s, C’s, G’s and T’s:
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTC
TGATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGG
TCACTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTAC
ACAACATCCATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGT

etc...

Running the program produces the output:

The nucleotide A occurs 1142742 times, or 24.62 %
The nucleotide G occurs 1177437 times, or 25.37 %
The nucleotide C occurs 1180091 times, or 25.42 %
The nucleotide T occurs 1141382 times, or 24.59 %

So, now we know that the four nucleotides are present in roughly
equal numbers in the E. coli genome.

One really important aspect of Python is that there are
literally thousands of existing libraries of pre-written functions
that you can use to make life easier

Some examples you might use at some point are:

Numpy for numerical analyses (https://numpy.org/)

Scipy for scientific computation (https://scipy.org/)

BioPython for biological data analysis (https://biopython.org/)
Matplotlib for data visualization (https://matplotlib.org/)
Scikit-image for image processing (https://scikit-image.org/)

Many are preinstalled with Python (like numpy and scipy),
but if not, open the Anaconda Powershell Prompt & type:

pip install biopython

That’s it! Now you should have access to BioPython

11

Let’s use BioPython to rewrite our last program:

from Bio import SeqIO # This imports the BioPython Llibrary into our program
nucleotide = {"'A': ©, 'C': @, 'T': @, 'G': @} # Doing it a bit differently here by pre-specifying the nuc’s
seq_file = open("NewEcoli_genome.fasta", "r") # Open a fasta format sequence file

for seq_record in SeqlO.parse(seq file, "fasta"): # then parse the file using BioPython to

assign each consecutive record inside the file, i.e. each full
sequence that appears after a line starting with a ">" symbol,
to a new BioPython "sequence"-style variable named seq_record
sequence = seq_record.seq # BioPython sequence variables have a few special functions, such as
total_length = len(sequence) # using variablename.seq to get the amino acid or nucleotide sequence

for n in nucleotide.keys():
count = sequence.count(n) # Python strings have a nice .count command to count characters, i.e. nucleotides here
fraction = 100.0 * count / total_length
print (f"The nucleotide {n} occurs {count} times, or {fraction:.2f} %")

seq_file.close()

The nucleotide A occurs 1142742 times, or 24.62 %
The nucleotide C occurs 1186891 times, or 25.42 %
The nucleotide T occurs 1141382 times, or 24.59 %
The nucleotide G occurs 1177437 times, or 25.37 %

We get the same answer, but without having to worry about parsing lines, newlines, etc.,
& this will make life a /ot easier for dealing with files with 1000’s of protein or DNA sequences

Finally, let’s give you a new programming super-power with ChatGPT

ChatGPT (& other Al chatbots like Claude, etc) is (1) truly amazing and powerful, and
(2) a pathological liar. Caveat emptor.

Try it out, but don’t trust it implicitly. It will give you an astonishing leg up with your
programming, with the caveat that you have to check every single piece of code or
fact supplied by it. It’s like getting programming help from a gifted psychopath.

@OpenAI AT RESEARCH BLOG ABoUT

ChatGPT: Optimizing
Language Models
for Dialogue

We've trained a model called ChatGPT which
interacts in a conversational way. The
dialogue format makes it possible for
ChatGPT to answer followup questions,
admit its mistakes, challenge incorrect
premises, and reject inappropriate requests.
ChatGPT is a sibling model to InstructGPT,
which is trained to follow an instructionin a
prompt and provide a detailed response.

TRY CHATGPT 7

https://chatgpt.com/

12

At this stage, | don’t want you to rely on it, especially if you’re just
getting started and don’t know enough to recognize when it’s wrong.
Please don’t ask it write full programs for you or answer homework
problems. Later in the semester, when you starting learning enough
basic Python to judge it more effectively, we’ll use Al much more.

Chances of being misled

a
catastrophically by the Al W

Complete Your own personal Expert
beginner coding experience

However, a few things you might find helpful at this early stage:

(1) Ask it to explain a line of code to you
- “What does this command do?”

(2) Ask it to explain programming syntax, suggest an alternative syntax,
or a more compact way to perform the same task

(3) Debugging, debugging, debugging.
-> Give ChatGPT your code and ask it to debug it

Just as an example, here’s what chatGPT offers if we give it the example
code for reading a file from 8 slides back.

13

E Can you explain how the following Python code works?

count =0 # Declare a variable to count lines
file = open("mygenomefile”, 'r") # Open a file for reading (1)
for raw_line in file: # Loop through each line in the file
line = raw_line.rstrip("\r\n") # Remove newline
words = line.split(” ") # split the line into a list of words

Print the appropriate word:
print ("The first word of line {0} of the file is {1}".format(count, words[0]))
count += 1 # shorthand for count = count + 1

file close() # Last, close the file.

print ("Read in {0} lines\n".format{count))

This Python code reads a file called “mygenomefile” line by line, and for each line it does the

following:

Removes the newline characters ("\r\n") from the end of the line using “rstrip()".

N

Splits the line into a list of words using ~split().

. Prints the first word of the line, along with the line number (starting from 0.

4. Increments the ~count™ variable by 1.

After all the lines have been processed, the code closes the file and prints the total number

of lines read.

Here is a breakdown of each line of the code:

etc...
(for
several

pages)

E Can you write a more compact version of the program?

Certainly! Here is a more compact version of the program that achieves the same result:

count

line f:

words = line.split()
t(
count +=

Here is a breakdown of the changes made:

* The “open()” function is called using the “with* statement, which automatically closes
the file after the block of code is executed.

* The “raw_line’ variable is not needed, so it was removed and the ~1ine™ variable was
used directly.

* The “rstrip()” method is not needed, because the " for™ loop already removes newline
characters.

* The *format()" method is replaced with f-strings, which provide a more concise and

readable way to insert values into strings.

I hope this helps! Let me know if you have any questions.

14

A note about proper use and attribution of other people’s code:

Most code is either commercial (which you usually can’t access or redistribute) or, if it’s in the
public domain, available under a license, e.g. as for most of the code on github.

Common open source licenses include CC-BY-4.0, BSD, and the MIT license (my own lab often
uses the MIT license). These are very permissive and allow you to use the code (with
attribution) and license your own project in turn however you like. Others are for non-
commercial use only, and still others are strong “copyleft” licenses (like GPL licenses) that
require you to use the identical license for any code you distribute as was on the code you
reused.

Be absolutely sure to acknowledge code that you use & check that you're licensed to use it
(especially if you go work in industry after grad school!)

You can read more about software licenses here:
https://opensource.guide/legal/#which-open-source-license-is-appropriate-for-my-project
& specifically for Github:
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-
features/customizing-your-repository/licensing-a-repository

Myth vs. Reality
In bioinformatics, 95% of your 95% of your time is spent converting
time is spent on serious coding gene IDs from one format to another.

OMG, can’t they pick a convention!?

Why learn to code at all? ChatGPT lies (misleads?) pretty often.

Doesn’t Al replace humans? How will you know?

Once you’ve got data, just run a Computational research usually takes

few lines of code and it’s analyzed. longer than the data collection.
Boom!

With bioinformatics, | can just Mostly true!

dream up hypotheses about genes
and test them with public data

