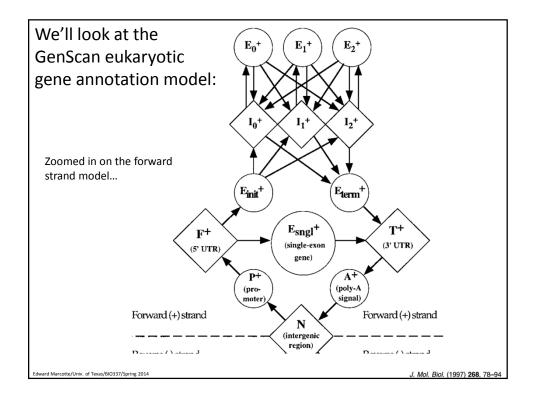
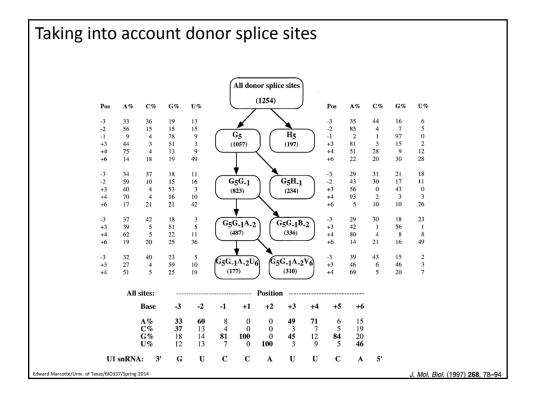
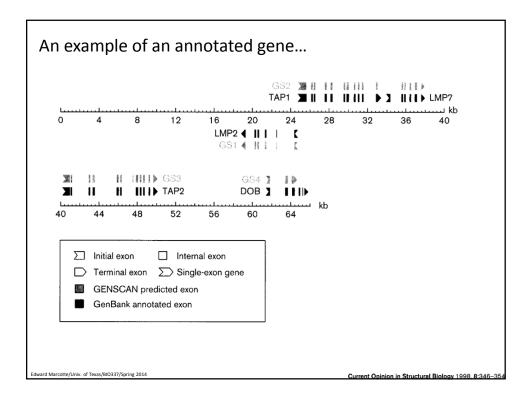
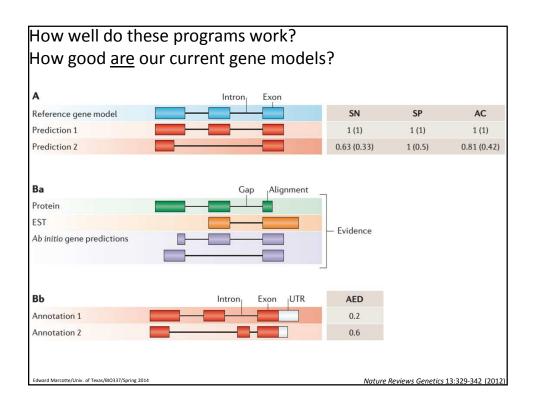

Model for a ribosome binding site (based on ~300 known RBS's)

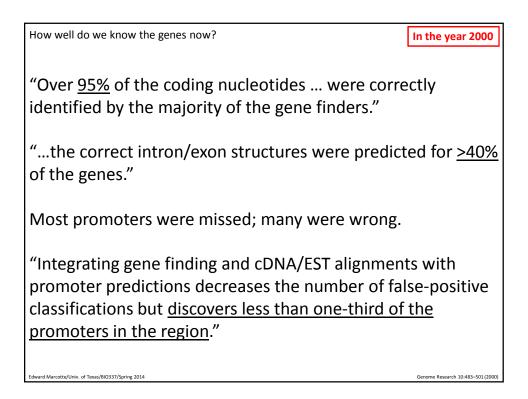

1 2 3 4 5 0.161 0.050 0.012 0.071 0.115
0.161 0.050 0.012 0.071 0.115
0.077 0.037 0.012 0.025 0.046
0.681 0.105 0.015 0.861 0.164
0.077 0.808 0.960 0.043 0.659

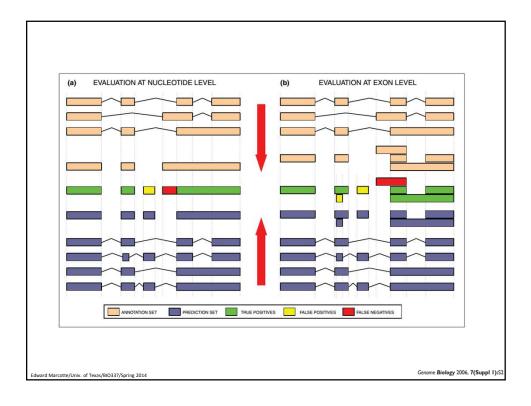
How well does it do on well-characterized genomes?							
Genome	Genes annotated	Genes predicted	Exact prediction (%)	Missing genes (%)	Wrong genes (%)		
A.fulgidus	2407	2530	73.1	10.8 (2.0)	15.1		
B.subtilis	4101	4384	77.5	3.6 (2.8)	9.8		
E.coli	4288	4440	75.4	5.0 (2.7)	8.2		
H.influenzae	1718	1840	86.7	3.8 (3.2)	10.2		
H.pylori	1566	1612	79.7	6.0 (4.4)	8.7		
M.genitalium	467	509	78.4	9.9 (1.7)	17.3		
M.jannaschii	1680	1841	72.7	4.6 (0.8)	12.9		
M.pneumoniae	678	734	70.1	7.8 (4.1)	13.6		
M.thermoauthotrophicum	1869	1944	70.9	5.0 (3.5)	8.6		
Synechocystis	3169	3360	89.6	4.0 (1.5)	9.4		
Averaged	21 943	23 194	78.1	5.4 (2.7)	10.4		
Marcotte/Univ. of Texas/BI0337/Spring 2014 But this was a long time age							

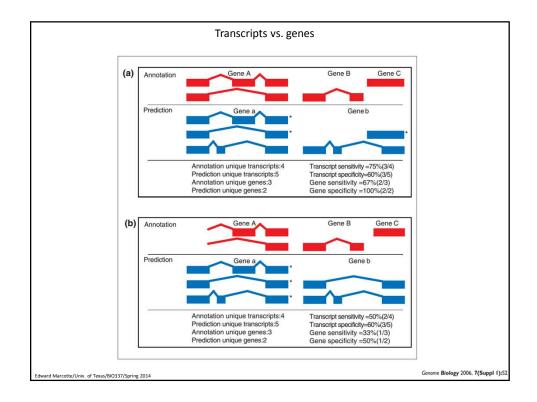


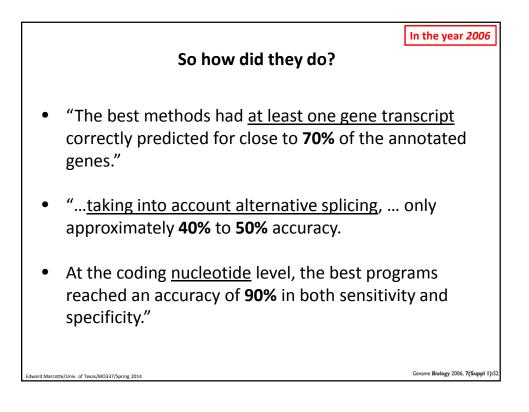


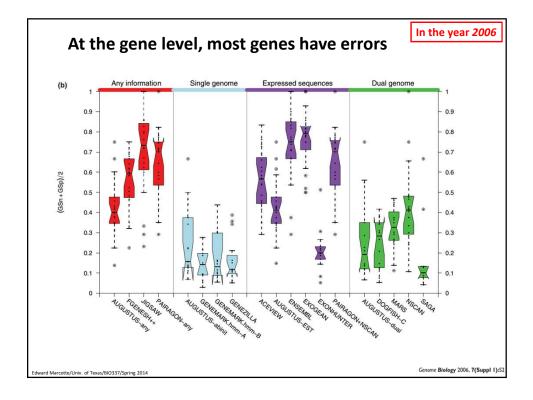


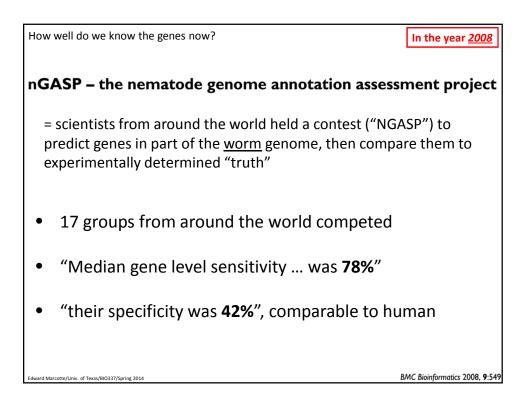

How well do these programs work? We can measure how well an algorithm works using these:								
		True a						
		Positive	Negative					
Algorithm	Positive	True positive	False positive					
predicts:	Negative	False negative	True negative					
		ecificity = T nsitivity = T						
Edward Marcotte/Univ. of Texas/BIO337/Spring 2014			Natu	re Reviews Genetics 13:329-342 (2012)				

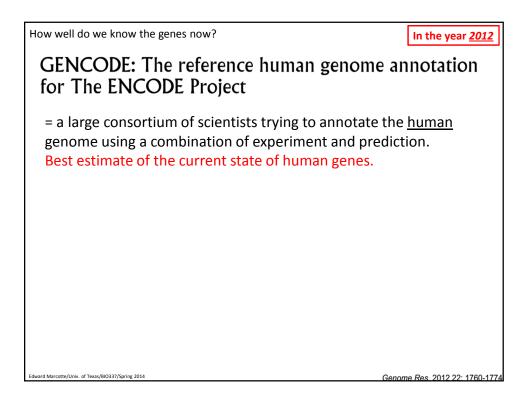

		Accu	racy	Accu	racy
		per b	base	per e	exon
Program	Sequences	Sn	Sp	Sn	Sp
GENSCAN	570 (8)	0.93	0.93	0.78	0.81
FGENEH	569 (22)	0.77	0.88	0.61	0.64
GeneID	570 (2)	0.63	0.81	0.44	0.46
Genie	570 (0)	0.76	0.77	0.55	0.48
GenLang	570 (30)	0.72	0.79	0.51	0.52
GeneParser2	562 (0)	0.66	0.79	0.35	0.40
GRAIL2	570 (23)	0.72	0.87	0.36	0.43
SORFIND	561 (0)	0.71	0.85	0.42	0.47
Xpound	570 (28)	0.61	0.87	0.15	0.18
GeneID+	478 (1)	0.91	0.91	0.73	0.70
GeneParser3	478 (1)	0.86	0.91	0.56	0.58

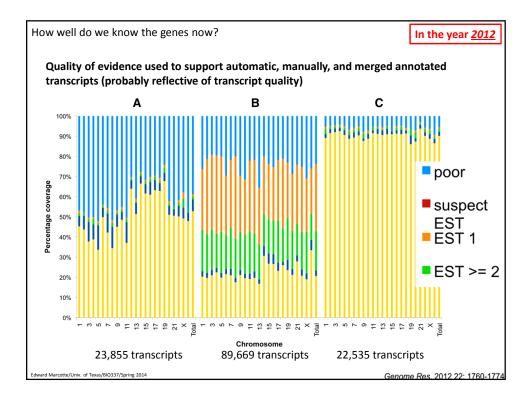

•	e can do better with r	nore dat	ta, sucl	h as m	nRNA
nd conservat	tion				
Box 2 Gene predictio	n versus gene annotation				
Gene prediction (SNAP)		ŀ		H	
mRNA or EST evidence (Exonerate)				H	
Protein evidence (BLASTX))-[]-[
Gene annotation resulting from synthesizing all available evidence (two alternative splice forms)	Start codon			Â	Stop codon
	229,500 229,000 228,500 5'UTR	228,000 bp	227,500	227,000	226,500 3′UTR
ward Marcotte/Univ. of Texas/BIO337/Sprir	ig 2014		Nature Rev	views Genetic	s 13:329-342 (20)

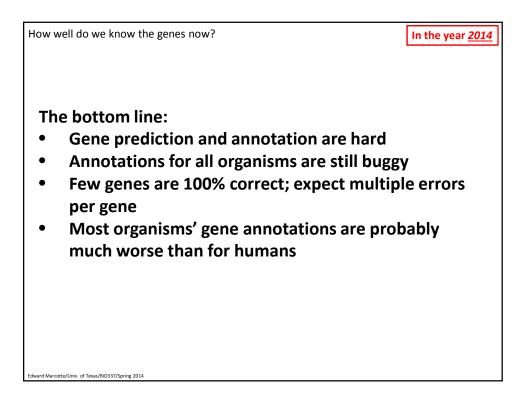

0	nes now?						h	n the year 2
Genom in Drosc					sess	sme	ent	
scientists from arc	ound the	wor	ld hel	d a co	ntest	t ("G	iASP") to
redict genes in par	t of the f	flv ge	enome	e. the	n con	npai	e the	em to
				,			0 1110	
xperimentally dete	inneu	เานเ	.11					
Table 1. Participating	Groups and Associated	Annotation	Categories					
	Program name	Gene finding	Promoter recognition	EST/c DNA alignment	Protein similarity	Repeat	Gene function	
Mural et al. Oakridge, US Parra et al.	GRAIL	x		x			x	
Barcelona, ES Krogh	GeneID	x						
Copenhagen, DK	HMMGene	x						
Henikoff et al.								
	BLOCKS	x			х		x	
Henikoff et al. Seattle, US Solovyev et al. Sanger, UK Gaasterland et al. Rockefeller, US		x x	x	x	x	x	x x	
Henikoff et al. Seattle, US Solovyev et al. Sanger, UK Gaasterland et al. Rockefeller, US Benson et al. Mount Sinai, US	FGenes		x	x	x	x x		
Henikoff et al. Seattle, US Solovyev et al. Sanger, UK Gaasterland et al. Rockefeller, US Benson et al.	FGenes MAGPIE		x x	x	x			
Henikoff et al. Seattle, US Solovyev et al. Sanger, UK Gaasterland et al. Rockefeller, US Benson et al. Werner et al. Munich, CER Ohler et al. Nuremberg, CER Binney	FGenes MAGPIE TRF CoreInspector MCPromoter			x			x	
Henñoff et al. Seartic, US Solovyev et al Casatériand et al. Rockefeller, US Benson et al. Worner et al. Wiener et al. Ohier et al. Nuemberg, CER	FGenes MAGPIE TRF CoreInspector		x	x	x			

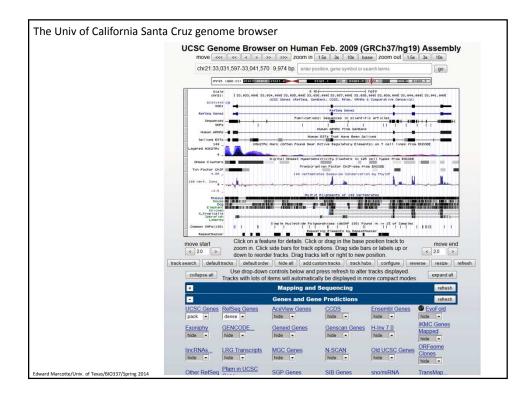


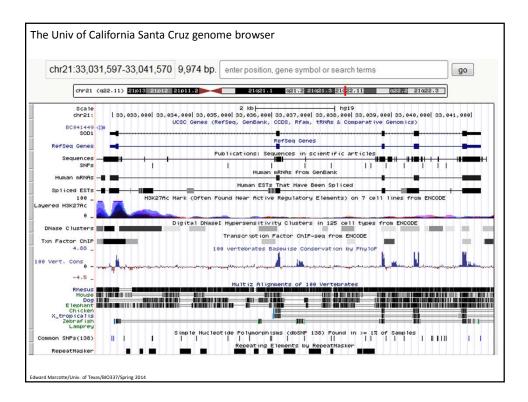

How well do we kno	Table 3				In the year 2006
	Summary of programs used to	5			
EGASP: the Project	Submission category	Program	Affiliation	Reference	Assessment
	I (AUGUSTUS-any) 2 (AUGUSTUS-abinit) 3 (AUGUSTUS-EST) 4 (AUGUSTUS-dual)	AUGUSTUS	Georg-August-Universität, Göttingen	[58]	
	1	FGENESH++	Softberry Inc.	[56]	
	.1	JIGSAW	The Institute for Genomic Research (TIGR)	[59]	
= scientists f	I (PAIRAGON-any) 3 (PAIRAGON+NSCAN_EST)	PAIRAGON and NSCAN_EST	Washington University, Saint Louis (WUSTL)	[57]	SP") to
It is a second	2	GENEMARK.hmm	Georgia Institute of Technology	[60]	and a long to a second
predict gene	2	GENEZILLA	TIGR	[81]	are them to
	3	ACEVIEW	National Center for Biotechnology Information (NCBI)	[52]	5 (E. E. E. E. 197
experimenta	3	ENSEMBL	The Wellcome Trust Sanger Institute (WTSI) and European Bioinformatics Institute (EBI)	[64]	
	3 We	EXOGEAN	Ecole Normale Superieure, Paris	[62]	
	3	EXONHUNTER	University of Waterloo	[63]	
18 groups	 discussed 	ACESCAN*	Salk Institute	[82]	
	4	DOGFISH-C	wtsi	[67]	
	 these 	NSCAN	WUSTL	[57]	
	4	SAGA	University of California at Berkeley	[66]	
36 programs	 earlier 	MARS	WUSTL - EBI	[65]	
	5	GENEID-U12	Institut Municipal d'Investigació	-	
	5	SGP2-U12	Mèdica, Barcelona		
	6	ASPICI	Università degli Studi di Milano	[83]	
	6 (AUGUSTUS-exon)	AUGUSTUS	Georg-August-Universität, Göttingen	[58]	
	6	CSTMINER ¹	Università degli Studi di Milano	[84]	
	6	DOGFISH-C-E ⁵	WTSI	[67]	
	6	SPIDA	EBI	[85]	
	6	UNCOVERI	Duke University	[86]	
	i .	CCD5Gene	UCSC tracks [7]	[55]	
	4	KNOWNGene		[54]	
	1	REFSEQ (REFGene)		[4]	
	2	GENEID		[19]	
	2	GENSCAN		[18]	
	3	ACEMBLY		[52]	
	3	ECGene		[53]	
	3	ENSEMBL (ENSGene)		[6]	
	3	MGCGene		[5]	
	4	SGP2		[9]	
	4	TWINSCAN		[12,13]	
		CODING 20050607	GENCODE annotation	[33]	
	2	GENES 20050607			Genome Biology 2006, 7(Suppl










For example:	In the year <u>2008</u>
14821k 14822k 14823k 14824k 14825k 14826k 14827k 14828k	4833k 14834k 14835k
EVGENESH PGENESH CRAIG CRAI	
	MC Bioinformatics 2008, 9:549

