Functional genomics
+

Data mining

BI0337 Systems Biology / Bioinformatics — Spring 2014
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Functional genomics

= field that attempts to use the vast data produced by
genomic projects (e.g. genome sequencing projects)
to describe gene (and protein) functions and
interactions.

Focuses on dynamic aspects, e.g. transcription,
translation, and protein—protein interactions, as
opposed to static aspects of the genome such as DNA
sequence or structures.
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Functional genomics
+

Data mining

= field that attempts to computationally discover
patterns in large data sets
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We’re going to first learn
about clustering algorithms
& classifiers

We’re going to first learn
about clustering algorithms
& classifiers

Clustering = task of grouping a set of objects in such a
way that objects in the same group (a cluster) are more
similar (in some sense) to each other than to those in
other groups (clusters).

Adapted from Wikipedig




We’re going to first learn
about clustering algorithms
& classifiers

Classification = task of categorizing a new observation,
on the basis of a training set of data with observations
(or instances) whose categories are known

Adapted from Wikipedig

Let’s motivate this with an example:

Distinct types of diffuse large
B-cell lymphoma identified
by gene expression profiling

Ash A. Alizadeh'?, Michael B. Eisen>**, R. Eric Davis®, Chi Ma®, Izidore S. Lossos®, Andreas Rosenwald®, Jennifer C. Boldrick’,
Hajeer Sabet®, Truc Tran®, Xin Yu®, John I. Powell’, Liming Yang’, Gerald E. Marti®, Troy Moore®, James Hudson Jr°, Lisheng Lu'’,
David B. Lewis', Robert Tibshirani"', Gavin Sherlock®, Wing C. Chan'2, Timothy C. Greiner'?, Dennis D. Weisenburger'?,

James 0. Anniiaqe‘a, Roger Warnke'*, Ronald Levy®, Wyndham Wilson'®, Michael R. Grever'®, John C. Byrd'’, David Botstein®,
Patrick 0. Brown''® & Louis M. Staudt®
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“Diffuse large B-cell lymphoma (DLBCL), the most
common subtype of non-Hodgkin's lymphoma ... is
one disease in which attempts to define subgroups on
the basis of morphology have largely failed...”

“DLBCL ... is clinically heterogeneous:

40% of patients respond well to current therapy and
have prolonged survival, whereas the remainder
succumb to the disease.

We proposed that this variability in natural history
reflects unrecognized molecular heterogeneity in the
tumours.”

Nature 2000
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Refresher: Profiling mRNA expression
with DNA microarrays

DNA molecules are attached to ...probed with a labeled (usually
a solid substrate, then... fluorescent) DNA sequence

* /

labelled target (sample)
fixed probes

J

different features
(e.qg. bind different genes)

Fully complementary Partially complementary
strands bind strongly strands bind weakly
Wikipedia
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with DNA microarrays
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Refresher: Profiling mRNA expression
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Refresher: Profiling mRNA expression
with DNA microarrays

e Hybridization
> = - and washes

Filter

laser - Scanning

Note that some

—
arrays are 1-color, { e Normalization
B ; .
some are 2. Why? i 4“ intensity  and analysis
& ratio
Edward Marcotte, /Univ. of Texas) /810337 /Spring 2014
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Back to diffuse large B-cell lymphoma...

96 patient biopsies
(normal and malignant lymphocyte samples)

v

Extract mRNA from each sample

v

Perform DNA microarray experiment on each to
measure mRNA abundances (~1.8 million total gene
expression measurements)

Cluster samples by their expression patterns

Edward Marcotte/Univ. of Texas/BI0337/Spring 2014 Nature 2000

Red = high expression
Green = low

(yes, I know it’s exactly
backwards from what
you might expect.)

Germinal Centrg

Hierarchical R s
clustering of |”
the gene
expression
data |
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Prolifer-

Genes can be ation
found whose
expression is
specific to _
germinal cenes
centre B cells,
and different
across DLBCL’s
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We can break up the DLBCL’s according the
germinal B-cell specific gene expression:

Activated B-like DLBCL
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What good is this? These molecular
phenotypes predict clinical survival.

78— All patients_________]

Kaplan-Meier plot
of patient survival
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21 patients, 16 deaths
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Nature 2000
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What good is this? These molecular
phenotypes predict clinical survival.
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Gene expression, and other molecular
measurements, provide far deeper
phenotypes for cells, tissues, and
organisms than traditional measurements

Now, tons of work using these approaches
to diagnose specific forms of disease, as
well as to discover functions of genes and
many other applications

So, how does clustering work?

First, let’s think about the data, e.g. as for gene expression.
From one sample, using DNA microarrays or RNA-seq, we get:

Expression level of gene 1
4 | Expression level of gene 2

Expression level of gene 3 i.e., a vector of
' N numbers

Expression level of gene i

N genes

v

Expression level of gene N

For yeast, N~ 6,000
For human, N ~ 22,000

larcotte/Univ. of Texas/BIO337/Spring 2014
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So, how does clustering work?

Every additional sample adds another column, giving us a matrix
of data:

M samples
Gene 1,samplel | ... | Genel,samplej | .. | Gene 1, sample M
4 | Gene 2,samplel | ... | Gene2,samplej | .. | Gene 2, sample M
Gene 3,sample1 | ... | Gene3,samplej | .. | Gene 3, sample M
7}
(]
c
g-’n . ) )
> Genei,samplel | ... | Genei, samplej ... | Genei, sample M
Gene N,sample1| ... | Gene N, samplej | .. | Gene N, sample M

For yeast, N~ 6,000
For human, N ~ 22,000

Edward Marcotte/Univ. of Texas/BI0337/Spring 2014

i.e., a matrix of N
X M numbers

So, how does clustering work?

M samples

s
v

| | Gene 1, sample1 | .. | Gene1,samplej | .. | Gene 1, sample M |}

4 | Gene 2,samplel [ | Gene 2,samplej | .. | Gene 2, sample M
M
o Every gene has a feature vector
o | | of M numbers associated with it
un I—
> Genel, sample 1 | .. | Genel, sample) .. | Genel, sample M
Y éene N,sample 1| .. éene N, samplej | .. éene N, sample M
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N genes

So, how does clustering work?

M samples

<
<«

Gene 1, sample 1
Gene 2, sample 1

Gene 1, samplej
Gene 2, sample j

Similarly, every
sample has a feature

G

vector of N numbers

associated with it

Gene N, sample 1

Gene N, sample j

Gene 1, sample M
Gene 2, sample M
Gene 3, sample M

Gene i, sample M

Gene N, sample M

So, how does clustering work?

M. samnlas

The first clustering method we’ll learn
about simply groups the objects
(samples or genes) in a hierarchy by the
similarity of their feature vectors.

Gene N, sample 1

Gene N, sample j

Gene N, sample M

Edward Marcotte/Univ. of Texas/BIO337/Spring 2014

3/25/2014

12



A hierarchical clustering algorithm

Start with each object in its own cluster

Until there is only one cluster left, repeat:
Among the current clusters, find the two
most similar clusters
Merge those two clusters into one

We can choose our measure of similarity
and how we merge the clusters

Hierarchical clustering
Conceptually
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(grouped by closeness)

Wikipedia
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We'll need to measure the similarity
between feature vectors. Here are a few
(of many) common distance measures

used in clustering.

Names Formula

Euclidean distance ”a - b“2 = Z((l,‘ - bi)2
i
Manhattan distance ”tl - b”l = Z I(l,‘ — bxl
1
a-b
cosine similarity
llall |5l

Wikipedia

Back to the
B cell
lymphoma
example

| E'

=
[E

Samples

Hierarchical clustering

Similarity measure = Pearson correlation
coefficient between gene expression vectors

Similarity between clusters = average similarity
between individual elements of each cluster

(also called average linkage clustering)
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2.
3.

4.

K-means clustering is a common
alternative clustering approach

*mainly because it’s easy and can be quite fast!*

The basic algorithm:
1.

Pick a number (k) of cluster centers

Assign each gene to its nearest cluster center

Move each cluster center to the mean of its
assigned genes

Repeat steps 2 & 3 until convergence

See the K-means example posted on the web site

Edward Marcotte/Univ. of Texas/BI0337/Spring 2014

Experiment 2

A 2-dimensional example

Experiment 2
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Nature Biotech 23(12):1499-1501 (2005)
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A 2-dimensional example: hierarchical

Edward Marcotte/Univ. of Texas/BIO337/Spring 2014 Nature Biotech 23(12):1499-1501 (2005)

A 2-dimensional example: k-means

Edward Marcotte/Univ. of Texas/BI0337/Spring 2014 Nature Biotech 23(12)1499—1501 (2005)
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A 2-dimensional example: k-means

Ll i =
Decision boundaries|i. « ¢ | * :
e

* i

* I

Marcotte/Univ. of Texas/BI0337/Spring 2014 Nature Biotech 23(12):1499-1501 (2005)

Some features of K-means clustering

* Depending on how you seed the clusters, it may
be stochastic. You may not get the same answer
every time you run it.

e Every data point ends up in exactly 1 cluster

(so-called hard clustering)

* Not necessarily obvious how to choose k

e Great example of something we’ll meet again:
Expectation-Maximization (E-M) algorithms

EM algorithms alternate between assigning data to
models (here, assigning points to clusters) and
updating the models (calculating new centroids)

Marcotte/Univ. of Texas/BIO337/Spring 2014
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Some features of K-means clustering

* Depending on how you seed the clusters, it may
be stochastic. You may not get the same answer

every time you run it.

. Gvery data point ends up in exactly 1 cluste

(so-called hard clustering)

* Not necessarily obvio's how to choose k

)

Why is this good or bad?

EM How could we change it?

mg@

UPCatmTg TrTeE TTTOUETS (CATCUTatITg 1Tevw Cerra oras

Marcotte/Univ. of Texas/BIO337/Spring 2014

Let’s think about this aspect for a minute.

N.

3 to

k-means

The basic algorithm:
1. Pick a number (k) of cluster centers

2. Assign each gene to its nearest cluster center

3. Move each cluster center to the mean of its

assigned genes
4. Repeat steps 2 & 3 until convergence

Edward Marcotte/Univ. of Texas/BI0337/Spring 2014
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Fuzzy k-means

The basic algorithm:

1.
2.

3.

4.

Choose k. Randomly assign cluster centers.
Fractionally assign each gene to each cluster:
e.g. occupancy (g,m;) = e'”gi'mi”2 Note: [[X|| is just shorthand for the
5 e_||gi_mj||2 length of the vector x.

] g;=genei
m; = centroid of cluster j

For each cluster, calculate weighted mean of
genes to update cluster centroid
Repeat steps 2 & 3 until convergence

Edward Marcotte/Univ. of Texas/BI0337/Spring 2014

k-means - - = - Fuzzy k-means

&7 W
2 . 2
&
3 [3 i
' 1 &

Genome Biology 3(11):research0059.1-0059.22 (2002
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Remove genes
correlated >0.7

Remove genes
correlated >0.7

Iterating
fuzzy k-
means

1st clustering cycle to the 2nd clustering cycle to the 3rd clustering cycle
identified identified
centroids |(€) 5 3 centroids |(€) .
&
f
@ ., . ® P
& -"‘ "%
a
Clusters
(C)] o
& ® -,
$ar
+ Genes L < 8
@ Centroids ™~ S
) &
WL 4 P Se
.':’. ®: s
Final cluster means Membership table
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Genome Biology 3(11):research0059.1-0059.22 (2002

e Genes
@ Centroids
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(9)

Final cluster means

Iterating
fuzzy k-
means

Genome Biology 3(11):research0059.1-0059.22 (2002
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A fun clustering strategy that builds on
these ideas: Self-organizing maps (SOMs)

- Combination of clustering & visualization
- Invented by Teuvo Kohonen, also called
Kohonen maps \

SRt € #
e : o
3 fi
Al !
Sl

Dr. Eng., Emeritus
Professor of the
Academy of Finland,;
Academician

A fun clustering strategy that builds on
these ideas: Self-organizing maps (SOMs)

SOMs have:
your data (points in some high-dimensional space)
a grid of nodes, each node also linked to a point someplace in data space

1. First, SOM nodes are arbitrarily positioned in data space. Then:

2. Choose a training data point. Find the node closest to that point.

3. Move its position closer to the training data point.

4. Move its grid neighbors closer too, to a lesser extent.

Repeat 2-4. After many iterations, the grid approximates the data distribution.

SOM grid

AN
—>
Data points
single
Edward Marcotte/Univ. of Texas/BI0337/Spring 2014 observation Wlklpedla
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Here’s an example using colors. Each color has an RGB vector. Take a bunch of
random colors and organize them into a map of similar colors:

Map consisting of 7 x 11 map units or nodes

Each node is
associated
with a model

vector, mj R\\:‘
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Each SOM node lives in A values:
RGB space > Oo
connections from each
input element to
all map nodes
red blue
green
Here’s the input color data »> ... DOOC ...
stream of
inputs
Edward Marcotte/Univ. of Texas/BIO337/Spring 2014 Kybernetes 34(1/2): 40-53 (2005)

Iteratively test new colors, update the map using some rule

weight Node neighborhood

Y \Y
m(t + 1) = m;(f) + a(®)[x(H) — mi(f)] for each i€ N(b),

VoA !

Updated Starting  Difference

node node from
vector vector data
vector
The weight and
node
neighborhoods

shrink with time
(iterations)

Kybernetes 34(1/2): 40-53 (2005)

0, Over time, the map self-
organizes to show
clusters of like colors.

http://www.generations.org/content/2004/
kohonenApplications.asp
Edward Marcotte/Univ. of Texas/BI0337/Spring 2014 http:

users.ics.aalto.fi/tho/thesis,
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Republicans

Democrats

Red = yes votes
Blue = no votes
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A SOM of U.S. Congress voting patterns
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0.0566

CS-BIGS 3(1): 48-59
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LifeExpectancy 786
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Exploratory Analysis of CIA Factbook Data Using

Kohonen Self-Organizing Maps CS-BIGS 3(1}: 4859
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SOM of Wikipedia (from Wikipedia, naturally)
(data = wiki article word frequency vectors)
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SOMs can accommodate unusual data distributions

One-dimensional SOM _
Data points

@

o % Variance
o ®inethod unexplaine

» 23.23%
SOM 6.86%
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A biological example, analyzing mRNA expression

Proc. Natl. Acad. Sci. USA
Vol. 96, pp. 2907-2912, March 1999

Genetics

Interpreting patterns of gene expression with self-organizing maps:
Methods and application to hematopoietic differentiation

PaBLo TAMAYO®, DONNA SLONIM®, JILL MESIROV®, QING ZHUT, SUTISAK KITAREEWANE, ETHAN DMITROVSKY,
Eric S. LANDER*$T, AND TopD R. GoLus*F1
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Mitotic cell cycle

DNA replication
spindle pole body duplication
d formation

A biological example, analyzing mRNA expression

- "
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Yeast cell division cycle

Synchronized cells

Collect mRNAs at
time points
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Time (min]

DNA microarrays
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