Synthetic Biology = design and engineering of
biological systems that aren’t found in nature

Why would we want to do this?
- Want to understand natural systems. One of the best ways to
understand a system is to change it or make new, related ones

- To fully “understand” a system, we should be able to predict
the outcome when we change the system

- For molecular biology, this means:
- designing new gene circuits and networks
- modeling the designed systems & predicting their properties
- making & testing the designs
- updating our understanding from the model/test agreement

Engineers often look at biological systems & think that the
systems are equivalent to electronic circuits

e.g,
fluorescent proteins light bulbs or LEDs
transcription factors transistors or logic gates
repressors NOT gates
activators OR/AND gates

polymerases
(transcriptional machinery) batteries

and so on...

Are they right?
- raises the possibility that biological parts (genes, proteins, etc.)
could be combined using the rules established for analog/digital circuits




The Repressilator = engineered genetic circuit designed
to make bacteria glow in a oscillatory fashion
= “repressor” + “oscillator”
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The Repressilator = engineered genetic circuit designed
to make bacteria glow in a oscillatory fashion
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The repressilator in action...
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What other kinds of circuits can be built?
First, we need some more parts!

Some of the other parts available include:
* various sensors
- light, dark, heat, cold

e more switches, logic gates
- more repressors, activators

e parts for intracellular communication
- helpful if cells could tell each what condition they’re in
- quorum sensing

* parts for signaling the output of circuits
- fluorescent & luminescent proteins




Bioluminescence — occurs when bacteria are at high density
-> bacteria communicate in order to establish their density

Hawaiian bobtail squid

Australian pinecone fish

~101° Vibrio bacteria/ml fluid  ~10% Vibrio bacteria/ml fluid
Fish uses to hunt for prey in light organ in squid mantle
Squid uses for disguise (light
shines downward, looks like
ature Reviews Molecular Cell Biology 3; 685-695 (2002) .
- T moonlight)

Quorum sensing: chemical-based bacterial communication

Neighboring bacteria produce HSL also
O If enough bacteria around, HSL builds up,

HSL diffuses . . .
activates bioluminescence

in/out of cells

LuxR protein
(transcription factor)
binds HSL, becomes active

Light
(bioluminescence)




An application of quorum sensing
Programming population control into bacteria with a simple
designed circuit
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& the engineered circuit works ...
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The behaviour can be predicted with a simple model
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Standardization of parts: the iGEM “BioBricks” project
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iGEM: A synthetic biology contest

(from IGEM's web site)

Can simple biological systems be built from standard, interchangeable
parts and operated in living cells? Or is biology simply too complicated
to be engineered in this way?
iGEM'’s broader goals include:
- To enable systematic engineering of biology
- To promote open & transparent development of tools for engineering
biology
- To help construct a society that can productively apply biological
technology

2004: MIT, UT, Princeton, Boston University, Cornell
2005: 13 teams (the above + UK, Germany, more...)
2006: 32 teams, incl. Japan/Latin America/Korea/India/more Europe

54 teams in 2007, 84 teams in 2008, 112 teams in 2009, 130 teams in
2010, 165 teams in 2011, and 245 teams in 2012 and 2013...

UT’s 2004/2005 iGEM project — build bacterial edge detector

Projector
Original image

shine image
onto cells

Cells
luminesce

petri dish coated with bacteria

along the
light/dark
boundaries

Adapted from Zack Simpson |




How does edge detection work in principle?

A computer might visit each pixel in turn, and check to see if it is
bordered by both black & white pixels. If yes, highlight the pixel.
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Bacterial photography
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Levskaya et al. Nature, 438(7067):441-2 (2005)

Mask Cph1/EnvZ

Hello
World

“Light cannon” developed by Aaron Chevalier,
UT undergraduate Levskaya et al. Nature, 438(7067):441-2 (2005)
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Levskaya et al. Nature, 438(7067):441-2 (2005)

Escherichia
darwinia

Image: Aaron Chevalier
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On to the edge 660nm
detector...

inner membrane

Cph 1 chromophore biosynthesis
P4

phycocyanobilin

Tabor et al., Cell 137(7):1272-1281 (2009)

The edge detector circuit in more detail
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Tabor et al., Cell 137(7):1272-1281 (2009)
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It works!

Projected Mask Photo strain Edge detector strain

Tabor et al., Cell 137(7):1272-1281 (2009)

A Mask in vivo in silico
Photography
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Tabor et al.. Cell 137(7):1272-1281 (2009) ) Eduard i Teay/BI03 010
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UT’s 2012 iGEM project — build caffeine biosensor

S%StheticBiology

Decaffeination and Measurement of Caffeine Content by Addicted
Escherichia coli with a Refactored N-Demethylation Operon from

Pseudomonas putida CBB5

Erik M. Quandt,” Michael J. Hammerling," Ryan M. Summers,” Peter B. Otoupal,” Ben Slater,”
Razan N. Alnahhas,” Aurko Dasgupta,” James L. Bachman,” Mani V. Subramanian,*

and Jeffrey E. Barrick®'

Basic idea

Block de novo guanine synthesis

Convert caffeine to xanthine

Addict E. coli bacteria to caffeine
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