
The advent of ultra-high-throughput sequencing tech-
nology has captured the imagination of the biological
sciences, and with good reason. Ten years ago, on 23
November 1999, the publicly funded human genome
project held a massive, worldwide celebration to mark
the completion of 1 billion base pairs (bp), one-third
of the way to the full sequence of the human genome
(http://www.genome.gov/10002105/). The amount
of sequence was so incredible at the time that the cel-
ebration featured senators and US cabinet officials.
Commemorative T-shirts marking the occasion were
distributed. Today, sequencing 1 billion bp is the work
of hours in any lab equipped with an Illumina GAII or
ABI SOLiD ‘second generation’ sequencing machine and
the work of minutes in large-scale sequencing centers.
These large centers may have 40 or more such machines
sitting in the middle of a massive production pipeline
that requires a substantial wet-lab work flow to feed the
sequencing machines and almost unimaginable compu-
tational support to make any sense of the data coming
from the sequencers. All indications suggest we have
only scratched the surface of the potential for ubiquitous
DNA sequencing technology to change the way experi-
ments are conducted and biology is understood.

One thing that has not changed in the last 10 years is
that the individual outputs of the sequence machines
are essentially worthless by themselves. The individual
‘reads’ (named so from the days when the sequence of a
given DNA molecule was determined by a pair of human
eyes looking down an autoradiograph of a gel that had

a separate lane for each base) range from approximately
800 bp, using the older technology used by the human
genome project, to approximately 30 bp for the intro-
ductory versions of the second-generation sequencing
machines so popular today. Current output ranges from
50 to 400 bp, depending on the technology and the spe-
cific biological application. Although uninformative by
themselves, once analyzed collectively DNA sequencing
reads have tremendous versatility, and the existing appli-
cations of next-generation sequencing are extensive.
Fundamental to creating biological understanding from
the increasing piles of sequence data is the development
of analysis algorithms able to assess the success of the
experiments and synthesize the data into manageable
and understandable pieces.

We will focus on two of the most fundamental com-
putational analyses in the context of sequence analysis:
alignment and assembly. When a reference genome
assembly exists (for example, for human or mouse),
alignment remains the first and most fundamental
analysis once the DNA sequence has been produced.
The results of the alignment have the ability to quickly
determine whether the sequencing experiment has suc-
ceeded, whether the correct sample was sequenced, and
whether the biological experiment and DNA prepara-
tion succeeded. For organisms without a sequenced
reference genome, assembly is almost always essential
for analysis. However, in order to develop algorithms
to accurately assemble new genomes, the existence of
already assembled reference genomes in other species is

Sense from sequence reads: methods for
alignment and assembly
Paul Flicek & Ewan Birney

The most important first step in understanding next-generation sequencing data is the
initial alignment or assembly that determines whether an experiment has succeeded and
provides a first glimpse into the results. In parallel with the growth of new sequencing
technologies, several algorithms that align or assemble the large data output of
today’s sequencing machines have been developed. We discuss the current algorithmic
approaches and future directions of these fundamental tools and provide specific
examples for some commonly used tools.

European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK. Correspondence should be addressed to P.F.
(flicek@ebi.ac.uk).

PUBLISHED ONLINE 15 OctOBEr 2009; cOrrEctED ONLINE 6 may 2010; DOI:10.1038/NmEtH.1376

S6 | VOL.6 NO.11s | NOVEMBER 2009 | nature methodS SuPPLement

review

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

http://www.genome.gov/10002105/
mailto:flicek@ebi.ac.uk

all represented by the same color). Hence, some sequence errors are
correctable, assuming that the analysis tools explicitly consider this
aspect of the data5. The Illumina technology uses other techniques to
remove likely errors earlier in the processing pipeline (that is, before
the alignment or assembly process), including ‘purity filtering’ reads
appearing to come from more than one DNA molecule6.

alignment
Alignment itself is the process of determining the most likely source
within the genome sequence for the observed DNA sequencing read,
given the knowledge of which species the sequence has come from.
Sequencing reads may also be aligned to other genomes, assum-
ing the evolutionary distance between the genomes is appropriate.
The most widely used alignment programs for second-generation
sequence data have been explicitly designed (or modified) for the
purpose of aligning this data. Unlike earlier-generation sequence
alignment programs such as BLAST, which were designed in an
environment that required alignments of protein sequences and
searching though large databases to find homologous sequences,
today’s short-read alignment programs are generally used for the
alignment of DNA sequence from the species of interest to the ref-
erence genome assembly of that species. This difference, although
it initially seems subtle, has several consequences to the final algo-
rithm design and implementation, which include letting assump-
tions about the number of expected mismatches be driven by the
species polymorphism rate and the technology error rate rather than
by considerations of evolutionary substitutions.

In general, these assumptions allow for much faster processing,
as few low-quality alignments are either expected or scored. Given
the massive data volumes produced by the present sequencing
machines, this has also allowed alignments to be calculated without
a correspondingly massive increase in computer hardware require-
ments. As sequence capacity grows, algorithmic speed may become
a more important bottleneck.

Although there is a large and ever growing number of implemen-
tations for short-read sequence alignment, the number of funda-
mental technologies used is much smaller. We will focus on two
such techniques, give a general overview of the methods describing
some of the advantages and disadvantages, and provide examples
from some of the most commonly used implementations of the
method. The methods covered are (i) hash table–based implemen-
tations, in which the hash may be created using either the reference
genome or the set of sequencing reads, and (ii) Burrows Wheeler
transform (BWT)-based methods, which first create an efficient
index of the reference genome assembly in a way that facilitates
rapid searching in a low-memory footprint. Both of the above
methods can be applied to color-space (SOLiD) reads or base-space
(Illumina, 454) reads, although this capacity must be designed into
the alignment program.

Alignment programs normally follow a multistep procedure to
accurately map sequence. Using heuristic techniques in the first step,
efforts are made to quickly identify a small set of places in the refer-
ence sequence where the location of the best mapping is most likely
to be found. Once the smaller subset of possible mapping locations
has been identified, slower and more accurate alignment algorithms
such as Smith-Waterman are run on the limited subset (see ref. 7
for review). Running these accurate alignment algorithms as a full
search of all possible places where the sequence may map is com-
putationally infeasible. This section of the review will concentrate

critical because they allow newly developed algorithms to be bench-
marked against the known solutions, which then gives confidence to
the assembly results for species without a reference genome.

The choice of alignment or assembly algorithm is strongly influ-
enced by both the experiment in question and the details of the
sequencing technology used. The performance characteristics of
the sequencing machines are changing rapidly, and any delinea-
tion of performance characteristics such as machine capacity, run
time or read length and its relationship to error profile will quickly
be outdated. In this review, thus, we will instead describe the types
of data that are likely to be generated for specific experimental
applications, with some confidence that (i) both sequence capacity
and quality will continue to increase for all platforms and that it
will be possible to generate high-quality sequence of various read
lengths and (ii) an optimal quality versus cost tradeoff will appear
for given experimental applications. For example, de novo sequenc-
ing for large genomes will benefit from longer reads than are now
available, high coverage, and paired-end reads with multiple, well-
chosen insert sizes. Similarly, a resequencing application done in
the presence of a reference genome assembly requires reads that
can be accurately mapped in such a way that both nucleotide and
structural variation can be reliably assessed; it may be possible to
do this with paired reads on the order of 100 bp in length, although
longer reads may be beneficial1. At the same time, a chromatin
immunoprecipitation (ChIP)-sequencing experiment, for mapping
transcription factor binding sites or the location of modified his-
tones, isolates relatively short fragments of DNA sequence and has
little need for reads longer than 50–75 bp and apparently limited
benefit from paired-end reads2. Other applications, such as DNase-
seq, are limited to only 20 bp of informative sequence and so are
unaffected by both longer read lengths and paired-end sequences3.
Transcriptomics (for example, RNA-seq) experiments will also have
optimal experimental designs2.

There are two fundamental considerations when designing align-
ment and assembly algorithms for all second-generation sequencing
data, beyond the obvious consideration that the reads are shorter
than with gel-capillary technology. First, the amount of data pro-
duced is orders of magnitude greater than that generated by ear-
lier techniques, so any algorithm must be optimized for speed and
memory usage. Second, the techniques produce data with different
error profiles than the previous-generation technology, which must
be addressed at the algorithmic level to obtain the maximum infor-
mation from the sequencing data. Gel capillary reads normally had
low quality base calls at the start and the end of the read, with high-
quality data in the central region. Base-calling algorithms provided
information about where a given read should be ‘quality clipped’
for users who wanted only the best part of the read. The different
error characteristics with second-generation technology include,
for example, the tendency of Roche 454 reads to have insertion or
deletion errors during homopolymer runs4 and the increasing likeli-
hood of sequence errors toward the end of the read for ABI SOLiD
and Illumina/Solexa technology. As a further consideration, SOLiD
data are produced in ‘color space’ rather than the ‘base space’ used
by the other sequencing technologies, meaning that the output of
the SOLiD machine is a series of colors representing two nucleotides
(represented by the numbers 0–3) rather than a series of bases (rep-
resented by A, C, G and T). The SOLiD color-space code is degener-
ate, such that only four colors are used to represent the 16 possible
transitions (for example, the dinucleotides AA, CC, GG and TT are

nature methodS SuPPLement | VOL.6 NO.11s | NOVEMBER 2009 | S7

review

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

match if a region is to be considered a possible alignment location10.
In its recommended use, MOSAIK hashes all positions in the refer-
ence genome and uses a ‘jump database’ to efficiently locate infor-
mation in the hash table and thus reduces memory requirements by
approximately two-thirds over a naive implementation.

After the alignment seeds have been used in the hash table creation
and the reads have been associated with the region of the genome
where they are most likely to align, a specialized and accurate align-
ment algorithm is used to determine the exact placement of the
sequence reads on the reference genome. Such algorithms include
both gapped and ungapped versions of Smith-Waterman that take
advantage of the quality values of the sequenced bases.

Burrows-Wheeler transform methods. Over the past year, a
new generation of short-read alignment programs including
BOWTIE14, BWA15 and SOAP2 (ref. 16) have been developed that
are based on the Burrows-Wheeler transform (BWT)17. These
methods typically use the FM index data structure, proposed by
Ferragina and Manzini, who introduced the concept that a suf-
fix array is much more efficient if it is created from the BWT
sequence, rather than from the original sequence18. The FM index
retains the suffix array’s ability for rapid subsequence search and,
for mammalian genomes, is often the same size or smaller than the
input genome size19. For example, the final index for the human
genome used by both BWA and BOWTIE is approximately 2.3 GB
in size14,15, whereas SOAP2 uses a different routine resulting in a
final index that requires 5.4 GB (ref. 16).

Creating the underlying data structure requires two steps. In the
first step, the sequence order of the reference genome is modified
using the BWT, a reversible process (that is, the original genome
sequence can easily be reconstructed) that reorders the genome
such that sequences that exist multiple times appear together in
the data structure (Fig. 2). Next, the final index is created; it is then
used for rapid read placement on the genome. The creation of the
final index may be a memory-intensive step, although methods
exist to create the index in relatively little memory at the cost of
more processing time20. The BWT has been commonly used in

on algorithms for the first step that are particularly appropriate for
short-read data and only briefly mention the algorithms used in
the second step (although these can be important for the fine-scale
results). Additionally, all of the programs implement a ‘mapping
policy’ that governs key performance aspects of the specific imple-
mentation. Regardless of the underlying algorithmic approach, a
general rule is that there is tradeoff between speed and sensitivity.
That is, a procedure that can map reads with guaranteed high accu-
racy, especially in the presence of errors and sequence polymor-
phism, will take longer than a procedure that applies heuristics to
limit the problem in one way or another.

Hash-based alignment methods. The first wave of alignment pro-
grams specifically designed for short-read alignment from next-
generation sequencing machines was based on a hash-table data
structure to index and scan the sequence data. ‘Hash table’ refers
to a common data structure that is able to index complex and
nonsequential data in a way that facilitates rapid searching (Fig.
1). This is especially appropriate for DNA sequencing reads, which
are extremely unlikely to contain every possible combination of
nucleotides and very likely to contain duplicates. Examples of tools
using this approach include MAQ8, SOAP9 and Illumina’s own
unpublished ELAND algorithm. These have recently been joined by
several other tools, including SHRiMP10, ZOOM11, BFAST (http://
genome.ucla.edu/bfast/) and MOSAIK (http://bioinformatics.
bc.edu/marthlab/Mosaik/).

Hash-based algorithms build their hash table either on the set of
input reads or on the reference genome. They then use the refer-
ence genome to scan the hash table of input reads (in the first case)
or use the set of input reads to scan the hash table of the reference
genome (in the second). There are advantages and disadvantages to
each method. For example, hash tables of the reference genome have
a constant memory requirement for a given parameter set regardless
of the size of the input set of reads, which may be large, depending
on the size and complexity of the reference genome. Hash tables
based on the set of input reads typically have smaller and variable
memory requirements based on the number and diversity of the
input read set but may use more processing time to scan the entire
reference genome when there are relatively few reads in the input
set. Of the algorithms mentioned above, MAQ, ELAND, ZOOM and
SHRiMP build a hash table of the input read sequences, whereas
SOAP, BFAST and MOSAIK hash the reference genome assembly.

With either hashing methodology, the algorithms typically imple-
ment the hash table in the form of ‘spaced seeds’, which are regions
of the sequence required to have a specific pattern of matches and
mismatches. Spaced seeds were popularized for sequence align-
ment by the PatternHunter program12. A seed is of the form 110011,
where 1 represents a position of the sequence that is required to
match and the number of 1s is designated the ‘weight’ of the seed.
For example, from the first 28 bp of the read, the published MAQ
program builds six hash tables corresponding to seeds of length 8
and weight 4 and then scans the reference genome against these hash
tables8. This technique ensures that all hits with two mismatches
can be found, and more than half of those with three mismatches.
Twenty hash tables would be required for MAQ to guarantee that all
reads with three mismatches could be found. ZOOM uses manually
constructed spaced seeds of weight 14 to enable the detection of up
to four mismatches in 50-bp reads12 and SHRiMP uses a q-gram
approach13, which requires that multiple spaced seeds per read

Read identifiers associated
with each hash index

Hash indexSequence reads

R
ea

d
id

en
tif

ie
rs

01

02

03

04

05

06

07

08

ACGTGTatc

CTACGTgtc

ACGTGTccg

AGGCTAaat

GGTCAAggc

GTCACCtgc

AAGTCGgag

TCGGCAact

00AA
00AC
00AG
00AT

TA00
TC00
TG00
TT00

05

02 06

02

05 06 08

Figure 1 | Schematic of a hash table–based alignment strategy. Sequence
reads with associated read identifiers are shown, with the regions that will
be used for seed selection in capital letters and matched seeds of 0011
and 1100. Given read identifiers are associated with the seeds using a
hash function (for example, a unique integer representation of each seed).
Once such a hash table has been built for either the input read set or the
reference genome, the corresponding data can be scanned with the same
hash function, resulting in a much smaller subset of reads to more exactly
align at each location in the genome.

S8 | VOL.6 NO.11s | NOVEMBER 2009 | nature methodS SuPPLement

review

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

http://genome.ucla.edu/bfast/
http://genome.ucla.edu/bfast/
http://bioinformatics.bc.edu/marthlab/Mosaik/
http://bioinformatics.bc.edu/marthlab/Mosaik/

assembly
A fundamental goal of DNA sequencing has been to generate large,
continuous regions of DNA sequence. The desired DNA sequences
are nearly always far longer than the individual sequencing read
lengths, so some sort of sampling approach is required. The domi-
nant approach has been to randomly fragment a DNA sequence,
sequence these fragments—described as ‘shotgun sequencing’—
and then reconstruct the original DNA sequence computationally,
described as ‘assembly’. This was originally designed for cosmid or
other clone resources22,23 but also became feasible for genomes, first
of bacteria and then of large, complex eukaryotes.

With the old-technology read lengths (around 800 bp), all assem-
bly algorithms worked as some variant of using overlaps between
reads and then a resolution of these overlaps into a colinear solu-
tion. With the far shorter reads and far higher coverages generated
by these new technologies, not only was this ‘read-centric’ method
computationally unfeasible, but it was seemingly impossible to
find heuristics to resolve the large number of overlaps. However,
pioneering work by Pevzner and colleagues24 in the late 1980s and
Idury and Waterman25 in the mid-1990s had already introduced a
different framework for handling assemblies, even with the older,
long-read technology. The new framework was based on a graph of
very small, fixed-length subsequences (abbreviated as k-mers, where
k is 19 or higher) in a de Bruijn graph data structure, which was
originally developed for combinatorial mathematics. For applica-
tions in DNA sequence assembly, the de Bruijn graph has a node
for every k-mer observed in the sequence set and an edge between
nodes if these two k-mers are observed adjacently in a read. Such
edges are therefore associated with the single-step base difference
of moving the fixed k-mer window along by one position. Although
seemingly similar to the read-overlap graph used by traditional
assembly programs, which often use k-mer content to calculate the

overlaps, the de Bruijn graph formulation
has properties that differ in important ways.
The first is that a read will be split across its
component nodes. The second is how this
structure handles repeats: a repeat will be a
series of adjacent k-mers which many reads
pass through. On the edges of the repeat, the
graph will diverge into the unique regions
of the genome. A final aspect of this graph
is that it can be constructed in an amount
of computational time that scales linearly
with the number of reads (rather than in
quadratic time, as is needed for the naive,
all-against-all implementation of the over-
lap graph).

Pevzner and Tang used this data structure
to find solutions based on a graph traversal
method—namely, an eulerian tour of the
graph26, which visits each node of the graph
exactly once. This graph traversal method
was not particularly successful for mak-
ing practical assemblies, but the de Bruijn
graph framework is ideal for handling high-
coverage, short sequencing reads and has sev-
eral useful properties—for example, being
able to easily compute the theoretical maxi-
mum continuity for a particular sequence

data compression; thus, the FM index structure has been referred
to as a compressed suffix array18.

BWT implementations are much faster than their hash-based
counterparts at the same sensitivity level and can be several times
faster still at slightly reduced sensitivity levels and for single-ended
reads. This last case is likely to be most appropriate for mapping tag
sequences from ChIP-seq or similar applications. Another advantage
to the BWT-based methods is the ability to store the complete refer-
ence genome index on disk and load it completely into memory on
almost all standard bioinformatics computing clusters21.

BOWTIE’s reported 30-fold speed increase over hash-based MAQ
is an example of the speed increases for single-ended reads, although
this increase is at the cost of a small loss of alignment sensitivity13.
With the ability to exploit paired-end reads and for sensitivity simi-
lar to the earlier, hash-based methods, the speed increase for any of
the current BWT-based programs will generally be tenfold14–16.

The limitations of BWT-based methods are another example of
tradeoff between speed and sensitivity. For example, BWA is only
able to find alignments within a certain ‘edit distance’ of the sequence
in reference genome, which is a function of the read length15. Edit
distance is, formally, the number of operations required to trans-
form one sequence into another, which in the case of sequence align-
ment is most commonly gaps or mismatches. This effectively limits
the combined number of mismatches or gaps in the read that can be
aligned (for 100-bp reads, BWA allows 5 ‘edits’; less for shorter reads
and more for longer reads). As sequencing becomes increasingly
accurate, this limitation is likely to become less important for spe-
cies with relatively low polymorphism rates, such as human where
nearly all reads will align within the edit distance.

As in the hash-based methods, once the reads have been associated
with the region of the genome where they are most likely to align,
more sensitive algorithms can be used for the final alignment result.

1. All possible rotations

2. Sort 3. Select final
 column

Genomic sequence

Transform

Figure 2 | The Burrows-Wheeler transform for genomic sequence data. To create a BWT of a 14-mer
genomic sequence, one first notes the start and end points of the sequence and then constructs all
rotations of the given sequence by taking the first character of the sequence and placing it at the
end of the sequence (step 1).The characters ^ and $ mark the beginning and end of the sequence,
respectively. Once these sequences are created, they are sorted (step 2). From this sorted matrix, the
final column is selected as the transformed sequence (step 3). The transformed sequences is exactly the
same length and has exactly the same characters as the original sequence, but in a different ordering.
The sequence at the bottom is a longer sequence starting with the same 14-mer that demonstrates the
effect on the transformed sequence of using a longer input sequence.

nature methodS SuPPLement | VOL.6 NO.11s | NOVEMBER 2009 | S9

review

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

a handful of near-identical repeats longer than 200 bp (Fig. 3),
whereas complex genomes, such as the human, usually have their
repeat length determined by whether there has been an active
LINE or SINE transposable element (usually around 4 kb in
length for the former and between 500 bp and 1 kb for the latter).
As the ability to produce longer read pairs (also referred to as
‘mate pairs’ to distinguish them from the shorter read pairs) has
only recently been optimized for next-generation technologies,
assemblies of complex genomes have been rare.

The other main barrier for large, complex genome assem-
blies is the memory overhead for these methods. Although the
de Bruijn data structure is compressed, all the methods use
some sort of adjunct data structures in addition to the core
de Bruijn graph to map the reads to the graph. These adjunct
structures are critical for leveraging additional information
required for accurate assemblies, such as read pair information.

length from a reference assembly. The read lengths need only be over
the k-mer length to generate a reasonable assembly (in theory, k must
be over 15 bp, though in practice 19 is the lowest sensible k-mer, and
larger k-mers are always better, although at the expense of having to
generate more coverage to support these large k-mer sizes).

The first assembler to exploit this technology was Roche’s 454
assembler, Newbler, which adapted the scheme specifically to handle
the main source of error in 454 sequencing—namely, ambiguity in
the length of homopolymer runs. In late 2007 and early 2008, sev-
eral second-generation de Bruijn graph assemblers were released for
very short reads, compatible with the Solexa technology, including
SHARCGS27, VCAKE28, VELVET29, EULER-SR30, EDENA31, ABySS32
and ALLPATHS33. Some of these methods, such as VELVET, EULER-
SR and ABySS, explicitly use de Bruijn graphs, whereas other meth-
ods implicitly explore a de Bruijn graph—for example, constrained
by read-pair behavior, as in ALLPATHS. The methods differ in how
they treat errors and to what extent they use read-pair information.
Read pairs are defined as two short DNA sequence reads generated
from different ends of a longer DNA molecule—for example, 35-bp
reads generated from both ends of a 500 bp fragment. One does not
know the identity of the sequence between the read pairs, but one
usually has an estimate of the length of the intervening sequence.
As it is only marginally more expensive to generate short reads in
read-pair format than as single reads, extremely high coverage of
read pairs is routinely available. The more advanced de Bruijn graph
assemblers29,30,32,33 can use read pairs to provide long assemblies.
A particular challenge has been the two-base-encoding ‘color space’
of ABI SOLiD technology. In this two-base encoding, a single error
produces a systematic translation error on all subsequent decoding of
the bases for the rest of the read. In the context of an alignment, such
an encoding scheme can be integrated into the alignment routine,
and there is an argument that the double base encoding provides
better discrimination between errors and observed differences. In de
novo assembly, however, there is no reference. The solution has been
to perform the assembly directly in color space and then ‘key’ the
resulting color space assembly to one of the four feasible base-pair
assemblies using either a small amount of traditional sequence or the
presence of a known base at the start of each SOLiD read.

Whichever sequencing technology and assembly method are
used, the ability to provide long assemblies critically requires that
at least a proportion of the read pairs are longer than the longest
common near-identical repeat in the genome. This varies con-
siderably between genomes. Bacterial genomes often have only

Linear stretches

Tips

× × × × × × × ×

× × ×

× × × ×

× × × × × ×

×

× × × ×

×

×××××××××

a

b

1. Sequencing
 (for example, Solexa or 454)

2. Hashing

3. Simplification of linear
 stretches

4. Error (tip and bubble) removal Bubble

×

Figure 3 | Constructing and visualizing a de Bruijn graph of a DNA sequence.
(a) An example de Bruijn graph assembly for a short genomic sequence
without polymorphism. Sequence at top represents the genome, which is
then sampled using shotgun sequencing in base space with 7-bp reads
(step 1). Some of the reads have errors (red). In step 2, the k-mers in the
reads (4-mers in this example) are collected into nodes and the coverage
at each node is recorded. There are continuous linear stretches within the
graph, and the sequencing errors create distinctive, low-coverage features
through out the graph. In step 3, the graph is simplified to combine nodes
that are associated with the continuous linear stretches into single, larger
nodes of various k-mer sizes. In step 4, error correction removes the tips
and bubbles that result from sequencing errors and creates a final graph
structure that accurately and completely describes in the original genome
sequence. (b) A full de Bruijn graph of two related plasmids that have a
locus in common. The de Bruijn graph was created with 30-bp k-mers. The
open loops are regions that differ between the two plasmids, whereas the
heavier lines indicate common regions.

S10 | VOL.6 NO.11s | NOVEMBER 2009 | nature methodS SuPPLement

review

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

may well see the reemergence of the read-based assemblers, but it
is likely that the de Bruijn frameworks will remain a useful, if not
optimal structure. Even with long read lengths, it is likely that high
coverage techniques will be used, and a number of next-generation
technologies have variable read length distributions, and can poten-
tially trade off read length with sequence quality. The de Bruijn
framework handles high coverage in a more compact form, and all
the read-based methods can be executed in the context of a de Bruijn
graph—the graph provides easy access to other features of the data;
for example, for error correction. Whatever scheme is used, it is clear
that yet more accurate assemblies can be achieved for more complex
genomes with increased length in mate pairs for short-read technol-
ogy or simply longer reads from new technologies.

Thus far, the development of short-read alignment programs has
followed a predictable path. The first problem to solve was to ensure
that the programs were sufficiently accurate and sufficiently fast. As
more experience was gained and the properties of the sequence data
became more clear, new algorithms emerged and existing ones were
modified to incorporate new information about biases, sequence
errors, regions of the genome inherently difficult to align and the
effects of genome polymorphism both at the level of single base
changes and of small indel and larger structural variations. At the
same time, a community effort created common and optimized file
formats for storage and exchange of the resulting alignment data35.
As all this has been happening, the sales of sequencing machines
have continued to grow quickly and the average amount of data
produced by each machine has grown several times. These develop-
ments have led to the current push to ensure that the programs for
creating accurate alignments that address all of the above issues are
simply as fast as possible. New data types such as the interrupted
read sequences from Complete Genomics will challenge the exist-
ing alignment algorithms, as will the increase in read length and
experimental studies that focus on cancer genomes with multiple
deletions, duplications and rearrangements. These problems are
probably not yet solved, but the techniques described above will
provide the first approach to these problems and the foundations
for new approaches.

aCKnowLedGmentS
The authors acknowledge D. Zerbino and support by the Wellcome Trust and the
European Molecular Biology Laboratory.

ComPetinG intereStS Statement
The authors declare no competing financial interests.

Published online at http://www.nature.com/naturemethods/.
reprints and permissions information is available online at http://npg.
nature.com/reprintsandpermissions/.

1. Medvedev, P., Stanciu, M. & Brudno, M. Computational methods for
discovering structural variation with next-generation sequencing. Nat.
Methods 6, S13–S20 (2009).

2. Pepke, S., Wold, B. & Mortazavi, A. Computational approaches to the
analysis of ChIP-seq and RNA-seq data. Nat. Methods 6, S22–S32 (2009).

3. Boyle, A.P. et al. High-resolution mapping and characterization of open
chromatin across the genome. Cell 132, 311–322 (2008).

4. Margulies, M. et al. Genome sequencing in microfabricated high-density
picolitre reactors. Nature 437, 376–380 (2005).

5. McKernan, K.J. et al. Sequence and structural variation in a human genome
uncovered by short-read, massively parallel ligation sequencing using two-
base encoding. Genome Res. 19, 1527–1541 (2009)

6. Bentley, D.R. et al. Accurate whole human genome sequencing using
reversible terminator chemistry. Nature 456, 53–59 (2008).

7. Batzoglou, S. The many faces of sequence alignment. Brief Bioinform. 6,
6–22 (2005).

Many of the implementations that work well on a small scale (<50
-megabase genomes) would require over 2 terabytes of real memory
for a complex genome. Several groups have tackled this engineer-
ing problem—in particular, the ABySS assembler, the SOAP assem-
bler and the Cortex assembler (Z. Iqbal, M. Caccomo and P. Flicek,
unpublished data). ABySS works using a message-passing interface
(MPI)-cluster approach, whereas SOAP and Cortex use multiple
passes over compressed data structures that can be retained on disk
to handle the large data volumes. A key feature in all these methods
is the early removal of sequencing errors; as each sequencing error
produces usually a unique sequence, the full graph, with errors, is
dominated by the behavior of errors, which produces a large number
of extraneous of tips and bubbles in the graph. At present, these large
scale methods are still in active development but they are likely to
become more widespread and mature over 2010.

discussion
Biologists interested in sequencing to answer their experimental
questions should prepare themselves to join a fast-moving field
and embrace the tools being developed specifically for it. As more
sequence is generated, effective use of computational resources will
be more and more important.

As a general recommendation, the goal for data analysis should
be to effectively deal with as much data as quickly as possible. We
are reminded of the importance of this with every announcement
of greater sequencing capacity from the existing machines and with
predicated capacities from sequencing technologies still under
development. This means more flexible alignment pipelines will be
the way of the future: the bulk of the reads will be aligned by a fast,
less sensitive method and remaining reads will be aligned, possibly
in several stages as dictated by the experimental design, by progres-
sively slower and more sensitive methods on smaller and smaller
subsets of the original collection of reads. This analysis technique
has similarities to serial BLAST searching34 but is conceptually
revised to use multiple algorithms rather that multiple parameter
sets for the same program.

As next-generation sequencing machines and their resultant piles
of data have spread to many labs around the world, many groups
have taken up the challenge of writing new algorithms specifically
tuned for it. There are now dozens of published and unpublished
short-read alignment programs and slightly fewer assembly pro-
grams, but for both types, more are appearing every month and only
a few were used as examples to illustrate the methods in this review.
However, the goal of this review is not to catalog the entire class of
alignment and assembly tools, a task far better suited to the rapid
update cycle of the World Wide Web. Indeed, dedicated pages on
Wikipedia (http://en.wikipedia.org/wiki/List_of_sequence_align-
ment_software and http://en.wikipedia.org/wiki/Sequence_assem-
bly) and on the community site SEQanswers (http://seqanswers.
com/forums/showthread.php?t=43) at present provide the most
current census and capabilities list of almost all of the existing align-
ment and assembly programs, including those mentioned here.

Looking ahead, a major goal will be to effectively apply sequenc-
ing to genomes without existing reference assemblies. Future devel-
opments of existing technologies, including increased read length,
higher capacity and larger insert sizes, will immediately benefit
the current generation of assembly algorithms. For forthcoming
sequencing technologies, such as SMRT sequencing from Pacific
Biosciences, increased read length is again a common theme. This

nature methodS SuPPLement | VOL.6 NO.11s | NOVEMBER 2009 | S11

review

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

http://www.nature.com/naturemethods
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://en.wikipedia.org/wiki/List_of_sequence_alignment_software
http://en.wikipedia.org/wiki/List_of_sequence_alignment_software
http://en.wikipedia.org/wiki/Sequence_assembly
http://en.wikipedia.org/wiki/Sequence_assembly

arrays. Bioinformatics 23, i195–i204 (2007).
20. Kärkkäinen, J. Fast BWT in small space by blockwise suffix sorting. Theor.

Comput. Sci. 387, 249–257 (2007).
21. Flicek, P. The need for speed. Genome Biol. 10, 212 (2009).
22. Staden, R. A strategy of DNA sequencing employing computer programs.

Nucleic Acids Res. 6, 2601–2610 (1979).
23. Staden, R., Beal, K.F. & Bonfield, J.K. in Computer methods in molecular

biology. in Bioinformatics Methods and Protocols vol. 132 (eds. Misener, S.
& Krawetz, S.A.) 115–130 (Humana, Totowa, New Jersey, USA, 1998).

24. Pevzner, P.A., Borodovsky, M.Y. & Mironov, A.A. Linguistics of nucleotide
sequences. II: Stationary words in genetic texts and the zonal structure of
DNA. J. Biomol. Struct. Dyn. 6, 1027–1038 (1989).

25. Idury, R.M. & Waterman, M.S. A new algorithm for DNA sequence assembly.
J. Comput. Biol. 2, 291–306 (1995).

 idury and waterman first presented the fundamental algorithm
for sequence assembly by k-mer extension. the representation of
algorithm with the de Bruijn graph data structure is at the heart of the
assembly method described here.

26. Pevzner, P.A. & Tang, H. Fragment assembly with double-barreled data.
Bioinformatics 17 (suppl. 1), S225–S233 (2001).

27. Dohm, J.C., Lottaz, C., Borodina, T. & Himmelbauer, H. SHARCGS, a fast
and highly accurate short-read assembly algorithm for de novo genomic
sequencing. Genome Res. 17, 1697–1706 (2007).

28. Jeck, W.R. et al. Extending assembly of short DNA sequences to handle
error. Bioinformatics 23, 2942–2944 (2007).

29. Zerbino, D.R. & Birney, E. Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

30. Chaisson, M.J. & Pevzner, P.A. Short read fragment assembly of bacterial
genomes. Genome Res. 18, 324–330 (2008).

31. Hernandez, D., François, P., Farinelli, L., Osterås, M. & Schrenzel, J. De
novo bacterial genome sequencing: millions of very short reads assembled
on a desktop computer. Genome Res. 18, 802–809 (2008).

32. Simpson, J.T. et al. ABySS: a parallel assembler for short read sequence
data. Genome Res. 19, 1117–1123 (2009).

33. Butler, J. et al. ALLPATHS: de novo assembly of whole-genome shotgun
microreads. Genome Res. 18, 810–820 (2008).

34. Korf, I. Serial BLAST searching. Bioinformatics 19, 1492–1496 (2003).
35. Li, H. et al. The Sequence Alignment/Map (SAM) format and SAMtools.

Bioinformatics 25, 2078–2079 (2009).

8. Li, H., Ruan, J. & Durbin, R. Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Res. 18, 1851–1858
(2008).

9. Li, R., Li, Y., Kristiansen, K. & Wang, J. SOAP: short oligonucleotide
alignment program. Bioinformatics 24, 713–714 (2008).

10. Rumble, S.M. et al. SHRiMP: accurate mapping of short color-space reads.
PLOS Comput. Biol. 5, e1000386 (2009).

11. Lin, H., Zhang, Z., Zhang, M.Q., Ma, B. & Li, M. ZOOM! Zillions of oligos
mapped. Bioinformatics 24, 2431–2437 (2008).

12. Ma, B., Tromp, J. & Li, M. PatternHunter: faster and more sensitive
homology search. Bioinformatics 18, 440–445 (2002).

 Patternhunter was the first alignment program to implement the
method of finding alignments by scanning with ‘spaced seeds’ that
require exact matching positions to seed the alignments but do not
require these seeds to be consecutive. this method is extremely
effective for the mapping short sequencing reads and has been
adopted by most hash-based alignment methods.

13. Rasmussen, K.R., Stoye, J. & Myers, E.W. Efficient q-gram filters for finding
all epsilon-matches over a given length. J. Comput. Biol. 13, 296–308
(2006).

14. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome
Biol. 10, R25 (2009).

15. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

16. Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment.
Bioinformatics 25, 1966–1967 (2009).

17. Burrows, M. & Wheeler, D.J. A block-sorting lossless data compression
algorithm. Technical report 124, Digital Equipment Corporation (1994).

18. Ferragina, P. & Manzini, G. Opportunistic data structures with applications;
doi:10.1109/SFCS.2000.892127 in Proceedings of the 41st Symposium on
Foundation of Computer Science (FOCS 2000) 390–398 (IEEE Computer
Society, 2000).

 the Fmindex of the Bwt sequence first described in this paper is the
fundamental result that has been leveraged by each of Bwt-based
alignment programs. the sequencing matching algorithm described
here has been incorporated into each of the methods, with extensions
to handle the specific problems of mismatches, gaps and paired reads.

19. Gräf, S. et al. Optimized design and assessment of whole genome tiling

S12 | VOL.6 NO.11s | NOVEMBER 2009 | nature methodS SuPPLement

review

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

nature methods | 1

corrigenda

Corrigendum: Sense from sequence reads: methods for alignment and
assembly

Paul Flicek & Ewan Birney
Nat. Methods 6, S6–S12 (2009); published online 15 October 2009; corrected after print 6 May 2010.

In the version of this article initially published online, the caption to Figure 3b was mislabeled. It shows a de Bruijn graph of two plasmids
partially overlapping in sequence. The error has been corrected in the HTML and PDF versions of the article.

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

 A
ll

ri
g

h
ts

 r
es

er
ve

d
.

	Sense from sequence reads: methods for alignment and assembly
	Alignment
	Hash-based alignment methods.
	Burrows-Wheeler transform methods.

	Assembly
	Discussion
	Figure 1 | Schematic of a hash table-based alignment strategy.
	Figure 2 | The Burrows-Wheeler transform for genomic sequence data.
	Figure 3 | Constructing and visualizing a de Bruijn graph of a DNA sequence.
	ACKNOWLEDGMENTS
	COMPETING INTERESTS STATEMENT
	REFERENCES

