Dali: an algorithm for optimal structure alignment using distance matrices

"Protein Structure Comparison by alignment of distance matrices" by Liisa Holm & Chris Sander Presentation by: Athina Ropodi

- Introduction
- Dali algorithm
- Results
- Output
- DaliLite

Introduction

- Most newly determined protein sequences can be classified into families by sequence homology.
- However, protein families are known to retain the shape of the fold even when sequences share few similarities at the sequence level.
- These similarities can be detected by structural comparisons that merge protein families of known 3-D structure into structural classes.

Introduction

A significant tool for the comparison of protein structures is the distance matrix.

It is a 2D representation of the 3D structure, as it contains all pairwise distances between atoms – in this case Cα atoms.

They can be obtained by X-ray crystallography and Nuclear Magnetic Resonance (NMR).

- Introduction
- Dali algorithm
- Results
- Output
- DaliLite

Dali algorithm

- The "Protein Structure Comparison by alignment of distance matrices" by Liisa Holm & Chris Sander was first published in1993.
- It was implemented in Fortran-77
- The name stands for Distance-matrix ALIgnment.

Dali algorithm – Methods

Given proteins A and B, we define:

$$S = \sum_{i=1}^{L} \sum_{i=1}^{L} \phi(i, j)$$

• where i, j label pairs of matched residues, L is the number of these pairs, and φ the similarity measure based on the distances d_{ij}^A, d_{ij}^B

Dali algorithm – Similarity scores

Objective: the search for the largest common substructure between 2 proteins Since pairs in the long distance are abundant Rigid similarity score: contribution their weighted down by the

is

envelope function:

 $w(r) = \exp(-r^2 / a^2)$

where $\alpha = 20$ Å calibrated

on the size of a typical

$$\phi^{\mathbf{R}}(i,j) = \theta^{\mathbf{R}} - |d_{ij}^{\mathbf{A}} - d_{ij}^{\mathbf{B}}|,$$

where θ is the similarity threshold

Elastic similarity score:

$$\phi^{\mathbf{E}}(i,j) = \begin{cases} \left(\theta^{\mathbf{E}} - \frac{|d_{ij}^{\mathbf{A}} - d_{ij}^{\mathbf{B}}|}{d_{ij}^{*}}\right) w(d_{ij}^{*}), & i \neq j \\ \\ \theta^{\mathbf{E}}, & i = j \end{cases}$$
domain

where d_{ii}^{*} the average of the distances, and w is an envelope function.

Dali: a greedy algorithm

- It consists of 2 basic steps:
 - Performs systematic comparisons of all elementary patterns (here hexapeptides).
 Similar patterns are stored in the "pair list"
 - 2. A Monte Carlo algorithm is used to deal with the combinatorial complexity of assembling patterns into larger consistent sets of pairs.

Dali: 1st step

- In the first step of the algorithm, similar submatrices of size six in two proteins are found by comparing their distance matrices.
- These comparisons result in alignments of size six between two proteins. Then, compatible alignments are merged to obtain larger alignments called seeds.

Example of merging of co alignments

Upon comparison of distance matrices of proteins *A* and *B*, matrix component (*a*, *b*) is aligned to (*a*', *b*')

Example of merging of compatible alignments

Example of merging of compatible alignments

Since the two alignments are overlapping, *they are checked for compatibility.* If the nine matrix components for these two alignments are found similar to each other, alignments are merged to obtain a seed of (*a*, *b*, *c*) -(a', b', c').

the two pairs combined

collapse

c' b'

a' b' c'

Dali:1st step

A. Distance matrices

llyz

No. of overlapping hexapeptides	124
Total no. of contact patterns	7626
No. of contact patterns in reduced distance matrix	5332
2lzm	
No. of overlapping hexapeptides	159
Total no. of contact patterns	12,561
No. of contact patterns in reduced distance matrix	4709
B. Pair list	
Total no. of pairs of contact patterns	96×10^{6}
Total no. of pairs of contact patterns after reduction	71×10^{6}
No. of checks by filters on row/column sumst	9×10^{6}
No. of residue-by-residue similarity score calculations	2×10^{5}

No. of residue-by-residue similarity score calculations No. of kept pairs of contact patterns after ranking by score

 4×10^4

Dali: Monte Carlo optimization

- The key idea is iteratively improving by a random exploration of the search space with occasional moves into non-optimal territory.
- A move is a randomly chosen change. The probability of accepting a move is:

$$p = \exp\left(\beta^*(S' - S)\right)$$

- where S',S the new and old scores, and β a parameter, inversely proportional to the temperature.
- Moves that improve the score are always accepted, but the higher the temperature the more probable are excursions downhill.

Dali: Monte Carlo optimization

- The basic moves are addition and deletion.
- A chain of configurations is called trajectory. For every trajectory the highest score is remembered.
- Optimization starts with a seed alignment.
- One expansion cycle corresponds to randomly testing all expansion candidates in the pair list.
- The addition of a new fragment may require the removal of inconsistent previous assignments.

Dali: selection protocol

- The range of alignments is narrowed onto the highest scoring ones in 3 stages.
- In stage 1, the pair list is screened for all triplets of non-overlapping hexapeptides.

A trimming cycle is performed after the first and every 5 consecutive expansion cycles

Dali: selection protocol (stage1)

- Singlets that overlap are merge into 1 seed.
- The maximum number of seeds is 100.
- Each seed initializes a trajectory and goes through one cycle.
- If the assignments of 2 trajectories are more than 50% identical, then the one with the lowest score is rejected.
- In practice, keeping the 10 highest scoring trajectories gives good results.

Dali: selection protocol (stage 2)

- Optimization is continued until the score has settled in an optimum, i.e. for 20 cycles.
- We reject trajectories with more than 80% identity with higher scoring ones.
 - Trajectories with a score smaller than a fraction of the best score are also rejected.

Dali: selection protocol (stage 3)

Refinement of the best scoring trajectory.

- The best alignment is used to initialize 10 parallel trajectories with 30% of aligned blocks removed.
 - These are optimized as in stage 2, until the best score no longer improves.

Dali: Monte Carlo optimization

C. Monte Carlo optimization

Screening	
No. of parallel trajectories	80
No. of expansion/trimming cycles [‡]	1
No. of kept alignments after ranking by score	10
Optimization of divergent alignments	
No. of parallel trajectories	10
No. of expansion/trimming cycles [‡]	80
No. of kept alignments after ranking by score	1
Refinement of best alignment	
No. of parallel trajectories 🧹	10
No. of expansion/trimming cycles [‡]	40
No. of kept alignments after ranking by score	1

- Introduction
- Dali algorithm
- Results

Output

DaliLite

Results

In order to test whether the highest score found is the global optimum, comparisons with random number of seeds were performed.

The algorithm converged to within 2% of the global optimum score with 96% fidelity.

Results

- To test the radius of convergence, alignments were generated from all seeds (even from the ones that would have been rejected).
- The vast majority corresponded to incorrect optima.

Thus, the optimization procedure is not overly sensitive to the choice of initial alignment.

- Introduction
- Dali algorithm
- Results
- Output

Output- structural alignment

Obviously, an elastic score gives more common core residues than a rigid one.

Protein structure family trees by average linkage clustering

- Introduction
- Dali algorithm
- Results

Output

DaliLite

DaliLite workbench

- The Dali server is routinely used
 - 1. to compare newly solved structures against those in PDB,
 - 2. to compare predicted structures to the real ones and
 - 3. to maintain the FSSP database of structural networks.
- It is available on the internet
- There is now a stand-alone distribution which contains programs written in Perl and Fortran77

DaliLite workbench-Characteristics

- Two alignment options –pairwise comparison and database search.
- The input is one or two sets of atomic coordinates of proteins in PDB format.
- The output is a FSSP file
- A visualization script is included to convert FSSP alignments to graphical output.

http://www.ebi.ac.uk/DaliLite/

EMBL-EBI	arch All Databas	ses 🔽 En	ter Text Here		Go	Reset ? Give us Advanced Search					
Databases Tools	EBI Groups	Training	Industry	About Us	Help	Site Index 🔝 🎒					
Help Index	EBI > Tools > S	tructural Analysis									
 General Help 	DaliLite Pairwise comparison of protein structures										
 Formats References DaliLite Help 	DaliLite is a program for pairwise structure comparison. Compare your structure(first structure) to a reference structure(second structure).										
 DaliLite Programmatic Access 	RE int	<u>SULTS</u> reractive	SEARCH TI	TLE	YOUR EMAIL						
	First Structure	B entry code:	Chain ID:		or upload a file ir (.pdb,.ent,.dat,.br	N PDB format					
	Second Structure	B entry code:	Chain ID:		or upload a file ir (.pdb,.ent,.dat,.br	<u>Αναζητηση</u> <u>PDB format</u> <u>k)</u> <u>Αναζήτηση</u>					
					6	Run DaliLite Reset					

http://ekhidna.biocenter.helsinki.fi/ dali_server/

Dali serve	r			Institute of Biotechnology
SERVICES & TOOLS	GROUP MEMBERS	NEWS & VACANCIES	RESEARCH	PUBLICATIONS
^o rotein Str	ucture Data	abase Searc	hing by Dali	Lite v. 3
The Dali server is a net structure and Dali com the search has finishe are not detectable by c	work service for compar pares them against tho d. In favourable cases, comparing sequences.	ring protein structures in ose in the Protein Data B comparing 3D structures	3D. You submit the coord ank (PDB). You receive ar may reveal biologically int	inates of a query protein n email notification when reresting similarities that
f you want to know the Dali Database.	structural neighbours o	of a protein already in the	Protein Data Bank (PDB),	you can find them in the
f you want to compare	tw o p articular structure	es, you can <mark>do it</mark> in the pai	rwise DaliLite server.	
Upload a structu	ure:	Αναζήτηση		
Or enter PDB ide	entifier: cha	ain: (optional)		
Enter email add	ress for notificatior	1:		
Repeat email ad	dress:			

PDB search results for epidermal growth factor 1egf

DaliLite: Structural Neighbours

Query: mol1A MOLECULE: EPIDERMAL GROWTH FACTOR;

Matches are sorted by Z-score. Similarities with a Z-score lower than 2 are spurious.

Summary

No:	Chain	Z	rmsd	lali	nres	%id	Description
1:	1egf	12.7	0.0	53	53	100	EPIDERMAL GROWTH FACTOR (EGF) (NMR, 16 STRUCTURES)
2:	3egf	10.6	1.0	53	53	100	EPIDERMAL GROWTH FACTOR (EGF) (NMR, 16 STRUCTURES AFTEF
3:	1 mox - D	4.4	3.0	46	48	28	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
4:	1ivo-C	4.3	2.7	44	47	61	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
5:	1 mox - C	4.2	3.1	47	49	30	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
6:	1ivo-D	4.2	2.7	44	47	61	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
7:	1j19-A	4.1	2.2	41	42	71	MOLECULE: EPIDERMAL GROWTH FACTOR;
8.	1vdt-R	3 9	2 0	40	41	33	MOLECHLES DIPHTHERIA TOXINS

PDB search results for epidermal growth factor legf

Da

root-mean-square deviation of C-a atoms in the leastsquares superimposition of Que the structurally equivalent C-a atoms. The program Match does not optimise rmsd.

ghbours

PIDERMAL GROWTH FACTOR;

ore lower than 2 are spurious.

Summar

No:	Chain	Z	rmsd	lali	nres	%id	Description
1:	1egf	12.7	0.0	53	53	100	EPIDERMAL GROWTH FACTOR (EGF) (NMR, 16 STRUCTURES)
2:	3egf	10.6	1.0	53	53	100	EPIDERMAL GROWTH FACTOR (EGF) (NMR, 16 STRUCTURES AFTEF
3:	1mox-D	4.4	3.0	46	48	28	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
4:	1ivo-C	4.3	2.7	44	47	61	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
5:	1 mox - C	4.2	3.1	47	49	30	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
6:	1ivo-D	4.2	2.7	44	47	61	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
7:	1j19-A	4.1	2.2	41	42	71	MOLECULE: EPIDERMAL GROWTH FACTOR;
8.	1vdt-R	3 9	2 0	40	41	33	MOLECHLE. DIBHTHERIA TOXIN.

PDB search results for epidermal growth factor 1egf

DaliLite: Structural Neighbours

Query: mol1A MOLECULE: EPIDERMAL GROWTH FACTOR;

Matches are sorted by Z-score. Similarities with a Z-score lower than 2 are spurious.

Summary

No:	Chain	Z	rmsd	lali	nres	%id	Description
1:	1egf	12.7	0.0	53	53	100	EPIDERMAL GROWTH FACTOR (EGF) (NMR, 16 STRUCTURES)
2:	3egf	10.6	1.0	53	53	100	EPIDERMAL GROWTH FACTOR (EGF) (NMR, 16 STRUCTURES AFTEF
3:	1 mox - D	4.4	3.0	46	48	28	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
4:	1ivo-C	4.3	2.7	44	\neg	61	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
5:	1 mox - C	4.2	3.1	47	numb	er of	PLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
6:	1ivo-D	4.2	2.7	4	. 1 1		LECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
7:	1j19-A	4.1	2.2	4:	struct	urally	LECULE: EPIDERMAL GROWTH FACTOR;
8.	1vdt-R	39	2 0	41	eauiv	alent	I.F.C.II.F. DIPHTHERIA TOXIN.
					Cyurv	aicin	
					residu	Jes	

PDB search results for epidermal growth factor legf

DaliLite: Structural Neighbours

Query: mol1A MOLECULE: EPIDERMAL GROWTH FACTOR;

Matche:	s are sorte	ed by Z	-score.	Simila	rities	n ami	umber of no acids in re spurious.
Sun	nma	ry				th	e protein
No:	Chain	Z	rmsd	lali	nres	%id	Description
1:	1egf	12.7	0.0	53	53	100	EPIDERMAL GROWTH FACTOR (EGF) (NMR, 16 STRUCTURES)
2:	3egf	10.6	1.0	53	53	100	EPIDERMAL GROWTH FACTOR (EGF) (NMR, 16 STRUCTURES AFTEF
3:	1mox-D	4.4	3.0	46	48	28	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
4:	1ivo-C	4.3	2.7	44	47	61	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
5:	1 mox - C	4.2	3.1	47	49	30	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
6:	1ivo-D	4.2	2.7	44	47	61	MOLECULE: EPIDERMAL GROWTH FACTOR RECEPTOR;
7:	1j19-A	4.1	2.2	41	42	71	MOLECULE: EPIDERMAL GROWTH FACTOR;
8.	1vdt-R	39	2 0	40	41	33	MOLECHLE. DIPHTHERIA TOXIN.

PDB search results for epidermal growth factor 1egf

DaliLite: Structural Neighbours

Query: mol1A MOLECULE: EPIDERMAL GROWTH FACTOR;

Matches are sorted by Z-score. Similarities with a Z-score lower than 2 are spurious.

Summary

No:	Chain	Z	rmsd	lali	nres	%id	Description
1:	1egf	12.7	0.0	53	53	100	EPIDERMAL GROWTH FACTOR (EGF) (NMR, 16 STRUCTURES)
2:	3egf	10.6	1.0	53	53	100	SIDERMAL GROWTH FACTOR (EGF) (NMR, 16 STRUCTURES AFTER
3:	1mox-D	4.4	3.0	46	48	28	M CULE: EDIDEDWAL CROUTH EACTOR DECEPTOR;
4:	1ivo-C	4.3	2.7	44	47	61	MOL Percentage of EPTOR;
5:	1 mox - C	4.2	3.1	47	49	30	MOLECE PERCENTAGE OF EPTOR;
6:	1ivo-D	4.2	2.7	44	47	61	MOLECULE identical amino acids EPTOR;
7:	1j19-A	4.1	2.2	41	42	71	MOLECULE over all structurally
8.	1xdt-R	3 9	2 0	40	41	33	
							equivalent residues

PDB search results for epidermal growth factor legf

Pairwise Structural Alignments

Notation: three-state secondary structure definitions by DSSP (reduced to H=helix, E=sheet, non-equivalent residues (e.g. in loops) are in lowercase. Amino acid identities are marked by

No 1: Query=mol1A Sbjct=1egf Z-score=12.7

DSSP	LEELLLLLLLLLLLEEEEELLLLLEEEELLLLLLLLLLL	
Query	NSYPGCPSSYDGYCLNGGVCMHIESLDSYTCNCVIGYSGDRCQTRDLRWWELR	53
ident		
Sbjct	NSYPGCPSSYDGYCLNGGVCMHIESLDSYTCNCVIGYSGDRCQTRDLRWWELR	53
DSSP	LEELLLLLLLLLLLEEEEELLLLLEEEELLLLLLLLLLL	

No 2: Query=mol1A Sbjct=3egf Z-score=10.6

DSSP	LEELLLLLLLLLLLEEEEELLLLLEEEELLLLLLLLLLL	
Query	NSYPGCPSSYDGYCLNGGVCMHIESLDSYTCNCVIGYSGDRCQTRDLRWWELR	53
ident		
Sbjct	NSYPGCPSSYDGYCLNGGVCMHIESLDSYTCNCVIGYSGDRCQTRDLRWWELR	53
DSSP	LEELLLLLLLLLLLEEEEELLLLLEEEELLLLLLLLLLL	

Bibliography

- "Protein Structure Comparison by alignment of distance matrices",1993, Liisa Holm & Chris Sander
- "Dali: a network tool for protein structure comparison", 1995, Liisa Holm & Chris Sander
- "DaliLite workbench for protein structure comparison", 2000, Liisa Holm & John Park
- "Computational Methods for Protein Structure Prediction and Modeling, Volume 1: Basic Characterization", Ying Xu, Dong Xu, and Jie Liang, p.151-155
 - "Introduction to Bioinformatics", Arthur M. Lesk, 2002,p.221-222
- BIOINFORMATICS-A Practical Guide to the Analysis of Genes and Proteins", SECOND EDITION, Andreas D. Baxevanis, B. F. Francis Ouellette, p.100,275

The end...

