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1 Introduction

There is a plethora of ways to model biological systems, depending on size, detail required and
questions asked. One method consists in writing down a collection of coupled ordinary differen-
tial chemical equations, where each equation describes a number of reactions. The variables are
the time dependent concentrations of participating molecules, and the parameters are reaction
rate constants. In this approach, where dependences on spatial location are neglected, except for
the consideration of different cellular compartments such as cytoplasm or nucleus, reactions are
assumed to occur homogeneously throughout the compartmental volume. Concentrations are
defined for large numbers of molecules, such that when numbers change by one or two units in
a reaction, these changes can be treated differentially. Moreover when the number of molecules
is large any two reactions can take place at the same time. The system of ordinary differential
equations for concentrations thus represents a collections of reactions occurring simultaneously
all through the reaction volume.

The simplifying features of this approach break down when the numbers of molecules be-
come small, and reactions now occur in some random order rather than simultaneously. One
then needs to adopt a new language for the description of the system: probabilities for the state
of the system defined by the number of molecules of each type at a given time, replace the
differentiable concentrations. These probabilities evolve in time as such or such reaction takes
place randomly among all possible reactions. Gillespie’s algorithm (Gillespie, 1977), which is
the subject of this tutorial, is a way of implementing consistently this probabilistic description
of a biological system. The probabilistic description by its very nature applies to single cells.
The connection with molecular concentrations appears when, in the probabilistic formalism, av-
erages are taken over many cells. These averages satisfy the same equations as concentrations.
Thus the behavior of concentrations can be interpreted as that of a population average, provided
that fluctuations around the average are small.

1



Noise can play an important role in single cell behavior (for a recent review see Rao et al.,
2002), which is hidden when only population average is measured. An example is the all-or-
none single cell response observed by Ferrell and Machleder (1998) in Xenopus oocytes under
progesterone stimulation, whereas average response is graded. Another example is based on
NF-κB oscillations observed both for cell populations (Hoffmann et al. 2002) and single cells
(Nelson et al., 2004) in cells stimulated by TNFα. It is illustrated in Figure 1, which shows
how average oscillatory behavior (the full line) is a poor description of single cell oscillations
(broken lines) that differ in both amplitude and phase (Hayot and Jayaprakash, 2006) because
of fluctuations in the signaling cascade components set into motion inside the cell by TNFα.

The tutorial is based on the study of a very simple model of gene transcription and translation
(Thattai and Van Oudenaarden, 2001). Section 2 describes the model, its implementation as a
set of ordinary differential equations, and proposes a MATLAB program to investigate it numer-
ically. Section 3 contains a series of remarks on Poisson processes, and provides an introduction
to the probabilistic approach to biological reactions based on the Master equation. In section
4 the Master equation for the Thattai-Van Oudenaarden model (2001) is established. Section
5 contains a general description of Gillespie’s algorithm, and its application to the Thattai-Van
Oudenaarden model, which for the purpose of numerical simulations is written down in a MAT-
LAB program. In section 6, an extended version of the model allows the distinction between
intrinsic and extrinsic fluctuations. Section 7 contains a few remarks on the numerical efficiency
of Gillespie’s algorithm.
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Figure 1:
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2 A simple model of cellular transcription and translation (That-
tai and Van Oudenaarden, 2001). Population or concentration
behavior.

Consider the following set of chemical reactions for transcription of a gene D into mRNA, and
subsequent translation of the latter into proteins:

D
k1→ D + M (1)

M
k2→ M + P (2)

with reaction rates k1 and k2, respectively. The mRNA, called M , as well as the protein, denoted
by P , are degraded through the reactions

M
k3→ ∅ (3)

P
k4→ ∅ (4)

with k3 and k4 the corresponding rate constants, or equivalently with respective half-lives τ3 =
ln2

k3
and τ4 = ln2

k4
.

The chemical rate equations for the concentrations [M] and [P] of mRNA M and protein P

are:

d[M ]/dt = k1[D] − k3[M ] (5)

d[P ]/dt = k2[M ] − k4[P ] (6)

This is a simple system, linear in the concentrations, such that in steady state [M ] = k1

k3
[D], [P ] =

k2

k4
[M ]. An important parameter is b, the average number of proteins produced in a mRNA life-

time, which is b = k2/k3. b is called burst factor; the distribution of proteins in a burst has been
recently measured (Cai et al., 2006; Yu et al., 2006).

Programs in MATLAB: beginTVO.m and TVO.m
Instead of concentrations we use number of molecules (system is linear); we take the number of
D’s equal to 1 (haploid cell).

Simulations:
Figure 2
We plot the number of proteins P as a function of time until steady state is reached. Start

from the initial state D = 1, P = M = 0, and use parameter values k1 = 0.01 sec−1, k3 =

0.00577 sec−1(τ3 = 2min), k4 = 0.0001925 sec−1(τ4 = 1hour), b = 20.
Notice that in order to reach steady state from the given initial state, one must run in time of the
order of 10 times the longest time scale of the system, which here is the protein lifetime. At 6
times the protein lifetime, one is still a few percent away from the calculated steady state value.

The predicted steady state value are (see expressions following equation 6) M = 1.73,
P = 1039. Note that because M is very small (M = 1.73), the interpretation is that on
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average over a population M=1.73 (see the second paragraph of the introduction). For the
model considered, the deterministic formalism is not appropriate for the description of cellular
mRNA content.
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Figure 2:

Figure 3
Do the same numerical experiment for b = 2 by dividing the value of k2 (rate of translation

of mRNA) by 10. The steady state value of M is the same as previously, whereas that of P is
divided by 10.

3 Notes on Poisson distribution

The expression of a Poisson probability distribution P (n) for n events is

P (n) =
n̄n exp−n̄

n!
(7)

Properties:
-
∑

n P (n) = 1

-
∑

n nP (n) = n̄ =< n >, the average number of events
-
∑

n n2P (n) = n̄2 + n̄ =< n2 >

Thus for a Poisson distribution the variance σ2 =< n2 > − < n >2=< n >, and the coef-
ficient of variation Cv = σ/ < n >= 1/

√
< n >. One also finds in the literature the Fano

factor F = σ2/ < n >, which is equal to 1 for a Poisson distribution.
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3.1 Remarks

1. Homogeneous and inhomogeneous Poisson process
If the Poisson process takes place at a rate r for a time T , then in the above expression

n̄ = r T . For a constant rate the Poisson process is called homogeneous, for a time dependent
rate inhomogeneous. One then has

P (n) =
(rT )n exp−rT

n!
(8)

2. Numerical implementation of a Poisson process.
For both homogeneous and inhomogeneous Poisson processes, and for a choice of time step

∆t such that r ∆t < 1, one draws at each time step a uniformly distributed random number
xrand between 0 and 1. If r ∆t > xrand an event takes place. This method is based on the fact
that for sufficiently small ∆t, P (1) = r ∆t, and P (0) = 1 − r ∆t.
3. Time distribution between successive events for a constant rate Poisson process.

Suppose an event occurred at time t. What is the probability P (τ) that the next one takes
place between t + τ and t + τ + dτ? One can decompose the probability in the following way:

P(τ )=(probability that no event takes place between t and t + τ ) × (probability that one
event occurs between t+ τ and t+ τ + dτ )= exp(−r τ) r dτ , where r is the constant rate of the
Poisson process.

The probability density function for successive time intervals is therefore a decaying expo-
nential

p(τ) = r exp(−r τ) (9)
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Properties:
-
∫

∞

0
dτ p(τ) = 1

- < τ >= 1/r

- < τ2 >= 2/r2

- σ2 =< τ2 > − < τ >2= 1/r2, and therefore the coefficient of variation Cv = σ/ < τ >= 1

4. Numerical implementation of an exponential probability density distribution
If x is a random number uniformly distributed between 0 and 1 (p(x) = 1) then y =

−(1/r) ln x is randomly distributed according to p(y) = r exp(−ry), for y varying from 0 to
∞.
Proof: since y is a monotonic function in x, p(y)dy = p(x)dx = dx. Thus p(y) = |dx/dy| =

r exp(−ry).
5. Master equation for ”one-step” (or ”birth-and-death”) processes (Van Kampen,

1992)
Consider a continuous time stochastic process where one takes steps on the integers, with

permissible jumps between adjacent integers only, and (time independent) transition rates rn for
n → n− 1 and gn for n → n + 1. (Examples: absorption and emission of particles, arrival and
departure of customers)

Probability pn(t + ∆t) to be at site n at time t + ∆t is given by:

pn(t + ∆t) = rn+1∆t pn+1(t) + gn−1∆t pn−1(t) + (1 − rn∆t − gn∆t)pn(t) (10)

The first two terms on the right-hand side describe jumping to position n from n + 1 and n − 1

respectively, the last term expresses the probability that during a (sufficiently small) time ∆t,
the jumper, at n at time t, remains at position n from t to t + ∆t.

For ∆t → 0 the preceding equation takes the form

∂pn/∂t = rn+1pn+1 + gn−1pn−1 − (rn + gn)pn (11)

This is the Master equation of the process, an equation for the time evolution of probability
distributions. A solution requires the specification of initial time values of the probabilities.

EXAMPLES:
1.Random walk in continuous time
Here rn = p, gn = q, with p + q = 1

2. Homogeneous Poisson process
Here rn = 0, gn = r with initial condition pn(0) = δn,0.
From comparison with equation (11), the Master equation is

∂pn/∂t = r(pn−1 − pn) (12)

Solution:
the system of equations (12) can be solved recursively starting with the equation for p0, namely
∂p0/∂t = −r p0 (p−1(t) = 0), and then proceeding to the solution for p1, and so on, ending up
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with pn(t) = (rt)n exp(−rt)/n!, the probability of being at position n at time t.
Above, for a homogeneous Poisson process (see equation 8), we described the same probability
as the probability of having n events in time t. If we replace ”events” by ”molecules” and

interpret transition rates rn and gn as chemical rate constants (multiplied by the number n of
molecules) for reactions describing respectively transitions from a state with n molecules to one

with n− 1, and from a state of n molecules to one with n+1, the stochastic ”one step process”
Master equation (for space and time independent rate constants) becomes an example and the

paradigm for dealing with stochasticity in chemical reactions.
A case in point is provided by the following example of production and decay of mRNA taken
from the Thattai-Van Oudenaarden model (see section 2).
3. ”Birth-and-death” process”: production and decay of mRNA

Consider equations (1) and (3) which describe production and decay of mRNA M . Let
pn(t) be the probability of having n molecules of mRNA at time t. The corresponding Master
equation (see equation 11) is ( for nD = 1)

∂pn/∂t = k1[pn−1 − pn] + k3[(n + 1)pn+1 − npn]

The steady state solution, which satisfies equation (n + 1)pn+1 = npn + k1/k3[pn − pn−1] can
be found recursively, such that

p1 = k1/k3 p0; p2 = 1/2(k1/k3)
2 p0; pn = 1/n!(k1/k3)

n p0

with p−1 = 0.
Normalization of this probability function then gives p0 = exp(−k1/k3).
The steady state distribution of M thus follows a Poisson distribution, with average steady state
value equal to k1/k3 (see equation 5).
4. Generating function

Before deriving the full Master equation for the Thattai-Van Oudenaarden model in the next
section, we show how the homogeneous Poisson process Master equation (12) can be solved by
a general method, that of generating function. The generating function for the pn(t)’s is defined
as

F (z, t) =
∑

n

znpn(t) (13)

such that
F (1, t) = 1, (∂F/∂z)z=1

=< n(t) >, (∂2F/∂z2)z=1
=< n(t)(n(t) − 1) >

We now multiply equation (12) by zn and sum over n. We obtain the following equation
satisfied by the generating function of a homogeneous Poisson process of constant rate r

∂F (z, t)/∂t = r(z − 1)F (z, t) (14)

with initial condition F (z, 0) = 1 corresponding to pn(0) = δn,0.
The solution of (14) is
F (z, t) = exp[r(z − 1)t] = exp(−rt)

∑

n(rtz)n/n!

from which one recovers the usual expression for pn(t), namely expression (8).

7



4 Master equation for the Thattai-Van Oudenaarden model

The reactions of the model, given in section 2, are

D
k1→ D + M

M
k2→ M + P

M
k3→ ∅

P
k4→ ∅

We have already derived the Master equation for the two reactions involving M only (see ex-
ample 3 in 3.1.5). The relevant probability here is P (nP , nM , t), the probability of having at
time t in the volume considered nP proteins P and nM mRNA M . The procedure for deriving
the Master equation satisfied by P is the same as that illustrated above (section 3.1.5.) for ”one-
step” processes (equation (10)). One calculates P (nP , nM , t + ∆t) (∆t → 0) from the state
of the system at time t: there are contributions from each reaction, as well as from the situation
where, during time ∆t, the state of the system does not change. The result is:

∂P (nP , nM , t)/∂t = k2nM [P (nP − 1, nM , t) − P (nP , nM , t)]

+ k3[(nM + 1)P (nP , nM + 1, t) − nMP (nP , nM , t)]

+ k1nD[P (nP , nM − 1, t) − P (nP , nM , t)]

+ k4[(nP + 1)P (nP + 1, nM , t) − nPP (nP , nM , t)] (15)

This is the Master equation for the Thattai-Van Oudenaarden model (2001). We will put nD = 1

(nD is the number of DNA molecules) from now on. This equation is relatively simple, because
the number of reactions is small, and reactions are linear in the components. A result of the
latter is that reaction constants are simply rates, without any volume dependence. We will
discuss more general cases later when describing Gillespie’s algorithm. Much can be learned
about first and second moments by multiplying both sides of the Master equation by nP , or n2

P

and similarly for nM , and summing over all nP and nM to obtain < nP >, or < n2
P >, and

so on. The angular brackets correspond to the average over a population of cells. One can also
obtain first and second order (or higher) moments from the generating function F (z1, z2, t) =
∑

nP ,nM
znP

1 znM

2 P (nP , nM , t), which here satisfies the equation

∂F/∂t = (z1 − 1)(k2z2∂F/∂z2 − k4∂F/∂z1) + (z2 − 1)(−k3∂F/∂z2 + k1F ) (16)

For the first order moments < nM > and < nM >, obtained respectively from (∂F/∂z2)z1=z2=1

and (∂F/∂z1)z1=z2=1 we find

∂ < nM > /∂t = −k3 < nM > +k1 (17)

∂ < nP > /∂t = −k4 < nP > +k2 < nM > (18)

These equations for population averages are similar to the concentration equations (cf. equa-
tions 5 and 6) derived previously. When fluctuations around averages are small, concentrations

8



represent averages over cell populations divided by cell volume.
In all cases there are fluctuations embodied in the second and higher moments. At steady state
one finds the following for the Thattai-Van Oudenaarden model
σ2

M =< n2
M > − < nM >2=< nM >

σ2
P / < nP >2= 1

<nP > [1 + k2/(k3 + k4)]

The stochastic behavior of mRNA is Poisson. It corresponds to a ”birth-and-death” process, as
we have seen before (see 3.1.5). As to protein number fluctuations, there is an additional term
besides the Poisson term, corresponding to the fact that mRNA, from which protein is trans-
lated, is itself stochastic. Often mRNA lifetimes (of the order of minutes) are much smaller than
protein lifetimes (of the order of hours): thus k4/k3 << 1 and one has simply
σ2

P / < nP >2' 1+k2/k3

<nP > = 1+b
<nP > ,

where b is the average number of proteins produced in a mRNA lifetime, as defined in section
2.

5 Gillespie’s algorithm (Gillespie, 1977)

Generally biological systems are much more complex than the Thattai- Van Oudenaarden model
(2001). The number of reactions in a single cell can be in the tens and larger; many reactions
such as dimerization or the binding of an enzyme to its substrate have nonlinear components.
Though one can in principle write down the Master equation, or the partial differential equation
satisfied by the generating function, these are unwieldy, too complicated to be solved by means
other than numerical. Fortunately there is the straightforward numerical algorithm developed by
Gillespie (1977), which he showed to be equivalent to solving the Master equation of a system
of chemical reactions in a well stirred container. The crux of the algorithm is the drawing of two
random numbers at each time step, one to determine after how much time the next reaction will
take place, the second one to choose which one of the reactions will occur.

Suppose there are µ = 1, 2, .... reactions. We consider reactions with at most two species
(the probability of three species reacting at the same spot and time is considered negligible).
The quantity characterizing each reaction is the probability aµ(t)dt that given the state of the
system at time t, reaction µ will occur in volume V in (t, t+dt). aµ(t) is the product of two parts:
the reaction rate cµ for a particular reaction µ, which is related to the chemical rate constants for
that reaction, and the number of possible reactions µ in volume V. For example, for reaction

P1 + P2 → Z (19)

where Z is the heterodimer formed of P1 and P2, one has
aµ(t) = cµP1P2

If P2 is identical to P1, then
aµ(t) = cµP1(P1 − 1)/2 (20)

where P1(P1 − 1)/2 is the number of distinct pairs of P1.
Remark: relation between cµ’s and chemical constants k
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By definition the cµ’s are rates with dimension of an inverse time. When for a given reaction
the chemical constant has the dimension of an inverse time, as is the case of the reactions of the
Thattai-Van Oudenaarden model, the cµ is simply equal to the corresponding k. However for
reaction (19), namely

P1 + P2
k→ Z (21)

which in a deterministic approach with concentrations reads

d[Z]/dt = k[P1][P2] (22)

the chemical constant k has dimension of volume divided by time. Therefore here

cµ = k/V (23)

where V represents the volume of the region in which the reaction takes place.
If P1 and P2 are the same as in (20) then cµ = 2k/V .

In cases like these chemical rate constants are expressed in inverse molars and inverse seconds.
It is useful to note that 1 nM corresponds to 1 particle in a volume of 1.6 µ3.

Implementation of Gillespie’s algorithm (Gillespie, 1977)
Suppose the system is known at time t, which means the number of molecules of each type

is known, and consequently the quantities aµ(t) are known for each reaction. Call a0(t) the sum
of all aµ(t).
Then do the following steps:

1. find the time τ after t at which the next reaction will take place, by drawing a random
number from an exponential probability density function of rate a0 ( p(τ) = a0 exp(−a0τ)).
The reasoning is the same as in point 3 of section 3.1.

2. choose now at random the reaction which will occur at time t+τ . Draw a random number
from a uniform distribution between 0 and 1. If that number falls between 0 and a1/a0 reaction
1 is chosen, between a1/a0 and (a1 + a2)/a0 reaction 2 is chosen and so on.

3. the occurrence of the chosen reaction at time t + τ changes the numbers for molecules
involved in the reaction, for example for the forward reaction of (19) P1 → P1−1, P2 → P2−1,
and Z → Z + 1. Thus the values of the aµ which depend on any of these numbers change. One
then goes back to point 1 of the algorithmic implementation with a new distribution of molecules
at time t + τ . The process is reiterated for as long as one wishes to follow the evolution of the
system.

Program in MATLAB: tattai.m
Figure 4
For comparison with figure 2, we run the Gillespie simulation with 200 cells, with the same

parameter values as in figure 2. The results are in figure 4 where average protein number as a
function of time and other quantities are shown, in particular the comparison of average protein
number and individual cell behavior for three randomly chosen cells. Each cell starts off from
the same initial state, and ends up after a time chosen long enough to reach steady state, with
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a different number of proteins, due to internal fluctuations. The histogram based on the protein
number in each cell at the end of the run (40,000 seconds) shows a wide distribution between
cells with as few as 800 proteins to cells with as many as 1400 proteins. The program also prints
out the average number of proteins in steady state ( < nP >= 1039) for the run of figure 4, the
Fano factor σ2/ < P >= 21.42, standard deviation σP = 148.9), and coefficient of variation
Cv = 0.1439. Compare these values with the analytical results of section 2. The statistical error
on the average is equal to σP/

√
Nc, where Nc is the number of cells. Here this error is about

10. As one averages over more and more cells the statistical error decreases and one obtains
results for the average number of proteins closer to the deterministic value of figure 2.

Figure 5
This figure corresponds to figure 3 where b = 2 and therefore the average number of proteins

gets divided by 10 as compared to the case of figure 3. For the run of figure 5, < nP >= 103,
Fano factor=3.48, σP = 18.96 and Cv = 0.1835. The coefficient of variation here is 25% higher
than when the number of proteins is ten times larger (figure 4), signaling increased fluctuations
as the number of proteins decreases. The bottom right subfigure gives the mRNA histogram, for
which the average value of < M >= 1.73 (see discussion of figure 2) is a poor description of
what the actual number is in a single cell.

6 Intrinsic and extrinsic fluctuations

Rather than equation (1) of the Thattai-Van Oudenaarden model, namely

D
k1→ D + M (24)

consider the following two equations:

D + R
k
⇀↽
k′

D∗ (25)

D∗ kn→ D + R + M (26)

The remaining reactions of mRNA decay and protein P production and decay remain the same,
as given in section 2, equations (2)-(4).

In the new set of reactions, the gene promoter region is bound by a polymerase or/and a
transcription factor represented by protein R, giving complex D∗. One complex D∗ is formed,
it can transcribe mRNA.

Fluctuations in the previous system of reactions, considered as an entity by itself, are in-
trinsic to that system. If now the amount of R fluctuates between cells, then the corresponding
fluctuations are extrinsic fluctuations, since R can be considered external to the system. Clearly,
the division between what are intrinsic and what are extrinsic fluctuations is somewhat arbitrary.
In practical cases however is is mostly clear where to draw the line.

Let us now investigate our new system. Let us assume that the reactions of binding and
unbinding of R are fast fast compared to all others (an assumption which is often justified), so
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that on the longer time scales considered this reaction is at steady state. One then obtains from
the equation for D∗ the relation

k[R][D] = k′[D∗] (27)

which because [D] + [D∗] = 1/volume, leads to the following expression for D∗

[D∗] (volume) = [R]/(K + [R]) (28)

The two sides of this input [R]- output [D∗] equation are dimensionless. K = k′/k is called
a Michaelis-Menten constant, which is such that when [R] = K , the output reaches half its
maximum.

The new concentration equation for M is

d[M ]/dt = kn[D∗] − k3[M ] = kn[R]/volume(K + [R]) − k3[M ] (29)

This equation is similar to equation (5) (section 2) with the additional term [R]/(K + [R]) in
the production of M . The assumption of fast binding of R and the conservation of the sum of
D and D∗ concentrations have led to an effective equation with a Michaelis-Menten term. It
has been shown (Bundschuh et al., 2003 ) that such a form does not spoil fluctuations calculated
with the Gillespie algorithm. We now make the following assumptions:
- proteins R constitute a reservoir, and therefore their dynamics can be neglected
- the number of R varies from cell to cell according to a gaussian, with average value chosen
equal to the Michaelis-Menten constant K multiplied by the volume. Thus, if for this average
value of R we take kn/2 = k1, the new enlarged model behaves on average the same way as the
original model.

Program in MATLAB: tattaiR.m
Figure 6
This figure highlights the increase of protein P fluctuations, when external polymerase fluc-

tuations are present. All cells start off with the same initial number of constituents, except for R

whose value, for any cell, is drawn from a gaussian of given average. In program tattaiR.m the
average is 30 and the gaussian standard deviation is chosen equal to 10. The parameters are the
same as for figure 5, with in particular b=2. For the run of figure 6, the Fano factor=6.3, a dou-
bling compared with that of figure 5. The coefficient of variation Cv = 0.25 has a corresponding
increase of 40%. The probability distribution of P ’s is correspondingly wider.

Total and intrinsic noise
One can measure total noise by calculating σt, the width of the distribution of protein P , in

program tattaiR.m. This total noise is shown in figure 6 as function of time. It is the total noise,
because cell to cell fluctuations arise both internally, as in the original Thattai-Van Oudenaar-
den model, and externally because the amount of polymerase fluctuates from cell to cell. The
measured total noise is the simultaneous average over both sources of noise

σ2
t = < P 2 > − < P >

2 (30)

The brackets denote averaging over internal noise, the overbar averaging over external noise.
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Figure 7:

The intrinsic noise by itself σin can be calculated (Swain et al., 2002) at each fixed value of
external noise source (here the amount of polymerase) over all cells, and then averaged over the
probability distribution of external noise (here a gaussian for polymerase). Thus

σ2
in = < P 2 > − < P >2 (31)

Once total and intrinsic noise are known, extrinsic noise σext is obtained as

σext =
√

σ2
t − σ2

in (32)

Program in MATLAB: tattaiRin.m
Figure 7

Here is the curve for intrinsic noise, σin, as a function of time, averaged over 200 cells,
which is to be compared with the corresponding curve for σt in figure 6. σt is larger: the
difference between the two curves is extrinsic noise, defined in equation (32).

Experimentally one measures fluctuations in P , which are the result of both intrinsic and
extrinsic noise. What experimental procedure can one adopt to separate intrinsic and extrinsic
noise contributions? A methodology of using 2 identical promoter regions, coding for different
fluorescent proteins, was introduced and applied to E. coli by Elowitz et al. (2002), and similarly
used in yeast (Raser and O’Shea, 2004). For human cells infected by a virus, allelic imbalance
of interferon-β mRNA, allows a discussion and discrimination between intrinsic and extrinsic
sources of noise (Hu et al., 2006) in interferon-β production.
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7 Efficiency of Gillespie’s algorithm

Gillespie’s algorithm, when implemented in FORTRAN or C, leads to very efficient numerical
computations for systems of several tens of reactions. The exception occurs when some reac-
tions, such as a dimerization reaction, are very fast on the time scales for which the system is
observed, which are typically time scales of the order of the longest time scales of reaction dy-
namics. In this case of some very large rate constant, coupled with a reasonably large number
of molecules, Gillespie’s algorithm spends a large fraction of time selecting for updating that
very fast reaction. The computation then becomes inefficient. (For a discussion of this issue,
remedies and problems, see Bundschuh et al. (2003)).

Several methods have been proposed to accelerate Gillespie’s algorithm for large systems
of reactions, such as the ”tau-leap” stochastic algorithm (Gillespie and Petzold, 2003) and the
algorithm of Gibson and Bruck (1999). The first scheme replaces serial updating of the state
of the system through individual reactions by a probabilistic updating of many interactions in
some given time interval (under certain conditions). In the second scheme, where the problem
mentioned above with very fast reactions persists, updating takes place as in the usual Gillespie
algorithm, albeit much more efficiently, A software package, called ”Dizzy” (Ramsey et al.,
2005), is available that implements Gillespie’s algorithm and the above algorithmic improve-
ments.
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