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For the last 20 years, fragment assembly in DNA sequencing followed
the ‘‘overlap–layout–consensus’’ paradigm that is used in all currently
available assembly tools. Although this approach proved useful in
assembling clones, it faces difficulties in genomic shotgun assembly.
We abandon the classical ‘‘overlap–layout–consensus’’ approach in
favor of a new EULER algorithm that, for the first time, resolves the
20-year-old ‘‘repeat problem’’ in fragment assembly. Our main result
is the reduction of the fragment assembly to a variation of the
classical Eulerian path problem that allows one to generate accurate
solutions of large-scale sequencing problems. EULER, in contrast to the
CELERA assembler, does not mask such repeats but uses them instead
as a powerful fragment assembly tool.

Children like puzzles, and they usually assemble them by trying
all possible pairs of pieces and putting together pieces that

match. Biologists assemble genomes in a surprisingly similar way,
the major difference being that the number of pieces is larger. For
the last 20 years, fragment assembly in DNA sequencing mainly
followed the ‘‘overlap–layout–consensus’’ paradigm (1–6). Trying
all possible pairs of pieces corresponds to the overlap step, whereas
putting the pieces together corresponds to the layout step of the
fragment assembly. Our new EULER algorithm is very different from
this natural approach—we never even try to match the pairs of
fragments, and we do not have the overlap step at all. Instead, we
do a very counterintuitive (some would say childish) thing: we cut
the existing pieces of a puzzle into even smaller pieces of regular
shape. Although it indeed looks childish and irresponsible, we do it
on purpose rather than for the fun of it. This operation transports
the puzzle assembly from the world of a difficult Layout Problem
into the world of the Eulerian Path Problem, with polynomial
algorithms for puzzle assembly (in the context of DNA sequencing).

Although the classical approach culminated in some excellent
programs (PHRAP, CAP, TIGR, and CELERA assemblers among them),
critical analysis of the ‘‘overlap–layout–consensus’’ paradigm re-
veals some weak points. The major difficulty is that there is still no
polynomial algorithm for the solution of the notorious ‘‘repeat
problem’’ that amounts to finding the correct path in the overlap
graph (layout step). Unfortunately, this problem is difficult to
overcome in the framework of the ‘‘overlap–layout–consensus’’
approach. All the programs we tested made errors (up to 19%
misassembled contigs) while assembling shotgun reads from the
bacterial sequencing projects (Table 1; Fig. 1). These genomes were
assembled despite the fact that there is no error-free fragment
assembler today (by errors we mean incorrect assemblies rather
than unavoidable base-calling errors). Biologists ‘‘pay’’ for these
errors at the time-consuming finishing step (7).

How can one resolve these problems? Surprisingly enough, an
unrelated area of DNA arrays provides a hint. Sequencing by
Hybridization (SBH) is a 10-year-old idea that never became
practical but (indirectly) created the DNA arrays industry.
Conceptually, SBH is similar to fragment assembly; the only
difference is that the ‘‘reads’’ in SBH are much shorter l-tuples.
In fact, the first approaches to SBH (8, 9) followed the ‘‘overlap–
layout–consensus’’ paradigm. However, even for error-free SBH
data, the corresponding layout problem leads to the NP-
complete Hamiltonian Path Problem. Pevzner (10) proposed a
different approach that reduces SBH to an easy-to-solve Eule-
rian Path Problem in the de Bruijn graph.

Because the Eulerian path approach transforms a once diffi-
cult layout problem into a simple one, a natural question is:
‘‘Could the Eulerian path approach be applied to fragment
assembly?’’ Idury and Waterman, mimicked fragment assembly
as an SBH problem (11) by representing every read of length n
as a collection of n 2 l 1 1 overlapping l-tuples (continuous short
strings of fixed length l). At first glance, this transformation of
every read into a collection of l-tuples (breaking the puzzle into
smaller pieces) is a very short-sighted procedure, because infor-
mation about the sequencing reads is lost. However, the loss of
information is minimal for large l and is well paid for by the
computational advantages of the Eulerian path approach. In
addition, lost information can be restored at later stages.

Unfortunately, the Idury–Waterman approach, although very
promising, did not scale up well. The problem is that sequencing
errors transform a simple de Bruijn graph (corresponding to an
error-free SBH) into a tangle of erroneous edges. Moreover,
repeats pose serious challenges even in the case of error-free data.
This paper abandons the ‘‘overlap–layout–consensus’’ approach in
favor of an Eulerian superpath approach. This reduction led to the
EULER software that generated error-free solutions for all large-
scale assembly projects that were studied.

The difficulties with fragment assembly led to the introduction
of double-barreled (DB) DNA sequencing (15, 16) that was first
used in 1995 in the assembly of Haemophilus influenzae (17). The
published fragment assemblers ignore the DB data, with the
exception only of the CELERA assembler (Myers et al., ref. 18) and
GIGASSEMBLER (Kent and Haussler, ref. 19). Although a number
of sequencing centers use heuristic procedures to utilize DB
data, such approaches often fail for complex genomes. EULER-DB
analyzes DB data in a new way by transforming mate-pairs
‘‘read–intermediate GAP of length d-read2’’ (a roughly 2-fold
increase in the effective read length) into mate-reads’’ read1-
intermediate DNA SEQUENCE of length ‘‘d-read2’’ in most cases.
Assuming the clone length is 5 kb, it transforms the original
fragment assembly problem with N reads of length 500 bp into
a new problem with about Ny2 reads of length 5,000 bp. From
some perspective, EULER-DB provides an algorithmic shortcut for
the still unsolved experimental problem of increasing the read
length. This approach typically resolves all repeats except perfect
repeats that are longer than the insert length.

New Ideas
The classical ‘‘overlap–layout–consensus’’ approach to fragment
assembly is based on the notion of the overlap graph. The DNA
sequence in Fig. 2a consists of four unique segments A, B, C, D,
and one triple repeat R. Every read corresponds to a vertex in
the overlap graph, and two vertices are connected by an edge if
the corresponding reads overlap (Fig. 2b). The fragment assem-
bly problem is thus cast as finding a path in the overlap graph
visiting every vertex exactly once, a Hamiltonian Path Problem.
The Hamiltonian Path Problem is NP-complete, and the effi-
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cient algorithms for solving this problem are unknown. This is
why fragment assembly of highly repetitive genomes is a noto-
riously difficult problem.

This paper suggests an approach to the fragment assembly
problem based on the notion of the de Bruijn graph. In an
informal way, one can visualize the construction of the de Bruijn
graph by representing a DNA sequence as a ‘‘thread’’ with
repeated regions covered by a ‘‘glue’’ that ‘‘sticks’’ them together
(Fig. 2c). The resulting de Bruijn graph (Fig. 2d) consists of 4 1
1 5 5 edges (we assume that the repeat edge is obtained by gluing
three repeats and has multiplicity three). In this approach, every

repeat corresponds to an edge rather than a collection of vertices
in the layout graph.

One can see that the de Bruijn graph (Fig. 2c) is a much
simpler representation of repeats than the overlap graph (Fig.
2a). What is more important is that the fragment assembly is now
cast as finding a path visiting every edge of the graph exactly
once, an Eulerian Path Problem. There are two Eulerian paths
in the graph: one of them corresponds to the sequence recon-
struction ARBRCRD, whereas the other one corresponds to the
sequence reconstruction ARCRBRD. In contrast to the Ham-
iltonian Path Problem, the Eulerian path problem is easy to solve

Fig. 1. Comparative analysis of EULER, PHRAP, CAP, and TIGR assemblers (NM sequencing project). Every box corresponds to a contig in NM assembly produced by
these programs with colored boxes corresponding to assembly errors. Boxes in the IDEAL assembly correspond to islands in the read coverage. Boxes of the same
color show misassembled contigs; for example, two identically colored boxes in different places show the positions of contigs that were incorrectly assembled
into a single contig. In some cases, a single colored box shows a contig that was assembled incorrectly (i.e., there was a rearrangement within this contig). Repeats
with similarity higher than 95% are indicated by numbered boxes at the solid line showing the genome. To check the accuracy of the assembled contigs, we fit
each assembled contig into the genomic sequence. Inability to fit a contig into the genomic sequence indicates that the contig is misassembled. For example,
PHRAP misassembles 17 contigs in the NM sequencing project, each contig containing from two to four fragments from different parts of the genome.

Table 1. Comparison of different software tools for fragment assembly

IDEAL EULER PHRAP CAP3 TIGR assembler

CJ No. of contigs (no. of misassembled contigs) 24 (5) 29 (0) 33 (2) 54 (3) .300 (.10)
Coverage by contigs 99.5% 96.7% 94.0% 92.4% 90.0%
Coverage by misassembled contigs – 0.0% 16.1% 13.6% 1.2%

NM No. of contigs (no. of misassembled contigs) 79 (126) 149 (0) 160 (17) 163 (14) .300 (9)
Coverage by the contigs 99.8% 99.1% 98.6% 97.2% 87.4%
Coverage by misassembled contigs – 0.0% 10.5% 9.2% 1.3%

LL No. of contigs (no. of misassembled contigs) 6 (61) 58 (0) 62 (10) 85 (8) 245 (2)
Coverage by the contigs 99.9% 99.5% 97.6% 97.0% 90.4%
Coverage by misassembled contigs – 0.0% 19.0% 11.4% 0.7%

IDEAL is an imaginary assembler that outputs the collection of islands in clone coverage as contigs. In the IDEAL

column, the number in parentheses shows the overall multiplicity of tangles. CJ, NM, and LL correspond to the
Campylobacter jejuni (12), Neisseria meningitidis (NM) (13), and Lactococcus lactis (14) sequencing projects.
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even for graphs with millions of vertices, because there exist
linear-time Eulerian path algorithms (20). This is a fundamental
difference between the EULER algorithm and conventional ap-
proaches to fragment assembly.

Although de Bruijn graphs have algorithmic advantages over
overlap graphs, it is not clear how to construct de Bruijn graphs
from collections of sequencing reads. The described ‘‘gluing’’
idea requires knowledge of the finished DNA sequence that is
not available until the last step of the assembly, a Catch-22.
Below we show how to construct de Bruijn graphs from the read
data without knowing the finished DNA sequence.

The existing assembly algorithms postpone the consensus step
(error correction in reads) until the end of the fragment assem-
bly. EULER reverses this practice by making consensus the first
step of fragment assembly.

Let s be a sequencing read (with errors) derived from a genome
G. If the sequence of G is known, then the error correction in s can
be done by aligning the read s against the genome G. In real life,
the sequence of G is not known until the last ‘‘consensus’’ step of
the fragment assembly. It is another Catch-22: to assemble a
genome, it is highly desirable to correct errors in reads first, but to
correct errors in reads, one has to assemble the genome first. To
bypass this Catch-22, let us assume that, although the sequence of
G is unknown, the set Gl of all l-tuples present in G is known. Of
course, Gl is also unknown, but Gl can be reliably approximated
without knowing the sequence of G. Our error correction idea uses
this approximation to correct errors in reads. In contrast to existing
algorithms based on pairwise alignments, it utilizes the multiple
alignments of short substrings to modify the original reads and to
create a new instance of the fragment assembly problem with a
greatly reduced number of errors.

Imagine an ideal situation where error correction has eliminated
all errors, and we deal with a collection of error-free reads. Is there
an algorithm to reliably assemble such error-free reads in a large-
scale sequencing project? At first glance, the problem looks simple
but, surprisingly enough, the answer is no: we are unaware of any
algorithm that solves this problem. For example, PHRAP, CAP3, and
TIGR assemblers (with default settings) make 17, 14, and 9 assembly
errors, respectively, while assembling real reads from the NM
genome. All these algorithms still make errors while assembling the
error-free reads from the NM genome (although the number of
errors reduces to 5, 4, and 2, respectively). EULER made no assembly
errors and produced fewer contigs with real data than other
programs produced with error-free data.

To achieve such accuracy, EULER has to restore information
about sequencing reads that was lost in the construction of the
de Bruijn graph. Our Eulerian Superpath idea addresses this
problem. Every sequencing read corresponds to a path in the de

Bruijn graph called a read-path, and the fragment assembly
problem corresponds to finding an Eulerian path that is consis-
tent with all read-paths, an Eulerian Superpath Problem.

Error Correction and Data Corruption
Sequencing errors make implementation of the SBH-style ap-
proach to fragment assembly difficult. To bypass this problem,
we reduce the error rate by a factor of 35–50 and make the data
almost error-free by solving the Error Correction Problem. We
use the NM sequencing project (13) as an example. NM is one
of the most ‘‘difficult-to-assemble’’ and ‘‘repeat-rich’’ bacterial
genomes completed so far. It has 126 long nearly perfect repeats
up to 3,832 bp in length (not to mention many imperfect
repeats). The length of the genome is 2,184,406 bp. The se-
quencing project resulted in 53,263 reads (coverage is 9.7), with
255,631 errors distributed over these reads. It results in 4.8 errors
per read (an error rate of 1.2%).

Our error correction procedure uses an approximation of Gl
(the set of all l-tuples in genome G) rather than the sequence G
to correct sequencing errors. An l-tuple is called solid if it
belongs to more than M reads (where M is a threshold) and weak
otherwise. A natural approximation for Gl is the set of all solid
l-tuples from a sequencing project.

Let T be a collection of l-tuples called a spectrum. A string s
is called a T-string if all its l-tuples belong to T. Our approach
to error correction leads to the following.

Spectral Alignment Problem. Given a string s and a spectrum T, find
the minimum number of mutations in s that transform s into a
T-string.

A similar problem was considered by Pe’er and Shamir (21) in
a different context of resequencing by hybridization. In the
context of error corrections, the solution of the Spectral Align-
ment Problem makes sense only if the number of mutations is
small. In this case, the Spectral Alignment Problem can be
efficiently solved by dynamic programming even for large l.

Spectral alignment of a read against the set of all solid l-tuples
from a sequencing project suggests the error corrections that may
change the sets of weak and solid l-tuples. Iterative spectral
alignments with the set of all reads and all solid l-tuples gradually
reduce the number of weak l-tuples, increase the number of solid
l-tuples, and lead to elimination of many errors in bacterial se-
quencing projects. Although the Spectral Alignment Problem helps
to eliminate errors (and we use it as one of the steps in EULER), it
does not adequately capture the specifics of DNA sequencing.

The Error Correction Problem described below is a better
model for fragment assembly that leads to elimination of '97%
of errors in a typical bacterial project.

We found that some reads from the NM project have very poor
spectral alignment. These reads are likely to represent contam-
ination, vector, isolated reads, or an error in the sequencing
pipeline. It is a common practice in sequencing centers to discard
such ‘‘poor-quality’’ reads, and we adopt this approach. Another
important advantage of spectral alignment is an ability to
identify chimeric reads. Such reads are characterized by good
spectral alignments of the prefix and suffix parts (6), which,
however, cannot be extended to a good spectral alignment of the
entire read.

Given a collection of reads (strings) S 5 {s1, . . ., sn} from a
sequencing project and an integer l, the spectrum of S is a set Sl
of all l-tuples from the reads s1, . . ., sn and s#1, . . ., s#n, where s#
denotes a reverse complement of read s. Let D be an upper
bound on the number of errors in each DNA read. A more
adequate approach to error correction motivates the following.

Error Correction Problem. Given S, D, and l, introduce up to D
corrections in each read in S in such a way that uSlu is minimized.

An error in a read s affects at most ll-tuples in s and ll-tuples in
s# and usually creates 2l erroneous l-tuples that point to the same

Fig. 2. (a) DNA sequence with a triple repeat R; (b) the layout graph; (c)
construction of the de Bruijn graph by gluing repeats; (d) de Bruijn graph.
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sequencing error (2d for positions within a distance d , l from the
endpoint of the reads). A greedy approach for the Error Correction
Problem is to look for error corrections in the reads that reduce the
size of Sl by 2l (or 2d for positions close to the endpoints). This
simple procedure already eliminates 86.5% of the errors in se-
quencing reads. EULER uses a more involved approach that elimi-
nates 97.7% of sequencing errors and transforms the original
sequencing data with 4.8 errors per read on average into almost
error-free data with 0.11 errors per read on average (22).

A word of caution is in place. Our error-correction procedure is
not perfect while deciding which nucleotide, among, let us say, A or
T is correct in a given l-tuple within a read. If the correct nucleotide
is A, but T is also present in some reads covering the same region,
the error-correction procedure may assign T instead of A to all
reads, i.e., to introduce an error rather than to correct it. Because
our algorithm sometimes introduces errors, data corruption is
probably a more appropriate name for this approach! Introducing
an error in a read is not such a bad thing, as long as the errors from
overlapping reads covering the same position are consistent (i.e.,
they correspond to a single mutation in a genome). An important
insight is that, at this stage of the algorithm, we do not care much
whether we correct or introduce errors in the sequencing reads.
From an algorithmic perspective, introducing a consistent error that
simply corresponds to changing a nucleotide in a final assembly is
not a big deal. It is much more important to make sure that we
eliminate a competition between A and T at this stage, thus
reducing the complexity of the de Bruijn graph. In this way, we
eliminate false edges in our graph and deal with this problem later:
the correct nucleotides are easily reconstructed either by a majority
rule or by a variation of the Churchill–Waterman algorithm (23).
For the NM sequencing project, orphan elimination corrects
234,410 errors and introduces 1,452 errors.

Eulerian Superpaths
Given a set of reads S 5 {s1, . . ., sn}, define the de Bruijn graph
G(Sl) with vertex set Sl21 (the set of all (l 2 1)-tuples from S) as
follows. An (l 2 1)-tuple v [ Sl21 is joined by a directed edge with
an (l 2 1)-tuple w [ Sl21, if Sl contains an l-tuple for which the first
l 2 1 nucleotides coincide with v and the last l 2 1 nucleotides
coincide with w. Each l-tuple from Sl corresponds to an edge in G.
If S contains the only sequence s1, then this sequence corresponds
to a path visiting each edge of the de Bruijn graph, a Chinese
Postman path (20). The Chinese Postman Problem is closely related
to the problem of finding a path visiting every edge of a graph
exactly once, an Eulerian Path Problem (24). One can transform the
Chinese Postman Problem into the Eulerian Path Problem by
introducing multiplicities of edges in the de Bruijn graph. For
example, one can substitute every edge in the de Bruijn graph by
k parallel edges, where k is the number of times the edge is used in
the Chinese Postman path. If S contains the only sequence s1, this
operation creates k ‘‘parallel’’ edges for every l-tuple repeating k
times in s1 (23). Finding Eulerian paths is a well known problem that
can be efficiently solved in linear time. We assume that S contains
a complement of every read and that the de Bruijn graph can be
partitioned into two subgraphs (the ‘‘canonical’’ one and its reverse
complement).

With real data, the errors hide the correct path among many
erroneous edges. The graph corresponding to the error-free data
from the NM project has 4,039,248 vertices (roughly twice the
length of the genome), whereas the graph corresponding to real
sequencing reads has 9,474,411 vertices (for 20-tuples). After the
error-correction procedure, this number is reduced to 4,081,857.

A vertex v is called a source if indegree(v) 5 0, a sink if
outdegree(v) 5 0, and a branching vertex if indegree(v)z
outdegree(v) . 1. For the NM genome, the de Bruijn graph has
502,843 branching vertices for original reads (for l-tuple size 20).
Error corrections simplify this graph and lead to a graph with 382
sources and sinks and 12,175 branching vertices. Because the de

Bruijn graph gets very complicated even in the error-free case,
taking into account the information about which l-tuples belong to
the same reads (that was lost after the construction of the de Bruijn
graph) helps us to untangle this graph.

A path v1 . . . vn in the de Bruijn graph is called a repeat if
indegree(v1) . 1, outdegree(vn) . 1, and indegree (v1) 5
outdegree(vi) 5 1 for 1 # i # n 2 1 (Fig. 3). Edges entering the
vertex v1 are called entrances into a repeat, whereas edges
leaving the vertex vn are called exits from a repeat. An Eulerian
path visits a repeat a few times, and every such visit defines a
pairing between an entrance and an exit. Repeats may create
problems in fragment assembly, because there are a few en-
trances in a repeat and a few exits from a repeat, but it is not clear
which exit is visited after which entrance in the Eulerian path. A
read-path covers a repeat if it contains an entrance into and an
exit from this repeat. Every covering read-path reveals some
information about the correct pairings between entrances and
exits. A repeat is called a tangle if there is no read-path
containing this repeat (Fig. 3). Tangles create problems in
fragment assembly, because pairings of entrances and exits in a
tangle cannot be resolved via the analysis of read-paths. To
address this issue, we formulate the following generalization of
the Eulerian Path Problem:

Eulerian Superpath Problem. Given an Eulerian graph and a
collection of paths in this graph, find an Eulerian path in this
graph that contains all these paths as subpaths.

To solve the Eulerian Superpath Problem, we transform both
the graph G and the system of paths 3 in this graph into a new
graph G1 with a new system of paths 31. Such transformation is
called equivalent if there exists a one-to-one correspondence
between Eulerian superpaths in (&, 3) and (&1, 31). Our goal is
to make a series of equivalent transformations

~&, 3! 3 ~&1 , 31! 3 · · · 3 ~&k , 3k!

that lead to a system of paths 3k, with every path being a single
edge. Because all transformations on the way from (&, 3) to
(&k, 3k) are equivalent, every solution of the Eulerian Path
Problem in (&k, 3k) provides a solution of the Eulerian Super-
path Problem in (&, 3).

Below, we describe a simple equivalent transformation that solves
the Eulerian Superpath Problem in the case when the graph G has
no multiple edges. Let x 5 (vin, vmid) and y 5 (vmid, vout) be two
consecutive edges in graph G, and let 3x,y be a collection of all paths
from 3 that include both these edges as a subpath. Informally,
x,y-detachment bypasses the edges x and y via a new edge z and
directs all paths in 3x,y through z, thus simplifying the graph.
However, this transformation affects other paths and needs to be
defined carefully. Define 33x as a collection of paths from 3 that
end with x and 3y3 as a collection of paths from 3 that start with
y. The x, y-detachment is a transformation that adds a new edge z 5
(vin, vout) and deletes the edges x and y from G (Fig. 4a). This
detachment alters the system of paths 3 as follows: (i) substitute z

Fig. 3. A repeat v1 . . . vn and a system of paths overlapping with this repeat.
The uppermost path contains the repeat and defines the correct pairing
between the corresponding entrance and exit. If this path were not present,
the repeat v1 . . . vn would become a tangle.
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for x, y in all paths from 3x,y, (ii) substitute z for x in all paths from
33x, and (iii) substitute z for y in all paths from 3y3. Because every
detachment reduces the number of edges in G, the detachments will
eventually shorten all paths from 3 to single edges and will reduce
the Eulerian Superpath Problem to the Eulerian Path Problem.

However, in the case of graphs with multiple edges, the
detachment procedure may lead to errors, because ‘‘directing’’
all paths from the set 33x through a new edge z may not be an
equivalent transformation. In this case, the edge x may be visited
many times in the Eulerian path, and it may or may not be
followed by the edge y on some of these visits.

For illustration purposes, let us consider a simple case when the
vertex vmid has the only incoming edge x 5 (vin, vmid) with multi-
plicity 2 and two outgoing edges y1 5 (vmid, vout1) and y2 5 (vmid,
vout2), each with multiplicity 1. In this case, the Eulerian path visits
the edge x twice; in one case, it is followed by y1, and in another case,
it is followed by y2. Consider an x,y1-detachment that adds a new
edge z 5 (vin, vout1) after deleting the edge y1 and one of two copies
of the edge x. This detachment (i) shortens all paths in 3x,y1 by
substitution of x, y1 by a single edge z, and (ii) substitutes z for y1
in every path from 3y13. This detachment is an equivalent trans-
formation if the set 33x is empty. However, if 33x is not empty, it
is not clear whether the last edge of a path P [ 33x should be
assigned to the edge z or to the (remaining copy of) edge x.

To resolve this dilemma, one has to analyze every path P [
33x and decide whether it ‘‘relates’’ to 3x,y1 (in this case, it
should be directed through z) or to 3x,y2 (in this case, it should
be directed through x). By ‘‘relates’’ to 3x,y1 (3x,y2), we mean
that every Eulerian superpath visits y1 (y2) immediately after
visiting P.

Two paths are called consistent if their union is a path again.
A path P is consistent with a set of paths 3 if it is consistent with
all paths in 3 and inconsistent otherwise (i.e., if it is inconsistent
with at least one path in 3). There are three possibilities (Fig.
5): (i) P is consistent with exactly one of the sets 3x,y1 and 3x,y2,
(ii) P is inconsistent with both 3x,y1 and 3x,y2, and (iii) P is
consistent with both 3x,y1 and 3x,y2.

In the first case, the path P is called resolvable, because it can be
unambiguously related to either 3x,y1 or 3x,y2. An edge x is called
resolvable if all paths in 33x are resolvable. If the edge x is
resolvable, then the described x, y-detachment is an equivalent
transformation after the correct assignments of last edges in every
path from 33x. In our analysis of the NM project, we found that
18,026 among 18,962 edges in the de Bruijn graph are resolvable.

The second condition implies that the Eulerian Superpath
Problem has no solution, because P, 3x,y1, and 3x,y2 impose
three different scenarios for just two visits of the edge x. After
discarding the poor-quality and chimeric reads, we did not
encounter this condition in the NM project.

The last condition (P is consistent with both 3x,y1 and 3x,y2)
corresponds to the most difficult situation. If this condition holds
for at least one path in 33x, the edge x is called unresolvable, and
we postpone analysis of this edge until all resolvable edges are
analyzed. We observed that equivalent transformation of other
resolvable edges often resolves previously unresolvable edges.
However, some edges cannot be resolved even after the detach-
ments of all resolvable edges are completed. Such situations
usually correspond to tangles, and they have to be addressed by
another equivalent transformation called a cut.

Consider a fragment of graph G with 5 edges and 4 paths y3 2
x, y4 2 x, x 2 y1, and x 2 y2 (Fig. 4b). In this symmetric
situation, x is a tangle, and there is no information available to
relate any of paths y3 2 x and y4 2 x to any of paths x 2 y1 and
x 2 y2. An edge x 5 (v, w) is removable if (i) it is the only
outgoing edge for v and the only incoming edge for w, and (ii)
x is either the initial or the terminal edge for every path P [ 3
containing x. An x-cut transforms 3 into a new system of paths
by simply removing x from all paths in 33x and 3x3 without
affecting the graph G itself (Fig. 4b). Obviously, an x-cut is an
equivalent transformation if x is a removable edge.

Detachments and cuts proved to be powerful techniques to
untangle the de Bruijn graph and to reduce the fragment
assembly to the Eulerian Path Problem for all studied bacterial
genomes. However, there is still a gap in the theoretical analysis
of the Eulerian Superpath Problem in the case when the system
of paths is not amenable to either detachments or cuts.

EULER with Clone-End Data
One hundred twenty-six long nearly perfect repeats in the NM
genome tangle the de Bruijn graph and make it difficult to analyze.
EULER-DB untangles this graph by using the clone-end DB data
EULER-DB maps every read into some edge(s) of the de Bruijn
graph. After this mapping, most mate-pairs of reads correspond to
paths that connect the positions of these reads in the de Bruijn
graph (provided the distance between these positions in the graph
is approximately equal to the estimated distance between reads
from the mate-pairs). EULER-DB views such paths as long artificial

Fig. 4. Equivalent transformations: (a) x, y-detachment and (b) x-cut.

Fig. 5. (a) P is consistent with Px,y1 but inconsistent with Px,y2; (b) P is
inconsistent with both Px,y1 and Px,y2; (c) P is consistent with both Px,y1 and Px,y2.
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mate–reads and analyzes them with the same Eulerian Superpath
algorithm that is used for the analysis of standard reads.

Mapping reads into the de Bruijn graph allows one to identify
errors in the DB data. In most cases, both reads r1 and r2 from
the mate-pair (r1, r2) are mapped to the same graph component.
In this case, one can find a path between these reads and
compare the length d(r1, r2) of this path with an estimated
distance l(r1, r2) between clone ends. In most cases, such a path
is unique and its length approximately matches the clone length
[d(r1, r2) ' l(r1, r2)]. In this case, we reconstruct the interme-
diate sequence between reads and transform the mate-pair into
mate path. In case the difference between d(r1, r2) and l(r1, r2)
is beyond the acceptable variation in the clone length, it is most
likely an error in the DB data. In the case of multiple paths
between r1 and r2 in the de Bruijn graph, we transform the
mate-pair into the corresponding mate-read if the clone length
l(r1, r2) matches the length of exactly one path between r1 and r2.

We emphasize important differences between our approach and
other DB assemblers. The CELERA assembler masks repeats, gen-
erates a large set of contigs, and pieces these contigs together by
using the DB data. There are two types of contigs subject to the DB
step of the CELERA’s algorithm: G-contigs flanked by gaps in read
coverage (on at least one side) and R-contigs flanked by repeats (on
both sides). In a genome with many repeats, the number of
R-contigs may significantly exceed the number of G-contigs. For
example, in the NM project, PHRAP generates 160 contigs, and only
half of them are G-contigs, whereas in the L. lactis project, PHRAP
generates 62 contigs, and only 7 of them are G-contigs.

The CELERA assembler provides an excellent solution for
assembly of G-contigs, but it does not distinguish between two
types of contigs. After masking repeats, the CELERA assembler
generates a large number of contigs; only a small portion of them
are G-contigs. Because the resulting contigs are short, it leads to
a rather complicated DB step (Myers et al., ref. 18) that may
cause disassembly for short contigs with limited DB data.

In contrast to other DB assemblers, EULER-DB distinguishes
between G-contigs and R-contigs. EULER-DB does not mask
repeats but instead uses them (combined with DB data) as a
powerful tool for resolving R-contigs. The NM sequencing
project illustrates the advantages of using (rather than masking)
repeats in fragment assembly. EULER-DB reduces the number of
contigs from 149 to 117 if only mate-pairs from nonrepeated
regions are used. Use of mate-pairs that partially overlap the
repeats further reduces the number of contigs to 91 (Fig. 1).
EULER-DB typically resolves all tangles except tangles that are
longer than the length of the insert. In the NM project (with

insert length up to 1,800), EULER left only 5 unresolved tangles
of length 3,610, 3,215, 2,741, 2,503, and 1,831.

After completing EULER-DB, we build scaffolds by using
DB data as ‘‘bridges’’ between different contigs (EULER-SF).
EULER-SF combines the 91 contigs into 60 scaffolds, thus closing
most gaps that are shorter than the insert length and further
simplifying the finishing step (Fig. 1). Myers et al. (18) described
an excellent solution of the scaffolding problem. Recently, Kent
and Haussler (19) described a different greedy approach to the
scaffolding problem that resulted in a successful draft assembly
of the human genome. EULER-SF uses a similar strategy, but it
scaffolds a smaller set of longer contigs (mainly G-contigs). See
ref. 25 for details.

Conclusions
Finishing is a bottleneck in large-scale DNA sequencing. Of course,
finishing is an unavoidable step to extend the islands and close the
gaps in read coverage. However, existing programs produce many
more contigs than the number of islands, thus making finishing
more complicated than necessary. What is worse, these contigs are
often assembled incorrectly, thus leading to the time-consuming
contig verification step. Even a single misassembly forces biologists
to conduct total genome screening for assembly errors. EULER
bypasses the ‘‘repeat problem,’’ because the Eulerian Superpath
approach transforms imperfect repeats into different paths in the
de Bruijn graph. As a result, EULER does not even notice repeats
unless they are long perfect repeats.

Difficulties in resolving repeats led to the introduction of DB
DNA sequencing and the breakthrough sequencing efforts re-
ported by the Human Genome Program (26) and CELERA (27)
The CELERA assembler is a two-stage procedure that includes
masking repeats at the overlap–layout–consensus stage with
further ordering of contigs via DB data. The DB step of the
CELERA assembler is influenced by the previous ‘‘overlap–
layout–consensus’’ step. All ‘‘overlap–layout–consensus’’ algo-
rithms are ‘‘afraid’’ of repeats, and the CELERA assembler has no
choice but to mask the repeats. EULER does not require masking
the repeats but instead provides a clear view of repeats (tangles)
in the genome. These tangles may be resolved by DB information
(EULER-DB). In addition, EULER has excellent scaling potential
for eukaryotic genomes, because there exist linear-time algo-
rithms for the Eulerian Path Problem.
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