A Python programming primer CH364C/CH391L Bioinformatics Spring 2013

Python: named aftavlonty Python’s Flying Circus
(designed to be fun to use)

Python documentatiomttp://www.python.org/doc/ & tips: http://www.tutorialspoint.com/python
Good introductory Python books:
Learning PythonMark Lutz & David Ascher, O’Reilly Media
Bioinformatics Programming Using Python: Practid&logramming for Biological Data
Mitchell L. Model, O'Reilly Media
There are some good introductory lectures on Py#hohe Kahn Academy:
https://www.khanacademy.org/science/computer-seienc
& Codeacademy: http://www.codecademy.com/trackbmy
A bit more advanced: Programming Pythondth ed., Mark Lutz, O’Reilly Media

Although programming isn’t required to do quiteitadf bioinformatics research, in the end you als/ay
want to do something that someone else hasn’tipated. For this reason alone, if for no othet, I
recommend learning how to program in some compatguage. For bioinformatics, many scientists
choose to use a scripting language, such as Py#ewh,or Ruby. These languages are relatively eas
to learn and write. They are not the fastesttherslowest, nor best, nor worst languages; but for
various reasons, they are well-suited to bioinfdresa Other common languages in the field inclRde
and perhaps C/C++ and Java.

If you think only about handling biological datafends to be on the extensive side. For exartipde,
human genome is about 3XIucleotides long, so even at only 1 byte per ruiie (i.e., letter), this
runs to about 3 GB worth of data. In our own dasahin the lab, we have about 1300 fully sequenced
genomes, encoding about 4 million distinct geriBsese are mostly bacterial genomes, which are
smaller, so all of this takes up a bit under 10v@&Bth of disk space. Nonetheless, handling data in
convenient and fast manner is often a practicagssty. The typical bioinformatics group will stats
data in a relational database (for example, usiegMySQL database system, whose main attractions
are that it is simple to use and completely frew) then do most analyses in Python, Perl, R, on eve
C++. We won’t spend time talking about MySQL, Cetg., but will spend the next 2 lectures giving
an introduction to Python. This way, you get (tl)east a flavor for the language, and (2) we can
introduce the basics of algorithms.

Starting with some example programsin Python:

Programs in Python are written with any text edittiryou really wanted to, you could program one i
Notepad or Google Docs, save it as a text filey thm it on a computer that has the Python compiler
(but this is not recommended). In practice, moshguters have text editors, sucheasacsor vi.

There are also some great, free, python programediigrs that make programming and debugging
easy, such as pyscriptor, available here: htg@d#google.com/p/pyscripter/

A Python program has essentially no necessary coams. So, a very simple program is:
#!/usr/bin/python

That was the only mandatory line (and really, you can even leave it out!)
print("Hello, future bioinformatician!") # pri nt out the greeting

That's it! Type this into your text editor and sat. Let's call ithello.py . (The names of Python
programs traditionally end ipy .) If you are working on a UNIX/LINUX computerpy would then
have to give the program permission to be run pinty.

chmod +x hello.py

and then you could run the program by typing imase preceded by a period and a slash:
Jhello.py

The output looks like this:

Hello, future bioinformatician!

So, going through the lines in the program, wefssg a semi-mandatory line telling the computeuy
are programming in Pythow! usr/bin/python) and where to look for the Python interpreter.eith
we have a comment after a pound sign. Python emeverything written after a pound sign (the
obvious exception being the first line), so thisigsv you can write notes to yourself about whatig
on in the program. The last line is the only mahmand we’ve given, and it simply instructs Python
to write (rint)) what you have between the quotes on the compateen.

Let’s try a slightly more sophisticated version:

#!/usr/bin/python

That was the only mandatory line (and really, you can even leave it out!)

name = raw_input("What is your name? ") # acts a q uestion and saves the answer
in the variable "name"

print("Hello, future bioinformatician " + name + "! "Y# print out the greeting

This is a bit more complex. Type this in & savashello2.py . Then give the program permission
to run:

chmod +x hello2.py

and run it:

Jhello2.py

The output looks like:

What is your name?

If you type in your name, followed by the enter ke program will print:

Hello, future bioinformatician Alice!

So, we’ve now seen one way to pass informationRgthon program. Going through the program line
by line shows:

Line 1: Same as the last program
Line 2: Just another note to ourselves

2

Line 3: This is a specialized Python command caided input , which prints a line without a
newline, and then saves what you type into a veriedlledname. Note that if you wanted it to print a
newline, you could d@ame = raw_input("What is your name?\n") . The\n indicates a new line.

Line 4: Another note to ourselves

Line 5: Lastly, we print out the message, but timse with your name included. Any variable can be
printed in this fashion, by simply including it anprint statement.

Okay, so now we’'ve seen two very simple Pythorpseri Quite a few programs can be written that
simply read in and print out information. Althougie read in information from the keyboard (e.g.
when you type your name in), it's not much haraePython to read it in from a file, so you can go a
long ways with this general level of programmirtdowever, we'd like to get to the point where we can
do some calculations as well, so let’s look atrtteen elements of programs, so that we can evegtuall
write a program that actually does something moterésting than just printing or reading a message.

A note about versions:

Most bioinformaticians use Python 2.7. There araessubtle but important differences between
Python 3+ and Python 2.7 which mostly won’t matteyou. But if you have problem running the
scripts, you should make sure you're using 2.7. 8dmest way to tell is to type, on the commane lin

python --version

Some general concepts:

Names, numbers, words, etc. are storechasbles Variables in Python can be named essentially
anything, as long as you don’t pick a word that®ewtis already using (e.gagint). A variable can
be assigned essentially any value, within the camgs of the computer, (e.g.,
BobsSocialSecurityNumber = 456249685 Or mole = 6.022e-23 Or password = "7 infinite

fields of blue ")

Groups of variables can be storedisis. A list is a numbered series of values, like etoe an array,

or a matrix. Lists are variables, so you can n#mee just as you would nhame any other variable. The
individual elements of the list can be referredisong[] notation. So, for example, the list

nucleotides might contain the elementscleotides[0] = " A", nucleotides[1] = "C,

nucleotides[2] = @', andnucleotides[3] = “T*. By convention, lists in most scripting
languages start from zero, so our four-elemenyaiueeotides has elements numbered 0 to 3.

Lastly, there’s a VERY useful variation on listdled adictionary or dict (sometimes also called a
hash. Dictionaries in Python are groups of valueseixetl not with numbers (although they could be)
but with other values. Individual hash elementsaucessed like array elements. For example, we
could store the genetic code in a hash nataeghs , which might include 64 entries, one for each
codon, such asodons["ATG]= "Methionine " andcodons["TAG]= " Stop codon

These are the three most frequently-used typesv, Mo some control over what happens in programs.
There are two very important ways to control progsaf statements anidr loops.

if statements

Very often, one wishes to perform a logical tebhis is usually done with ah statement or
command. Anf command applies Boolean logic to a statement, pleeforms a different task
depending on the logical result. So, we mightdmking at a DNA sequence and then want to ask:

3

If this codon is a start codon, start translatimpg@ein here.
Otherwise, read another codon.

The Python equivalent of this might be:

if dnaTriplet == "ATG:
Start translating here. We’'re not going to w rite this part since we're
really just learning about IF statements

else:
Read another codon

The logical test follows thé statement. If true, Python executes the commandke lines

following theif ... : . If false, the commands following tleése: (which is optional) are run. Note
that Python cares about the spacing used; thisvisitknows where the conditional actions thatdul
begin and end. These conditional steps ralvgaysindented by the same number (e.g. 4) of spaces.

The following logical arguments can be used:

== equals

I= Is not equal to

< is less than

> is greater than

<= is less than or equal to
>= Is greater than or equal to

and several others. Multiple tests can be combirygoutting them in parenthesis and using Boolean

operators, such asd, not , oror , e.g.:
if dnaTriplet == "TAA' or dnaTriplet == "TAG or dnaTriplet == "TGA:
print("Reached stop codon ")

for loops
Often, we'd like to perform the same command regeiigitor with slight variations. For example, to
calculate the mean value of the number in an amwaymight try:
Take each value in the array in turn.
Add each value to a running sum.
When you've added them all, divide the total by ikenber of array elements.
Python provides an easy way to perform such tagkssimg afor loop.

#!/usr/bin/python

grades = [93, 95, 87, 63, 75] # create a list of grades

sum=0 # variable to store the sum

for grade in grades: # iterate over the list called grades
sum = sum + grade # indented commands are exe cuted on

each cycle of the loop.

mean =sum/5 # now calculate the average grade
print ("The average grade is "),mean # print the results
for grade in grades tells Python that it should visit each elementiadgrades list, and

should call that elemegtrade for the current loop cycle. Lines which are indehtollowing thefor
line are repeated during each cycle. This meatsRython will perform the sum operation for eath o

4

the elements ajrades . Note that Python will perform most mathematmpaérations, such as
multiplication A * B), division A/ B), exponentiationA ** B), etc. (Don’t worry about it for
now, but down the line, one of the really nice tieas of Python that you will be able to take adagat
of is that it has very extensive mathematical cédpigls built into it.)

These are the two most important ways of contrglarPython program. Another very useful control
mechanism is thunction but you'll have to learn these on your own!

Reading and writing files

The last, but perhaps the most critical, elememython programming to introduce is that of how to
read information in from files and how to writebiick out again. This is really where scripting
languages shine compared to other programming &gyegu The fact that bioinformatics programmers
spend a great deal of their time reading and vgiiles probably explains the preference for larggpsa
like Python.

In general, files are read line by line usinipa loop.

#!/usr/bin/python
count=0 # Declare a variable to count lines
file = open("mygenomefile”, "r") # Open afi le for reading (r)
for raw_line in file: # Loop thro ugh each line in the file
line = raw_line.rstrip("\r\n") # Remove ne wline
words = line.split(" ") # split the line into a list of words
Print the appropriate word:
print "The first word of line {0} of the file i s {1}".format(count, words[0])
count +=1 # shorthand for count = count + 1
file.close() # Last, clo se the file.

print "Read in {0} lines\n".format(count)

We start by declaring a variable namwednt , which we’ll use to count the number of lineshe file.
Theopen statement then signals Python to find the file @dfimygenomefile ” for reading (indicated
by"r') and assign it the variabiie . Thefor loop then kicks in. Each line of the file is raad
one at a time, and temporarily assigned to thealsbgtaw_line

Each line ends with a newline() in files created in Mac and Unix/Linux. In Windeyeach line ends
with a carriage return as well as a newlimen(). We need to strip those characters off, whiclceue

do usingstrip("\r\n") (which works whether or not there is\an). We assign the result to our
own variablejine . Next we use a fun method callgdit to divide up the line wherever there is a
space (or whatever we put between the quotes igpiitecommand) and assign each piece to sequential
elements of a list namedrds . We then print the first word on each line bytiag out the
corresponding list element (remember, lists aragbindexed starting at zero, so element numbegr O i
the first element). Note that variables are indidah the print statement by placeholders (e.gd), {0

and then called out specifically at the end oflthe after the format command. Lastly, we increment
our line counterount by one. The cycle continues until each line heentread, and after finishing,
we close the file. Had we wanted to, we could haneembered every line, or perhaps only a few
words from each line, by feeding in the lines (ards) into array elements as we read the lines in.

Not too hard! On to writing files. Actually, itabout the same as reading files, but with a fewallsm
changes. Instead of using for ‘read,” usew for ‘write.’

5

Then, every time you wish to write something to dléput file, you will use file.write(some_variabple
instead of print:

file = open("test_file", "w")

file.write("Hello\n")

file.write("Goodbye!\n")

file.close() # close the file as you did before

Note the presence of the newline characte) i the second and third lines. Without these rymuput
will look like Hello!Goodbye!

So, our earlier file that prints the genetic codghhbe modified to write the code to a file:

file = open("myoutputfile”, "w") # open myoutputfi le for writing

for triplet in codons.keys(): # loop through codon s dictionary keys
file.write("The amino acid encoded by {0} is {1 hn".format(triplet, codonsitriplet]))

file.close()

You can actually open and write to multiple filésace. Just assign them to variables other filkan.

Putting it all together

This should be essentially everything required tibesfunctional programs in Python. If you can
master these concepts, the rest will come withtim@mecessity, and exposure to more advanced
programs. So, to close, let’'s write one more cotegbeogram, reading in some data, performing a
calculation, and printing the results. This wil & simple program to read in a DNA sequence and
calculate the frequency of the nucleotides, thatevaut the results.

#!/usr/bin/python

seq_filename = "DNA1"
total_length =0
nucleotide = {} # create an empty dictionary

seq_file = open(seq_filename, "r")
for raw_line in seq_file:
line = raw_line.rstrip("\r\n")
length = len(line)
for nuc in line:
if nucleotide.has_key(nuc):
nucleotide[nuc] += 1
else:
nucleotide[nuc] = 1
total_length += length

seq_file.close()
for n in nucleotide.keys():

fraction = 100.0 * nucleotide[n] / total_length
print "The nucleotide {0} occurs {1} times, or

{2} %".format(n, nucleotide[n], fraction)

Let’'s choose the input DNA sequence in the file adi®NA1 to be the genome Bf coli, which we can
download from thé=ntrez genomes web site
http://www.ncbi.nlm.nih.gov/nuccore/49175990?report =fasta (@lso on our class web site)

6

The format of the file DNA1 will be line after lingf A’s, C's, G's and T's, such as:
agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaagagtgtc... and so on.

Running the program produces the output:

The nucleotide A occurs 1142136 times, or 24.619133 2553 %
The nucleotide C occurs 1179433 times, or 25.423082 884 %

The nucleotide T occurs 1140877 times, or 24.591995 0785 %
The nucleotide G occurs 1176775 times, or 25.365788 7822 %

So, we now know that the four nucleotides are prigiseroughly equal numbers in tBe coligenome.

