A Python programming primer	CH364C/CH391L Bioinformatics 		Spring 2013

Python:	named after Monty Python’s Flying Circus
		(designed to be fun to use)

Starting with some example programs in Python:
A very simple program is:

#!/usr/bin/python	
That was the only mandatory line (and really, you can even leave it out!)
print("Hello, future bioinformatician!") # print out the greeting

Let’s call it hello.py

chmod +x hello.py

./hello.py

The output looks like this:

Hello, future bioinformatician!

A slightly more sophisticated version:

#!/usr/bin/python	
That was the only mandatory line (and really, you can even leave it out!)
name = raw_input("What is your name? ") # acts a question and saves the answer
					 # in the variable "name"
print("Hello, future bioinformatician " + name + "!")	# print out the greeting

Call this one hello2.py

chmod +x hello2.py

and run it:

./hello2.py

The output looks like:

What is your name?

If you type in your name, followed by the enter key, the program will print:

Hello, future bioinformatician Alice!

A note about versions:
Most bioinformaticians use Python 2.7. Check yours with:

python --version
Some general concepts:
Names, numbers, words, etc. are stored as variables. Variables in Python can be named essentially anything except words Python uses as command.

Groups of variables can be stored as lists.
A list is a numbered series of values, like a vector, an array, or a matrix.
Lists are variables, so you can name them just as you would name any other variable.
Individual elements of the list can be referred to using [] notation:
The list nucleotides might contain the elements nucleotides[0] = "A", nucleotides[1] = "C", nucleotides[2] = "G", and nucleotides[3] = "T".
Notice, the numbering starts from zero.

A VERY useful variation on lists is called a dictionary or dict (sometimes also called a hash).
Groups of values indexed not with numbers (although they could be) but with other values.
Individual hash elements are accessed like array elements:
We could store the genetic code in a hash named codons, which might include 64 entries, one for each codon, such as codons["ATG"] = "Methionine" and codons["TAG"] = "Stop codon".

if statements

if dnaTriplet == "ATG":
 # Start translating here. We’re not going to write this part since we’re
 # really just learning about IF statements
else:
 # Read another codon

==	equals 		
!=	is not equal to 	
<	is less than
>	is greater than	
<=	is less than or equal to
>=	is greater than or equal to

Can nest these using parenthesis and Boolean operators, such as and, not, or or, e.g.:

if dnaTriplet == "TAA" or dnaTriplet == "TAG" or dnaTriplet == "TGA":
	print("Reached stop codon")

for loops

#!/usr/bin/python
grades = [93, 95, 87, 63, 75] # create a list of grades
sum = 0 # variable to store the sum

for grade in grades: # iterate over the list called grades
 sum = sum + grade # indented commands are executed on
 # each cycle of the loop.

mean = sum / 5 # now calculate the average grade
print ("The average grade is "),mean # print the results

Mathematical operations:
Python will perform most mathematical operations, e.g.
multiplication (A * B)
division (A / B)
exponentiation (A ** B)
and so on. There are extensive mathematical capabilities you can explore later.

Reading and writing files
In general, use a for loop to read files:

#!/usr/bin/python
count = 0 # Declare a variable to count lines
file = open("mygenomefile", "r") # Open a file for reading (r)
for raw_line in file: # Loop through each line in the file
 line = raw_line.rstrip("\r\n") # Remove newline
 words = line.split(" ") # split the line into a list of words
 # Print the appropriate word:
 print "The first word of line {0} of the file is {1}".format(count, words[0])
 count += 1 # shorthand for count = count + 1

file.close() # Last, close the file.
print "Read in {0} lines\n".format(count)

Writing files... same as reading files, but use "w" for ‘write.’
file = open("test_file", "w")
file.write("Hello!\n")
file.write("Goodbye!\n")
file.close()	# close the file as you did before

Putting it all together

#!/usr/bin/python

seq_filename = "DNA1"
total_length = 0
nucleotide = {} # create an empty dictionary

seq_file = open(seq_filename, "r")
for raw_line in seq_file:
 line = raw_line.rstrip("\r\n")
 length = len(line)
 for nuc in line:
 if nucleotide.has_key(nuc):
 nucleotide[nuc] += 1
 else:
 nucleotide[nuc] = 1
 total_length += length

seq_file.close()

for n in nucleotide.keys():
 fraction = 100.0 * nucleotide[n] / total_length
 print "The nucleotide {0} occurs {1} times, or {2} %".format(n, nucleotide[n], fraction)

Let’s choose the input DNA sequence in the file named DNA1 to be the genome of E. coli, which we can download from the Entrez genomes web site http://www.ncbi.nlm.nih.gov/nuccore/49175990?report=fasta (also on our class web site)

The format of the file DNA1 will be line after line of A’s, C’s, G’s and T’s, such as:
agcttttcattctgactgcaacgggcaatatgtctctgtgtggattaaaaaaagagtgtc... and so on.

Running the program produces the output:
The nucleotide A occurs 1142136 times, or 24.6191332553 %
The nucleotide C occurs 1179433 times, or 25.423082884 %
The nucleotide T occurs 1140877 times, or 24.5919950785 %
The nucleotide G occurs 1176775 times, or 25.3657887822 %

1

