
Sequence Alignment II CH364C/CH391L Bioinformatics Marcotte Spring 2013

Aligning 2 sequences of length n, the number of possible alignments (allowing gaps) can
be found as follows:

2 aligned sequences of symbols with gaps:
ACGTACGT ACGT or more generically, x1x2x3x4x5x6x7x8 -x9x10x11x12
ACG ACGTAACGT y1y2y3 -y4y5y6y7y8y9y10y11y12

can always be rewritten alternating symbols from the top & bottom rows, ignoring gaps:

x1y1x2y2x3y3x4x5y4x6y5x7y6x8y7y8x9y9x10y10x11y11x12y12

Because the indices are implicit in the order the symbols are written as, this is equivalent
to: xyxyxyxxyxyxyxyyxyxyxyxy

This composite sequence has length 2n. The number of possible ways to intercalate two
sequences of length n to give a single sequence of length 2n is equivalent to calculating
the number of permutations of n x’s and n y’s, which is:

()
()() nnn

n

n

n n

π

22

!!

!22
≅=

where the simplification on the right side of the equation comes from the use of Stirling’s
approximation of the factorial:

x
x

exx −+
≅ 2

1

2! π

As a reminder for rusty mathematicians, the notation

y

x
, which you would read as “x

choose y”, means: from x objects, how many ways can a subset of y be chosen? The

generic answer is ()!!

!

yxy

x

−
.

Obviously, we can’t generate every one of these alignments and score each for quality to
choose the best. Even for relatively short sequences, the number of possible alignments
grows out of hand (1059 possible alignments for n=100, and 10600 for n=1000), so instead,
we’ll use an algorithm to find the optimal alignment (or set of alignments). The
particular class of algorithm we’ll use is called dynamic programming, which refers to a
set of algorithms that allow optima to be found for problems that can be defined in a
recursive manner. That is, the problems are broken into subproblems, which are in turn
broken into subproblems, etc, until the simplest subproblems can be solved. For
sequence alignments, this sequential dependency takes a form where the choice of
optimal alignment of a sequence of length n is found from the solution to the optimal
alignment of a sequence of length n-1 plus the alignment of the nth symbol, and the

optimal alignment of the n-1 case is a function of the n-2 case, and so on. Just as an
aside, dynamic programming was developed by Richard Bellman 40-50 years ago, but
then “rediscovered” by biologists aligning sequences in the 1970’s.

We’ll distinguish 2 types of alignments that we could make: global and local
Global alignments will require a forced match between every symbol of one string with
some symbol (or gap) of the second string, e.g.
 ACGTTATGCATGACGTA
 -C---ATGCAT----T-
Local alignments will correspond to the best matching subsequences (including gaps).
For the above example, this corresponds to:
 ATGCAT
 ATGCAT

We’ll start with global alignments. For biological sequences, this is known as the
Needleman-Wunsch algorithm, from a paper by Saul Needleman and Christian Wunsch
in the 1970 Journal of Molecular Biology, vol. 48, 443-453, later improved by Gotoh, in
JMB 162, 705-708 (1982).

The general idea is to construct a “path” matrix indicating the scores of different
alignments between the two sequences. The matrix will be built up one element at a
time. Each element of the path matrix will contain the score F(i,j) of the best alignment
between the subsequence of x from 1 to i with the subsequence of y from 1 to j. The path
matrix is first initialized by setting F(0,0) = 0.

We’ll follow an example from Durbin et al.. Here’s the initial path matrix F:
 i=0 x i=n

H E A G A W G H E E
 0
 P <-- j=0 The path matrix will be
 A filled from the top left
 W to the bottom right
y H
 E
 A
 E <-- j=m

The basic idea is that given F(i-1,j-1), F(i-1,j) and F(i,j-1), one can calculate F(i,j). One
of three events is possible: depending on the event, F(i,j) is set equal to:
 xi is aligned to yj F(i-1,j-1) + s(xi,yj)
 xi is aligned to a gap F(i-1,j) – d (e.g., for a linear gap function)
 yj is aligned to a gap F(i,j-1) – d (for this example, d = 8)
The event chosen is the one that leads to the largest score at F(i,j). This process is
repeated iteratively to populate the path matrix. At each step, we also keep track of
which event was chosen (e.g. which previous cell contributed its score to the current
score).

Along the edges of the matrix, we have to include some special conditions. Along the top
edge, we lack F(i-1,j-1) and F(i,j-1) elements. Since positions along the top edge are
equivalent to aligning to all gaps in the y sequence, each top boundary element F(i,0) is
set to –id. By a similar logic, the leftmost boundary elements F(0,j) are set to –jd.

The bottom right element of the array F(n,m)

So, in our example, above, the first elements added are:

The next elements are:

and so on, until the entire matrix is filled. At this point, the optimal alignment is found
by a traceback process, following the arrows from the bottom right element back to the
top left element to define the alignment. At each step in the traceback, the symbols
corresponding to that move are added to the alignment. For example, a vertical move
means to add a gap in x and a symbol in y, a horizontal move is a gap in y and a symbol
in x, and a diagonal move is a symbol from x with one of y. The alignment “grows” from
right to left. From this example, the final alignment is:
 HEAGAWGHE-E
 --P-AW-HEAE

derived from the final path matrix, which looks like (with many off-path arrows omitted):

This approach finds one optimal global alignment (but more than one may exist) between
the two sequences.

In reality, we often would rather have a local alignment, finding just those subsequences
that align well. This approach (in biology) is named the Smith-Waterman algorithm after
Temple Smith & Mike Waterman, Journal of Molecular Biology vol. 147, 195-197
(1981). The approach is essentially the same as for the global alignment, but an extra
option is possible for each cell: if all of the other options provide negative scores, the cell
can receive a score F(i,j) = 0, corresponding to the starting position of a new local
alignment. We can eliminate the boundary conditions (all boundary cells are assigned
scores of zero). Lastly, an alignment can now end anyplace in the path matrix. So, once
the path matrix is constructed, the cell with the highest score is chosen as the starting
point for the traceback (rather than choosing the bottom right element in the global
alignment.) The traceback proceeds as for the global alignment (e.g., following the
arrows up and to the left) and ends when a cell with zero score is reached.

Below is the local alignment matrix for the earlier set of two amino acid sequences. The
optimal subsequence alignment is:
 AWGHE
 AW-HE
which has score of 28. Note that with this method it is easy to find many high-scoring
suboptimal alignments, such as:
 HEA
 HEA which scores 21.

This type of search for suboptimal alignments also turns out to be a good method to find
repeating sequences.

The path matrix F(i,j):

& the best local alignment highlighted:

