Announcement for Homework

GigAssembler

Genome Assembly: A big picture

http://www.nature.com/scitable/content/anatomy-of-whole-genome-assembly-20429

GigAssembler – Preprocessing

- 1. Decontaminating & Repeat Masking.
- 2. Aligning of mRNAs, ESTs, BAC ends & paired reads against initial sequence contigs.
 - $psLayout \rightarrow BLAT$
- 3. Creating an input directory (folder) structure.

chr1/
chr1/contig1.e
chr1/contig1.a
chr1/contig1.c
chr1/contig1.b
chr1/contig1.d
chr3/
chr3/ chr2/
chr3/ chr2/ chr2/contig2.d
chr3/ chr2/ chr2/contig2.d chr2/contig2.b
chr3/ chr2/ chr2/contig2.d chr2/contig2.b chr2/contig2.a
chr3/ chr2/ chr2/contig2.d chr2/contig2.b chr2/contig2.a chr2/contig2.c

http://www.triazzle.com; The image from http://www.dangilbert.com/port_fun.html Reference: Jones NC, Pevzner PA, Introduction to Bioinformatics Algorithms, MIT press

RepBase + RepeatMasker

				ca
				ag
				tg
taejoon@fou	rierseq:~/Rep	Base/RepBase1	5.05.fasta\$ ls -	a ca
	dcotrep.ref	mamsub.ref	rodsub.ref	ta
	diarep.ref	<pre>mcotrep.ref</pre>	simple.ref	gg
angrep.ref	drorep.ref	mousub.ref	spurep.ref	>M<
appendix	fngrep.ref	nemrep.ref	synrep.ref	ca
athrep.ref	fugrep.ref	oryrep.ref	tmplanrep.ref	gc
bctrep.ref	grasrep.ref	plnrep.ref	tmpnemrep.ref	tg
cbrrep.ref	humrep.ref	prirep.ref	tmpxenrep.ref	gc
celrep.ref	humsub.ref	prisub.ref	version	>L
chlrep.ref	invrep.ref	pseudo.ref	vrtrep.ref	tg
cinrep.ref	invsub.ref	ratsub.ref	zebrep.ref	ta
cinunc.ref	<pre>mamrep.ref</pre>	rodrep.ref		ca
				ac
				C C

MIRb SINE2/tRNA Mammalia

cagaggggcagcgtggtgcagtggaaagagcacgggctttggagtcaggcagacctgggttcgaatcctg gctctgccacttactagctgtgtgaccttgggcaagtcacttaacctctctgagcctcagtttcctcatc tgtaaaatggggataataatacctacctcgcagggttgttgtgaggattaaatgagataatgcatgtaaa gcgcttagcacagtgcctggcacacagtaagcgctcaataaatggtagctctattatt

TR45 ERV1 Homo sapiens

>MER80B hAT Homo sapiens

cagggcttcttaaccagaggtccatggatgggcttcaggaggtctgtgaaccctctgaaattatatacaa
aaatgttgtgtatatgtgcatatatgtatttttctggggagagggttcatagctttcatcagattctcaa
agggggtctatgatctmaaaaaggttaagaagccctg

GigAssembler: Build merged sequence contigs ("rafts")

Figure 1 Two sequences overlapping end to end. The sequences are represented as dashes. The aligning regions are joined by vertical bars. End-to-end overlap is an extremely strong indication that two sequences should be joined into a contig.

Sequencing quality (Phred Score)

Sequencing quality (Phred Score)

$$Q = -10 \log_{10} P - Base-calling \\ Error \\ Probability \\ P = 10^{-Q \over 10}$$

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90 %
20	1 in 100	99 %
30	1 in 1000	99.9 %
40	1 in 10000	99.99 %
50	1 in 100000	99.999 %

http://en.wikipedia.org/wiki/Phred_quality_score

GigAssembler: Build merged sequence contigs ("rafts")

Figure 2 Two sequences with tails. The nonaligning regions on either side can be classified into 'extensions' and 'tails.' Short tails are fairly common even when two sequences should be joined into a contig because of poor quality sequence near the ends and occasional chimeric reads. Long tails, however, are generally a sign that the alignment is merely due to the sequences sharing a repeating element.

GigAssembler: Build merged sequence contigs ("rafts")

В ------D ++++++?????????

Figure 3 Merging into a raft. A contig ('raft') of three sequences: A, B, and C has already been constructed by GigAssembler. The program now examines an alignment between sequence C and a new sequence, D, to see whether D should also be added to the raft. The parts of D marked with +s are compatible with the raft because of the C/D alignment. The program must also check that the parts of D marked with ?s are compatable with the raft by examining other alignments.

GigAssembler: Build sequenced clone contigs ("barges")

AAAAAAAAAAAAAAAAA alalalal a2a2a2a2a BBBBBBBBBBBBBBBBBBBBB b1b1b1b1b1b1 b2b2b2 CCCCCCCCCCCCCCCCCC c1c1c1 c2c2c2c2

Figure 4 Three overlapping draft clones: A, B, and C. Each clone has two initial sequence contigs. Note that initial sequence contigs a1, b1, and a2 overlap as do b2 and c1.

GigAssembler: Build a "raft-ordering" graph

Figure 4 Three overlapping draft clones: A, B, and C. Each clone has two initial sequence contigs. Note that initial sequence contigs a1, b1, and a2 overlap as do b2 and c1.

Figure 5 Ordering graph of clone starts and ends. This represents the same clones as in Fig. 4. (As) The start of clone A; (Ae) the end of clone A. Similarly Bs, Be, Cs, and Ce represent the starts and ends of clones B and C.

Cs

Be

Се

Ae

Bs

As

Figure 6 Ordering graph after adding in rafts. The initial sequence contigs shown in Fig. 4 are merged into rafts where they overlap. This forms three rafts: a1b1a2, b2c1, and c2. These rafts are constrained to lie between the relevant clone ends by the addition of additional ordering edges to the graph shown in Fig. 5.

GigAssembler: Build a "raft-ordering" graph

- Add information from mRNAs, ESTs, paired plasmid reads, BAC end pairs: building a "bridge"
 - Different weight to different data type: (mRNA ~ highest)
 - Conflicts with the graph as constructed so far are rejected.
- Build a sequence path through each raft.
- Fill the gap with N.
 - 100: between rafts
 - 50,000: between bridged barges

Figure 6 Ordering graph after adding in rafts. The initial sequence contigs shown in Fig. 4 are merged into rafts where they overlap. This forms three rafts: a1b1a2, b2c1, and c2. These rafts are constrained to lie between the relevant clone ends by the addition of additional ordering edges to the graph shown in Fig. 5.

Bellman-Ford algorithm

http://compprog.wordpress.com/2007/11/29/one-source-shortest-path-the-bellman-ford-algorithm/

Answer: A-D-C-B-E

Next-generation sequencing

Image of first chemistry cycle

After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

Before initiating the next chemistry cycle

The blocked 3' terminus and the fluorophore from each incorporated base are removed.

Sequence read over multiple chemistry cycles

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.

Mapping program

Table 1 A selection of short-read analysis software								
Program	Website	Open source?	Handles ABI color space?	Maximum read length				
Bowtie	http://bowtie.cbcb.umd.edu	Yes	No	None				
BWA	http://maq.sourceforge.net/bwa-man.shtml	Yes	Yes	None				
Maq	http://maq.sourceforge.net	Yes	Yes	127				
Mosaik	http://bioinformatics.bc.edu/marthlab/Mosaik	No	Yes	None				
Novoalign	http://www.novocraft.com	No	No	None				
SOAP2	http://soap.genomics.org.cn	No	No	60				
ZOOM	http://www.bioinfor.com	No	Yes	240				

Trapnell C, Salzberg SL, Nat. Biotech., 2009

Two strategies in mapping

Trapnell C, Salzberg SL, Nat. Biotech., 2009

Real data: environment samples

- rw- r r	1	taejoon	marcotte	15M	2011-03-05	17:08	V3BC21.F3.csfasta
- rw- r r	1	taejoon	marcotte	32M	2011-03-08	11:54	V3BC21.F3_QV.qual
- rw- r r	1	taejoon	marcotte	43M	2011-03-05	17:09	V3BC22.F3.csfasta
- rw- r r	1	taejoon	marcotte	92M	2011-03-08	11:55	V3BC22.F3_QV.qual
-rw-rr	1	taejoon	marcotte	68M	2011-03-05	17:09	V3BC23.F3.csfasta
- rw- r r	1	taejoon	marcotte	151M	2011-03-08	11:56	V3BC23.F3_QV.qual
- rw- r r	1	taejoon	marcotte	38M	2011-03-05	17:09	V3BC24.F3.csfasta
- rw- r r	1	taejoon	marcotte	84M	2011-03-08	11:56	V3BC24.F3_QV.qual
- rw- r r	1	taejoon	marcotte	38M	2011-03-05	17:09	V3BC25.F3.csfasta
- rw- r r	1	taejoon	marcotte	85M	2011-03-08	11:56	V3BC25.F3_QV.qual

- rw- r r	1	taejoon	marcotte	12M	2011-03-05	17:10	V3BC21.F5.csfasta
- rw- r r	1	taejoon	marcotte	5.0M	2011-03-08	12:01	V3BC21.F5_QV.qual
- rw- r r	1	taejoon	marcotte	33M	2011-03-05	17:11	V3BC22.F5.csfasta
- rw- r r	1	taejoon	marcotte	64M	2011-03-08	12:01	V3BC22.F5_QV.qual
- rw- r r	1	taejoon	marcotte	53M	2011-03-05	17:11	V3BC23.F5.csfasta
- rw- r r	1	taejoon	marcotte	103M	2011-03-08	12:00	V3BC23.F5_QV.qual
- rw- r r	1	taejoon	marcotte	30M	2011-03-05	17:11	V3BC24.F5.csfasta
- rw- r r	1	taejoon	marcotte	57M	2011-03-08	12:00	V3BC24.F5_QV.qual
- rw- r r	1	taejoon	marcotte	30M	2011-03-05	17:12	V3BC25.F5.csfasta
- rw-rr	1	taejoon	marcotte	59M	2011-03-08	12:00	V3BC25.F5_QV.qual

Real data: environment samples

taejoon@cygnus:~/project/UTpond/F3\$ head V3BC25.F3 QV.gual >853 52 1477 F3 16 7 10 10 8 4 4 4 4 4 4 7 5 8 7 5 4 5 4 10 5 11 4 4 6 9 4 8 5 14 6 4 11 11 15 6 5 13 6 4 6 5 5 8 11 6 6 4 7 16 >853 65 616 F3 4 4 10 27 27 4 4 13 10 4 5 29 7 6 13 7 5 17 6 13 6 8 6 19 5 4 6 6 10 21 13 11 27 10 12 6 24 9 4 6 9 4 12 25 4 8 8 6 11 24 >853 80 1163 F3 30 29 27 31 31 32 33 32 31 9 17 7 27 33 20 29 7 12 8 22 33 4 9 25 26 5 4 25 19 23 8 4 26 10 33 15 7 23 28 16 25 16 11 16 26 4 11 11 26 6 >853 82 1751 F3 14 33 5 24 14 25 28 12 12 23 31 19 10 27 20 27 22 8 26 22 6 28 28 28 28 24 33 23 31 28 27 24 20 19 26 17 28 16 28 28 27 20 31 32 5 17 32 31 17 30 >853 85 1401 F3 27 32 33 23 25 31 4 26 0 6 8 0 28 8 20 24 0 18 6 11 12 4 26 23 4 4 4 11 12 6 24 4 26 6 6 10 4 27 14 12 22 6 25 23 8 27 12 26 25 14 taejoon@cygnus:~/project/UTpond/F3\$ head V3BC25.F3.csfasta >853 52 1477 F3 T3133331323323232212301333310130232323233332330223 >853 65 616 F3 T11131210011333220321033102021012120331321223103223 >853 80 1163 F3 T01233212303123233012303121022323203003333030030001 >853 82 1751 F3 T03321033233212112233011101112312213310233032312333 >853 85 1401 F3 T13302313302131313003132020132333203020102321230033

Real data: environment samples

taejoon@cygnus:~/project	t/UTpond/NCBI.bacteria\$ head -n 15 V3BC25.F3.NCBI bacteri	a.gmappe	er out							
#FORMAT: readname contig	gname strand contigstart contigend readstart readend read	length s	score edi	itstring						
>853_168_733_F3 Acetoha	lobium_arabaticum >gi 302390797 ref NC_014378.1 -	138156	138205	1	50	50	425	13T1G27#	6	
>853 168 733 F3 Acetoha	lobium_arabaticum >gi 302390797 ref NC_014378.1 -	433985	434034	1	50	50	425	13T1G27#	6	
>853_168_733_F3 Acetoha	lobium_arabaticum >gi 302390797 ref NC_014378.1 -	796056	796105	1	50	50	425	13T1G27#	6	
>853 168 733 F3 Acetoha	lobium_arabaticum >gi 302390797 ref NC_014378.1 +	1424800	1424849	1	50	50	425	13T1G27#	6	
>853 168 733 F3 Acetoha	lobium_arabaticum >gi 302390797 ref NC_014378.1 -	10971	11020	1	50	50	425	13T1G27#	6	
>860 574 319 F3 Alcaniv	prax borkumensis >gi 110832861 ref NC 008260.1 -	531853	531900	3	50	50	455	17T30		
>860 574 319 F3 Alcaniv	prax_borkumensis >gi 110832861 ref NC_008260.1 +	2261669	2261716	3	50	50	455	17T30		
>860 574 319 F3 Alcaniv	prax_borkumensis >gi 110832861 ref NC_008260.1 -	404128	404175	3	50	50	455	17T30		
>860 574 319 F3 Allochro	omatium vinosum >gi 288939764 ref NC 013851.1 +	2026084	2026130	4	50	50	445	16T30		
>860 574 319 F3 Allochro	omatium_vinosum >gi 288939764 ref NC_013851.1 +	2906744	2906790	4	50	50	445	16T30		
>853 866 1426 F3	Azospirillum sp. >gi 288956841 ref NC 013854.1 -	2179881	2179930	1	50	50	400	21G11C20	2G10	
>863 1722 361 F3	Azospirillum_sp. >gi 288956841 ref NC_013854.1 +	521498	521547	1	50	50	450	11G3A34		
>863 1722 361 F3	Acetobacter pasteurianus >gi 258541105 ref NC 013209.1		2768567	2768616	1	50	50	450	11G3A34	
>863 1722 361 F3	Anoxybacillus flavithermus >gi 212637849 ref NC 011567.1		+	11016	11065	1	50	50	450	11G3A34
taejoon@cygnus:~/project	t/UTpond/NCBI.bacteria\$									
taejoon@cygnus:~/project	t/UTpond/NCBI.bacteria\$									
taejoon@cygnus:~/project	t/UTpond/NCBI.bacteria\$ head -n 15 V3BC25.F5.NCBI bacteri	a.gmappe	er out							
#FORMAT: readname contig	gname strand contigstart contigend readstart readend read	length s	score ed	itstring						
>853 562 985 F5-BC	Amycolatopsis mediterranei >gi 300781937 ref NC 014318.1		+	5449850	5449883	2	35	35	298	16x10x5x3
>853_562_985_F5-BC	Azospirillum_sp. >gi 288956841 ref NC_013854.1 +	2070763	2070797	1	35	35	283	4C12x10>	5x3	
>853_562_985_F5-BC	Azotobacter_vinelandii >gi 226942170 ref NC_012560.1	+	2958122	2958156	1	35	35	283	4C12x10x	4x4
>853_562_985_F5-BC	Azotobacter_vinelandii >gi 226942170 ref NC_012560.1		4827430	4827464	1	35	35	283	4C12x10x	5x3
>853_562_985_F5-BC	Aromatoleum_aromaticum >gi 56475432 ref NC_006513.1		1714032	1714066	1	35	35	283	4C12x10x	5x3
>857_160_628_F5-BC	Acidovorax_sp. >gi 121592436 ref NC_008782.1 +	1825323	1825356	2	35	35	315	4C29		
>857_160_628_F5-BC	Alkalilimnicola_ehrlichii >gi 114319166 ref NC_008340.1		+	658523	658556	2	35	35	315	4C29
>857_160_628_F5-BC	Acidithiobacillus_ferrooxidans >gi 198282148 ref NC_0112	06.1	+	610447	610481	1	35	35	308	4x1x1x29
>857 160 628 F5-BC	Acidovorax_ebreus >gi 222109225 ref NC_011992.1		2100565	2100598	2	35	35	290	4C25C3	
>857_160_628_F5-BC	Acidovorax_avenae >gi 120608714 ref NC_008752.1	+	2931102	2931135	2	35	35	290	4C3C25	
>853_1779_1130_F5-BC	Acidiphilium_cryptum >gi 148259021 ref NC_009484.1		2893817	2893850	1	34	35	284	5x5x20x2	x2
>863 1722 361 F5-BC	Anoxybacillus flavithermus >gi 212637849 ref NC 011567.1			246812	246846	1	35	35	286	19T3x9C2
>863_1722_361_F5-BC	Acidobacterium_capsulatum >gi 225871699 ref NC_012483.1			2864186	2864220	1	35	35	286	19T3x8C3
>863_1722_361_F5-BC	Anoxybacillus_flavithermus >gi 212637849 ref NC_011567.1			84667	84701	1	35	35	286	19T3x9C2
taejoon@cygnus:~/project	t/UTpond/NCBI.bacteria\$									