Announcement for Homework

GigAssembler

Genome Assembly: A big picture

GigAssembler - Preprocessing

1. Decontaminating \& Repeat Masking.
2. Aligning of mRNAs, ESTs, BAC ends \& paired reads against initial sequence contigs.

- psLayout \rightarrow BLAT

3. Creating an input directory (folder) structure. chri/
chrl/contigl.e chrl/contigl.a chr1/contigl.c chrl/contigl.b
chrl/contigl.d chr3/
chr2/
chr2/contig2.d
chr2/contig2.b
chr2/contig2.a
chr2/contig2.c

http://www.triazzle.com; The image from http://www.dangilbert.com/port_fun.html Reference: Jones NC, Pevzner PA, Introduction to Bioinformatics Algorithms, MIT press

RepBase + RepeatMasker

taejoon@fourierseq:~/RepBase/RepBase15.05.fasta\$	ls -a		
	dcotrep.ref	mamsub.ref	rodsub.ref
angrep.ref	drorep.ref	mousub.ref	spurep.ref
appendix	fngrep.ref	nemrep.ref	synrep.ref
athrep.ref	fugrep.ref	oryrep.ref	tmplanrep.ref
bctrep.ref	grasrep.ref	plnrep.ref	tmpnemrep.ref
cbrrep.ref	humrep.ref	prirep.ref	tmpxenrep.ref
celrep.ref	humsub.ref	prisub.ref	version
chlrep.ref	invrep.ref	pseudo.ref	vrtrep.ref
cinrep.ref	invsub.ref	ratsub.ref	zebrep.ref
cinunc.ref	mamrep.ref	rodrep.ref	

Abstract

>MER51D ERV1 Homo sapiens tgaggcaggagaaaatagcagagggaattggaagttggataaagggagaatgagtaaaagcangagagca gaagcaaggtaaagaggcgggtgagcaagaagcaagataagaagcagaagttgagcagccaaaacaaaag taagatnanaaagaagtgagtaaggagcccacatggctggctagatccagaccaaaccagtaaggggcag ctcctcagagatgggcatgtacattagagagaaaaagtatccttaaaatgaccccgtatgataatcagct cattaaagctcatgcatatggactgcatatcatgcatgtacttaaaattatgggatggaggtgacgcgca agawgtcacaagcacacaggggccatagkattaagtaactaagcaacccacctatcaatcaaaaggcaga tgctggctagagattaggcagccttgggaagagaagaaaaaaaaaacacataaaaagacccaaagtacac caaactgacgctgatctcatttcgcagaggtcagcccactctcccctctctgagagtgtaatactgtgct taataaacttttgctgctttgctatctgtgtgtgtcttgtccaattctttgtttgggacaccaagagcct ggaactgcacrgcaccakctggtaaca >MIRb SINE2/tRNA Mammalia cagaggggcagcgtggtgcagtggaaagagcacgggctttggagtcaggcagacctgggttcgaatcctg gctctgccacttactagctgtgtgaccttgggcaagtcacttaacctctctgagcctcagtttcctcatc tgtaaaatggggataataatacctacctcgcagggttgttgtgaggattaaatgagataatgcatgtaaa gcgcttagcacagtgcctggcacacagtaagcgctcaataaatggtagctctattatt >LTR45 ERV1 Homo sapiens tgtaaccgcgggaccagcccaaactgggcctactctgttgataacaaaatgtcaagttaccttgtaggta taacagagcccaaaactgcaagtcatgtagcccgggcatgtgcaatagaaaaagctttgacctctaacaa cacccagaaccaatgattcctcccctcggaaccaagaagaccgggacatgaccggaacctgaatgccgga actctttcagaagcaaaggggtccgttggcccggaagatctggggctaaaatctgcctcaacatacctta ccgtaaatggtcaaatttgaagccctccaatcagaccctgccaagccaacattcctaaatcctttccctt gccctctgatcccttaaaacttgccccagaccccaaatcggggagacagatttgagcccacctcctgtct ccttgctggccggttttgcaataaagcctttcttttctcaaaagctggtgccatagttattggcttctgt gtgcatcaggcagcaagcccatttgctcgataaca >MER80B hAT Homo sapiens cagggcttcttaaccagaggtccatggatgggcttcaggaggtctgtgaaccctctgaaattatatacaa aaatgttgtgtatatgtgcatatatgtatttttctggggagagggttcatagctttcatcagattctcaa aggggtctatgatctmaaaaaggttaagaagccctg

GigAssembler: Build merged sequence contigs ("rafts")

Figure 1 Two sequences overlapping end to end. The sequences are represented as dashes. The aligning regions are joined by vertical bars. End-to-end overlap is an extremely strong indication that two sequences should be joined into a contig.

Sequencing quality (Phred Score)

>gnl|ti|2299297598 name:fwn01a01.x1 NCBI Accession: $\underline{\text { AC243936 }}$ Mate pair: 2299297599
Quality score: not available $>0-<20 \quad>=20-<40 \quad>=40-<60 \quad>=60-<80 \quad>=80-<100$

 5757575757575959575959596850505050505357575757576868686868686868686868 686868686868505151515168 68 68 68 686262 626262626268 6868686868626868686868686868626268686868686868686862626262626868686868 68 68 6868686868686262626868686268686868686868686868686868686868626262686868 5959595757686868686868686868686868595959686868686859595959575959595968

Sequencing quality (Phred Score)

$$
\begin{aligned}
& Q=-10 \log _{10} P \leftarrow \quad \begin{array}{l}
\text { Base-calling } \\
\text { Error } \\
\text { Probability }
\end{array} \\
& P=10^{\frac{-Q}{10}}
\end{aligned}
$$

Phred quality scores are logarithmically linked to error probabilities

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

GigAssembler: Build merged sequence contigs ("rafts")

Figure 2 Two sequences with tails. The nonaligning regions on either side can be classified into 'extensions' and 'tails.' Short tails are fairly common even when two sequences should be joined into a contig because of poor quality sequence near the ends and occasional chimeric reads. Long tails, however, are generally a sign that the alignment is merely due to the sequences sharing a repeating element.

GigAssembler: Build merged sequence contigs ("rafts")

Figure 3 Merging into a raft. A contig ('raft') of three sequences: A, B , and C has already been constructed by GigAssembler. The program now examines an alignment between sequence C and a new sequence, D, to see whether D should also be added to the raft. The parts of D marked with $+s$ are compatible with the raft because of the C / D alignment. The program must also check that the parts of D marked with ?s are compatable with the raft by examining other alignments.

GigAssembler: Build sequenced clone contigs ("barges")

Figure 4 Three overlapping draft clones: A, B, and C. Each clone has two initial sequence contigs. Note that initial sequence contigs a1, b1, and a2 overlap as do b2 and c1.

GigAssembler: Build a "raft-ordering" graph

Figure 4 Three overlapping draft clones: A, B, and C. Each clone has two initial sequence contigs. Note that initial sequence contigs a1, b1, and a2 overlap as do b2 and c1.

Figure 5 Ordering graph of clone starts and ends. This represents the same clones as in Fig. 4. (As) The start of clone A; (Ae) the end of clone A. Similarly Bs, Be, Cs, and Ce represent the starts and ends of clones B and C .

Figure 6 Ordering graph after adding in rafts. The initial sequence contigs shown in Fig. 4 are merged into rafts where they overlap. This forms three rafts: a1b1a2, b2c1, and c2. These rafts are constrained to lie between the relevant clone ends by the addition of additional ordering edges to the graph shown in Fig. 5.

GigAssembler: Build a "raft-ordering" graph

- Add information from mRNAs, ESTs, paired plasmid reads, BAC end pairs: building a "bridge"
- Different weight to different data type: (mRNA ~ highest)
- Conflicts with the graph as constructed so far are rejected.
- Build a sequence path through each raft.
- Fill the gap with N .
- 100: between rafts
- 50,000: between bridged barges

Figure 6 Ordering graph after adding in rafts. The initial sequence contigs shown in Fig. 4 are merged into rafts where they overlap. This forms three rafts: a1b1a2, b2c1, and c2. These rafts are constrained to lie between the relevant clone ends by the addition of additional ordering edges to the graph shown in Fig. 5.

Bellman-Ford algorithm

Find the shortest path to all nodes.

Find the shortest path to all nodes.

Find the shortest path to all nodes.

Take every edge and try to relax it; ($N-1$ times where N is the number of nodes)

Find the shortest path to all nodes.

Take every edge and try to relax it; ($N-1$ times where N is the number of nodes)

Find the shortest path to all nodes.

Take every edge and try to relax it; ($N-1$ times where N is the number of nodes)

Find the shortest path to all nodes.

Take every edge and try to relax it; ($N-1$ times where N is the number of nodes)

Find the shortest path to all nodes.

Take every edge and try to relax it; ($N-1$ times where N is the number of nodes)

Answer: A-D-C-B-E

Next-generation sequencing
a

Prepare genomic DNA sample
Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

Mardis ER, Annu. Rev. Genomics Hum. Genet., 2008

Sequence read over multiple chemistry cycles

Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.

c
Sequencing

Possible dinucleotides encoded by each color

Double interrogation

Mardis ER, Annu. Rev. Genomics Hum. Genet., 2008

Mapping program

Table 1	A selection of short-read analysis software			
Program	Website	Open source?	Handles ABI color space?	Maximum read length
Bowtie	http://bowtie.cbcb.umd.edu	Yes	No	None
BWA	http://maq.sourceforge.net/bwa-man.shtml	Yes	Yes	None
Maq	http://maq.sourceforge.net	Yes	Yes	127
Mosaik	http://bioinformatics.bc.edu/marthlab/Mosaik	No	Yes	None
Novoalign	http://www.novocraft.com	No	No	None
SOAP2	http://soap.genomics.org.cn	No	No	60
ZOOM	http://www.bioinfor.com	No	Yes	240

Trapnell C, Salzberg SL, Nat. Biotech., 2009

Two strategies in mapping

Trapnell C, Salzberg SL, Nat. Biotech., 2009

Real data: environment samples

15	20	17:08	V3BC21.F3.cstas
32M	2011-03-08	11:54	V3BC21.F3
43M	2011-03-05	17:09	
92M	2011-03-08	11:55	,
68M	2011-03-05	17:09	V3BC23.F3.csfas
151M	2011-03-08	11:56	V3BC23.F3
38M	2011-03-05	17:09	V3BC24.F3.
84M	2011-03-08	11:56	V3BC24.F3_QV.qual
8M	2011-03-05	17:09	V3BC25.F3.

1 taejoon marco	5.0M 2011-03-08	12:01 V3BC21.F5_QV.qual
-r-- 1 taejoon	33M 2011-03-05	
-rw-r--r-- 1 taejoon marco	64M 2011-03-08	12:01 V
-rw-r--r-- 1 taejoon marcotte	53M 2011-03-05	17:11
-rw-r--r-- 1 taejoon marcot	103M 2011-03-08	12:00 V3BC23.F5_QV.qual
-rw-r--r-- 1 taejoon ma	30M 2011-03-05	17:11 V3BC24.F5.csfasta
-rw-r--r-- 1 taejoon marcotte	57M 2011-03-08	12:00 V3BC24.F5_QV.qual
-rw-r--r-- 1 taejoon marcotte	30M 2011-03-05	17:12 V3BC25.F5.csfasta
w-r--r-- 1 taejoon marcotte	59M 2011-03-08	12:00 V3BC25.F5_QV.qual

Real data: environment samples

```
taejoon@cygnus:~/project/UTpond/F3$ head V3BC25.F3_QV.qual
>853_52_1477_F3
16 7-10 10 844444475875454105 11446 94 8 5 1464 11 11 15 6 5 13 6 4 6 5 5 8 11
664716
>853_65 616 F3
4 4 10 27 27 4 4 13 10 4 5 29 7 6 13 7 5 17 6 13 6 8 6 19 5 4 6 6 10 21 13 11 27 10 12 6 24 9 4 6 9
412254886 11 24
>853_80_1163_F3
30 29 27 31 31 32 33 32 31 9 17 7 27 33 20 29 7 12 8 22 33 4 9 25 26 5 4 25 19 23 8 4 26 10 33 15 7
23 28 16 25 16 11 16 26 4 11 11 26 6
>853 82_1751_F3
14 3\overline{3}5-24 14 25 28 12 12 23 31 19 10 27 20 27 22 8 26 22 6 28 28 28 8 24 33 23 31 28 27 24 20 19 26
    17 28 16 28 28 27 20 31 32 5 17 32 31 17 30
>853_85_1401_F3
27 32 33 23 25 314 26 0 6 8 0 28 8 20 24 0 18 6 11 12 4 26 23 4 4 4 11 12 6 24 4 26 6 6 10 4 27 14
1222625 23 8 27 12 26 25 14
taejoon@cygnus:~/project/UTpond/F3$ head V3BC25.F3.csfasta
>853 52 1477 F3
T3133̄331}32332\overline{2}32322123013333101302323223233332330223
>85365616 F3
T11131210011333220321033102021012120331321223103223
>853 80_1163_F3
T01233212303123233012303121022323203003333030030001
>853_82_1751_F3
T03321033233212112233011101112312213310233032312333
>853_85_1401_F3
T13302313302131313003132020132333203020102321230033
```


Real data: environment samples

