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Background 

Probabilistic functional gene networks are powerful theoretical frameworks for 

integrating heterogeneous functional genomics and proteomics data into objective models 

of cellular systems.  Such networks provide syntheses of millions of discrete 

experimental observations, spanning DNA microarray experiments, physical protein 

interactions, genetic interactions, and comparative genomics; the resulting networks can 

then be easily applied to generate testable hypotheses regarding specific gene functions 

and associations.   

Methodology/Principal Findings 

We report a significantly improved version (v. 2) of a probabilistic functional gene 

network [1] of the baker’s yeast, Saccharomyces cerevisiae.  We describe our 

optimization methods and illustrate their effects in three major areas: the reduction of 

functional bias in network training reference sets, the application of a probabilistic model 

for calculating confidences in pair-wise protein physical or genetic interactions, and the 

introduction of simple thresholds that eliminate many false positive mRNA co-expression 

relationships.  Using the network, we predict and experimentally verify the function of 

the yeast RNA binding protein Puf6p in 60S ribosomal subunit biogenesis. 

Conclusions/Significance 

YeastNet v. 2, constructed using these optimizations together with additional data, shows 

significant reduction in bias and improvements in precision and recall, in total covering 

102,803 linkages among 5,483 yeast proteins (95% of the validated proteome).  YeastNet 

is available from http://www.yeastnet.org. 
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Introduction 

Gene networks provide a simple basis for organizing thousands of cellular 

components and their associations with each other, as well as for generating testable 

hypotheses about the components and the system as a whole. A number of research 

efforts have demonstrated that heterogeneous functional genomics and proteomics data 

can be integrated into gene (or protein) networks (e.g., [1-12]), thus organizing and 

relating highly complex data sets, as well as simplifying the prediction of new gene 

functions and associations on basis of the network connections.  In such network 

integration approaches, relationships between genes are detected by various experimental 

or computational methods, and then combined in a bottom-up fashion in order to build a 

network model.  As high-throughput biological experiments advance, we expect 

corresponding gains in network models derived from these data.  Such improvements, 

however, are often tempered by the already extreme and growing complexity of the 

biological data. 

There are three major problems in integrating diverse genomics data into network 

models.  First, the genomics data are heterogeneous in their sensitivity and specificity for 

relationships between genes.  For example, experimental methods such as mass 

spectrometry preferentially observe abundant proteins, while comparative genomics 

methods apply only to evolutionarily conserved genes.  Increasing the sensitivity of 

detection usually carries a cost of increasing false positive identifications.  Thus, the 

systematic bias for each method should be understood and considered during data 

integration.  Second, genomics data sets vary widely in their utility for reconstructing 

gene networks.  Thus, we need robust benchmarking methods that can evaluate each data 

set and allow comparison of their relative merits.  Third, data sets are often correlated, 

complicating integration.  However, the correlation can be difficult to measure because of 

both data incompleteness (a common problem) and sampling biases. 

Probabilistic functional gene networks represent a class of gene network models that 

attempt to solve these problems, allowing integrative network models to be built from 

heterogeneous genomics data (e.g., [1,3,8,10-13]).  One key idea of such network models 

is the reinterpretation of genomics data as providing evidence for “functional coupling” 

between genes [1].  This non-mechanistic, but nonetheless useful, high level notion of 
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gene association enables the integration of many different types of data, capturing diverse 

types of associations (e.g., direct physical interactions, regulatory interactions, 

membership in the same physical protein complex, etc.) precisely because the definition 

of gene association is inclusive.  Such associations can be discovered using Bayesian 

statistical methods which allow robust evaluations to be made of functional associations 

between genes in a supervised learning framework, such as by measuring known 

pathways and cellular systems for their recapitulation by the data sets being analyzed.  

We previously reported such a probabilistic genome-wide gene network for yeast genes 

(dubbed YeastNet v.1) [1]. 

Here, we present optimized methods that improve our probabilistic functional gene 

network models.  Table 1 summarizes the major improvements.  In particular, 

optimization of three major areas is highlighted, illustrating their effects on network 

quality.  First, we reduced functional bias toward the dominant gold standard reference 

annotation during training.  For example, most yeast gene functional annotation sets show 

biases towards genes of “protein biosynthesis” or “ribosomal proteins” [14,15].  This bias 

inflates scores in a manner that does not generalize for other functions.  Second, we apply 

a simple probability model for calculating confidence in protein physical interaction and 

genetic interaction data sets.  We find the hypergeometric probability of an interaction 

occurring at random chance provides an excellent error confidence model for the 

interactions and simplifies their integration. Third, we introduce two thresholds that 

significantly improve the derivation of functional linkages from DNA microarray 

experiments.  The combination of these improvements with additional data results in a 

markedly improved overall yeast gene network, spanning 95% of the validated yeast 

protein-coding genes.  We demonstrate the network topology is predictive of essential 

genes, and apply the network to predict, then experimentally confirm, the function of the 

yeast gene PUF6 in 60S ribosomal subunit biogenesis.    



 5

Results and Discussion 

We incorporated three major improvements to the yeast probabilistic gene network, 

beyond inclusion of additional data sets: the reduction of bias in the reference training 

set, the introduction of probabilistic scores for physical and genetic interactions, and the 

introduction of filters to remove false-positive linkages from analysis of mRNA co-

expression.  We first discuss each of these improvements in turn, before demonstrating 

the overall quality of the network. 

 

Effect of a functionally biased reference set in learning a gene network from 

functional genomics data 

The derivation of a probabilistic functional network from functional genomics and 

proteomics data using the log-likelihood strategy is an example of a supervised learning 

approach, distinguishing positive functional associations from negative associations on 

the basis of the performance of training associations in the data sets under analysis.  The 

learning efficiency, however, is contingent upon the quality of the reference training sets, 

although the algorithms we employ are chosen for their robustness to false examples in 

the references.  Learning efficiency also correlates with the extent of reference examples, 

as we cannot learn effectively using only a few examples.  A third important 

characteristic of reference sets affecting supervised learning is the systematic bias among 

examples.  In agreement with previous observations of yeast gene annotation [15,16], we 

found that this last issue in particular was important for reconstructing a functional yeast 

gene network.   

The most comprehensive and reliable functional annotation currently available for 

yeast is the Gene Ontology [17] annotation set.  More than 70% of validated yeast 

protein-encoding genes are annotated by at least one of over 1,000 Gene Ontology 

“biological process” terms with support derived from reliable small-scale experimental 

evidence.  Therefore, yeast Gene Ontology “biological process” annotation meets the first 

two requirements of a good reference set for efficient learning.  However, the frequency 

distribution of annotation terms is heavily biased toward the single term “protein 

biosynthesis” (GO:0006412).  This term alone is responsible for > 27% of the total 

reference gene pairs (Figure 1A).  We observed a similar bias in another widely used 
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annotation set, The Kyoto Encyclopedia of Genes and Genomes (KEGG) [18] (data not 

shown).   

There are many possible reasons for such biased annotation, ranging from bias in 

scientific interest—yeast has historically been a major model for studying many core 

cellular processes including eukaryotic protein biosynthesis—to bias in technological 

feasibility—it is generally easier to study highly expressed proteins such as ribosomal 

proteins—to intrinsic bias in the cellular system themselves—core molecular machines 

such as the ribosome legitimately incorporate more genes than many other cellular 

systems.  We expect that such bias is inevitable; nonetheless, we need to minimize its 

adverse effects for network reconstruction. 

We examined the consequences of this bias by “masking” this dominant term in the 

annotation reference set, thereby removing all reference gene pairs linked via this term, 

and then testing data sets for their performance on the full and masked reference sets.  

For example, mRNA co-expression relationships between yeast genes across various 

heat-shock treatments [19] appear to strongly predict functional associations when 

benchmarked using the full, biased reference set (Figure 1B, open circles).  However, 

that strong relationship largely disappears after masking only the single reference term 

“protein biosynthesis” (Figure 1B, closed circles).  This observation clearly indicates that 

the strong functional associations derived from co-expression over these particular arrays 

are limited largely to protein biosynthesis genes.  Thus, assigning a high likelihood score 

for gene pairs that co-express highly but are not in protein biosynthesis would be 

misleading.  Examination of the frequency distribution of reference set gene pairs 

(Figure 1A) shows that the next most dominant term (“Cell wall organization and 

biosynthesis”, GO:0007047) accounts for <5% of reference pairs, with contributions from 

remaining terms decaying fairly smoothly. We therefore removed the only the dominant 

“protein biosynthesis” term before reconstructing the probabilistic yeast gene network. 

      

Probabilistic inference of gene functional associations from physical protein-protein 

interactions and genetic interactions 

Because of the generally strong correlation between protein physical or genetic 

interactions and functional associations, a map of such interactions among proteins is an 
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invaluable source for learning about protein functions and pathways.  Among many 

techniques of mapping protein physical interaction, yeast two hybrid assays and affinity 

purification followed by mass spectrometry have proved to the most popular for their 

scalability.  Two major genome-scale yeast two hybrid screens reported more than 4,000 

binary interactions [20,21].  While these interactions passed minimum quality criteria, we 

might not expect all to be equally informative for inferring functional associations.   The 

original confidence measures—dividing interactions into a more reproducible “core” set 

and less reproducible “non-core” set [20]—is coarse-grained and may often miss 

functionally informative interactions.   

Mass-spectrometry-derived interaction data, usually provided as a list of baits of 

affinity purification and their identified preys, is even more complicated for inferring 

binary physical or functional associations.  Two different models of inferring binary 

interactions from the lists of identifications have been widely used—the spoke and matrix 

models [22].  The spoke model allows pair-wise relations only between baits and preys 

for same complexes, whereas the matrix model includes additional relations inferred by 

pairing preys for same complexes.  These interpretative models exhibit differing trade-

offs between completeness and accuracy—the spoke model achieves high accuracy at the 

cost of completeness, whereas the matrix model provides a more complete model but 

relatively low accuracy due to pairing all prey proteins from a given bait with each other. 

A probabilistic model of protein-protein interactions should bypass the limitations of 

these coarse descriptive models, while providing higher resolution scoring important for 

data integration.  We found that calculating the hypergeometric probability of the protein 

interactions occurring at random chance in a given data set generates a very well-behaved 

ranking of interaction accuracy in recall-precision analyses (Figure 2A&B).  Note that 

this approach does not require training—instead, confidence is based only upon 

observations in the experiment under analysis and reflects the specificity with which a 

particular protein pair interacts, down-weighting promiscuous interactors and rewarding 

well-observed specific interactions.  This scoring scheme outperforms the spoke model 

and attaches confidence values to each interaction in the matrix model, thereby separating 

high and low confidence matrix model interactions (Figure 2A&B).  The hypergeometric 
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score appears to work equally effectively for yeast two-hybrid and mass spectrometry 

interactions.  

Interestingly, we also observed the hypergeometric probability-based confidence 

scores to effectively rank genetic interactions according to their utility for functional 

inferences (Figure 2C).  Considering the likely low false positive rate of genetic 

interactions, this ranking probably does not reflect differences in the quality of 

interactions.  Instead, it likely reflects the specificity of the genetic interactions, as each 

gene can participate in a varying number of genetic interactions and span a wide range of 

biological pathways [23].  For example, the yeast Hsp90 chaperone HSP82 is considered 

to be a genetic capacitor genetically interacting with many (289) genes from diverse 

cellular processes, and may generically buffer phenotypic variation [24].  Since HSP82 is 

a global modulator, the genetic interactions in which it participates only allow for weak 

function inferences.  Therefore, the appropriate interpretation for the low precision 

observed for interactions involving HSP82 is probably not that of false positives, but 

rather promiscuous interactions.  Genetic interactions have been previously classified into 

within-pathway and between-pathway interactions [23,25]; the hypergeometric 

probability model appears to rank within-pathway interactions above between-pathway 

interactions, thereby increasing the utility of genetic interactions for inferring functional 

associations between genes. 

  

Optimized method of inferring functional links by co-expression analysis 

For inferring functional linkages from DNA  microarray evidence, we employ the 

divide-test-integrate approach [1] for discovering functionally informative cases of 

mRNA co-expression.  This method is in contrast to simply concatenating the results of 

all DNA microarray experiments to create a single, monolithic expression vector for each 

gene, then measuring correlation between these vectors.  A co-expression network 

derived in this manner indeed shows a robust correlation between the extent of 

expression correlation and the degree of functional association, in part because of its high 

dimensionality.  However, it generally works as a useful model only for limited groups of 

genes, such as consistently co-expressed housekeeping genes. The problem facing this 

method is that context-specific co-expression patterns evident in only a subset of 
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experiments are overwhelmed by stochastic expression changes across the remaining 

experiments.  For example, take the case of several experiments designed to detect 

expression dynamics during heat shock, combining these with an excess of other 

experiments.  Genes that respond coordinately under heat shock but do not otherwise 

change expression in the remaining experiments are unlikely to be detected in an analysis 

of the monolithic expression vectors.  In contrast, the divide-test-integrate approach, in 

which each group of biologically coherent experiments is analyzed separately for co-

expression linkages, then the linkages integrated from each set of experiments, is 

designed to identify such cases.  However, its actual practice often entails increased false 

positive co-expression linkages because of lower dimension expression vectors and the 

correspondingly increased probability of observing such correlations at random.   

For robust as well as sensitive co-expression linkage detection, we introduced two 

new parameters to filter false positive co-expression linkages.  These filters operate by 

removing genes from the co-expression analysis that fail to show a minimum ratio of 

expression change (R) in a minimum number of microarray experiments (M), thereby 

eliminating the genes most likely to be unresponsive in the array set being analyzed. We 

optimized the choice of these two parameters for each set of array experiments by 

maximizing the area under a recall-precision curve (Table 2). 

Beyond filtering genes, we also removed entire data sets that proved uninformative 

for reconstructing a functional network: We measured the relationship between the 

degree of co-expression between two genes, measured as the Pearson correlation 

coefficient (PCC) of their expression levels across the arrays under consideration, and the 

likelihood of their functional association, measured by the log likelihood of belonging to 

the same pathway (LLS, see Methods) between the genes in each successive bin of 1000 

gene pairs ranked in descending order by PCC.  Across 18 total sets of DNA microarrays 

from SMD [26], containing 581 individual array experiments, we found 14 sets showed a 

significant relationship (e.g., Cell cycle; Figure 3A) and 4 sets showed no relationship 

(e.g., Oxidative stress with Menadione; Figure 3A), as listed in Table 2.  Alternate 

measures of expression correlation (the non-parametric Spearman rank coefficient and 

mutual information measures) failed to improve performance over PCC.  Filtering the 

unresponsive genes as described above further improved the relationships, as shown for 



 10

an example in Figure 3B.  In order to ensure representation of housekeeping genes, the 

14 informative array sets were also concatenated into monolithic expression vectors 

spanning 500 experiments and analyzed for co-expression linkages as above. The benefits 

of the divide-test-integrate method are illustrated in the improved precision for any given 

coverage of genes or reference linkages, as shown in Figure 3C on the independent 

MIPS protein functional linkage reference set (excluding the term “protein synthesis”).  

                 

Assessment of YeastNet version 2 as a predictive model 

In total, ten types of functional genomics, proteomics, and comparative genomics 

data sets are integrated into the network (Table 3), as described in the Methods section 

(see the pseudo-code for an overview of the procedure). Approximately 1,800,000 

individual experimental observations were integrated into the network model, optimizing 

a total of ~155 free parameters in order to construct the network.  Using a permissive 

scoring threshold corresponding to the log likelihood score (LLS > 0.916) of non-core 

genome-wide Y2H screens [20], YeastNet v. 2 contains a total of 102,803 linkages 

covering 5,483 yeast proteins (covering > 95 % of validated yeast proteome). 

The integrated model, along with the various sets of linkages derived from individual 

data sets, was assessed on an independent test set of gene functional linkages derived 

from the MIPS protein function annotation set, calculating recall and precision of the 

MIPS reference linkages (Figure 4).  For this purpose, we measure recall of genes, rather 

than gene pairs, in order to assess the generality of predictions across the entire genome.  

The integrated network shows high gene coverage and high precision across the entire 

network.  As expected, the integrated network surpasses any individual data set for 

precision at a given coverage; the complete network covers > 95% of the protein-coding 

genes in the yeast genome with > 60% precision on the inferred linkages (i.e., at least 6 

out of 10 predicted linkages are true).  

  We compared the overall performance of YeastNet version 2 to that of YeastNet 

version 1 by recall-precision analysis on the independent test sets.  We previously defined 

a confident sub-network by taking only the top 34,000 functional linkages (covering 

4,681 yeast proteins) [1] and used that for detailed biological interpretation.  We 

therefore selected the top 34,000 linkages of both versions of YeastNet in order to 
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perform to a fair comparison. This subset of YeastNet v. 2 covers 4,649 yeast proteins 

(>80% of the validated yeast proteome).  In tests of the MIPS functional linkage 

reference set that included linkages derived using the functional category “protein 

synthesis”, the precisions of the two networks are comparable, while coverage—for both 

genes and reference linkages—is significantly improved for the new network model 

(Figure 5A).  Superiority of the new network becomes more obvious when we mask the 

reference linkages derived from the term “protein synthesis”.  Precision of the new 

network is minimally influenced by masking of this single term.  In contrast, YeastNet v. 

1 shows a noticeable drop in precision, indicating a bias towards protein synthesis-related 

functions.  We observe the same trend using another independent functional linkage 

reference set derived from KOG functional categories (Figure 5B), with the precision of 

YeastNet v. 2 changing only minimally with removal of the KOG reference term “protein 

synthesis”, while precision of YeastNet v. 1 drops below v. 2.  Roughly 17% of total 

KOG reference linkages are derived from the annotation term “protein synthesis”, while 

only 4.3% of total MIPS linkages are, accounting for the larger effect seen on the KOG 

benchmark.  (The effect is also accentuated by the fact that MIPS annotates 3,752 yeast 

genes, whereas KOG annotates only 3,022.)  Therefore, we conclude that the new 

network, YeastNet v. 2, is a significantly improved gene functional network, both 

showing higher accuracy and coverage, as well as better generalization to a more diverse 

set of cellular systems. 

Another aspect of the predictive quality of a gene network relates to an observed 

correlation between a gene’s tendency to be essential [27] and its centrality in a network, 

measured as the number of interactions in which the gene participates.  This correlation 

was initially observed for the yeast physical protein-protein interaction network [28].  

Consistent with the original observation, the high quality physical protein-protein 

interactions derived from small-scale experiments (here, collected from bioGRID [29]  

and DIP [30]) show a strong correlation between degree centrality and lethality 

(Spearman rank correlation (rs) = 0.94; Figure 6A).  YeastNet v. 1 also showed a strong 

correlation—slightly worse in quality than the physical interactions but covering a higher 

proportion of the experimentally identified essential genes (increasing from 85% 

coverage in the protein-protein interaction network to 91% by YeastNet v. 1; Figure 6B).  



 12

One explanation for this slightly lower correlation is that linkages in YeastNet v. 1 are 

enriched among genes of protein biosynthesis, especially ribosomal proteins, because of 

the biased reference set.  This trend would lower the correlation, as only ~18% of yeast 

ribosomal genes (defined by GO cellular component annotation) are essential, similar to 

the general background proportions of essential genes [27].  Consistent with this notion, 

we found that YeastNet v. 2 shows a higher correlation between degree centrality and 

lethality (Spearman rank correlation (rs) = 0.95) while covering nearly all (99%) of the 

experimentally identified essential yeast genes (Figure 6C).  This indicates that the 

optimized learning methods, considering functional bias, produce a more globally 

predictive network model. 

 

Experimental validation of the top ribosome biogenesis prediction, PUF6 

In addition to the above computational validation, we also experimentally validated 

predictions arising from the new gene network.  Using the new network, we predicted 

new genes to be involved in the process of ribosomal biogenesis, which is a fundamental 

process critical for cells and widely conserved across eukaryotes.  New ribosomal 

biogenesis genes were inferred by identifying close network neighbors to the known 

ribosomal biogenesis genes.  Specifically, we generated a seed set of known ribosome 

biogenesis genes based on their Gene Ontology biological process annotation (n = 238 

yeast genes annotated by the terms “ribosome assembly”, “rRNA”, or “35S”), then 

prioritized their network neighbors by the sum of their LLS scores to genes of the seed 

set.  This list of genes was filtered to remove known ribosomal proteins.  Table 4 lists the 

top 5 predictions.  Two of the top 5 genes, CIC1  and ESF2  have been verified in the 

literature [31,32]  but had not yet been included in the ribosome biogenesis annotation set 

we employed, and thus can be considered true predictions already verified by published 

studies.  Moreover, these predictions are also supported by multiple lines of evidence 

including inferred functional linkages based on high-throughput data (e.g., co-expression 

and mass spectrometry analysis; Table 4).  All five genes are known to be localized to 

the nucleolus [33], strongly supporting a possible role in ribosome biogenesis.   

We selected the top-ranked prediction, PUF6, for experimental validation.  PUF6 

encodes an RNA-binding protein previously known to be involved in mating-type 
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determination via its translational repression of ASH1 mRNA prior to ASH1 mRNA 

localization to the bud tip [34].  While previous computational evidence associates PUF6 

with ribosomal biogenesis [35], there is not yet direct experimental support for its 

involvement.  We therefore experimentally tested PUF6 for its participation in ribosomal 

biogenesis. 

We might expect yeast strains defective in ribosomal biogenesis to show a slow 

growth phenotype; we tested a puf6Δ deletion strain [36] and indeed observed significant 

growth retardation compared to the wild-type strain when cultured at 20 ˚C (Figure 7A).  

We then analyzed the polysome profile of the deletion strain in order to assess defects in 

ribosome processing consistent with a biogenesis defect.  We observed an abnormal 

decrease in the ratio of 60S/40S ribosomal subunits and detected the presence of halfmers 

in the puf6Δ deletion strain (Figure 7B).  Such halfmers—shoulders on the 80S and 

polysome peaks—arise from mRNA bound by an extra 40S subunit stalled at the AUG 

initiation codon and are characteristic of 60S subunit biogenesis defects and blockage of 

translation initiation at the 60S subunit joining stage (e.g., [37-39]).  Both the decrease in 

60S subunit abundance relative to 40S and the presence of halfmers indicate a probable 

role of PUF6 in 60S ribosomal subunit biogenesis.  We further tested the participation of 

PUF6 in 60S biogenesis by performing Western blot analysis on an epitope-tagged 

version of the Puf6p protein [40].  We observed the epitope-tagged Puf6p protein to co-

sediment in a sucrose gradient with the 60S ribosome in a fashion similar to the known 

60S ribosome biogenesis factor Nmd3p [38] (Figure 7C).  Therefore, the top network 

prediction for proteins most likely to participate in ribosome biogenesis could be 

experimentally confirmed.    In all, 3 of the top 5 predictions could be directly confirmed, 

with the remaining 2 highly likely given their nucleolar localization. 

        

Conclusions 

In this study, we present several optimizations that significantly improve the 

predictive power of a probabilistic functional gene network of yeast.  There are three 

major aspects worth noting.  First, our current functional genomics knowledge is severely 

biased.  This bias leads to biased learning unless appropriately taken into account, as the 

effect of reference linkages from the dominant GO term “protein biosynthesis” is quite 
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strong (Figures 1 and 5).  Second, physical protein interaction and genetic interaction 

data can be assigned scores that allow, on a per interaction basis, for fine-grained, 

continuous valued confidence measures.  The score that we employ, based on the 

hypergeometric probability, is simple and robust, and works across a variety of different 

experimental techniques, and would therefore even be appropriate as a final confidence 

score directly out of large-scale experimental assays (e.g., as in [41]).  Introduction of this 

score significantly improves the performance of these data in deriving the probabilistic 

gene network. Third, introducing two additional parameters into the analysis of mRNA 

co-expression linkages significantly decreases the number of false positive linkages while 

simultaneously decreasing the variance in the quality of the derived linkages (Figure 

3B).  Incorporation of each of these optimizations into YeastNet v. 2 significantly 

improves the quality of the model, improving precision and recall on independent test 

sets and increasing generality of the model for more diverse cellular systems.  We expect 

that the protocol we present for calculating the network is general and could be applied to 

other organisms essentially directly as described.   

We describe applications of the gene network for functional prediction (prediction of 

ribosomal biogenesis genes) and prediction of essential genes. In order to perform similar 

analyses of YeastNet v. 2, we have established a web site (http://www.yeastnet.org) 

where the network can be downloaded in full.  We anticipate posting future updates of 

the network to this site as new data sets become available.   

 

Materials and Methods 

Saccharomyces cerevisiae gene set 

YeastNet version 2 is based on the verified 5,794 protein encoding open reading 

frames (ORFs) of the yeast genome downloaded from Saccharomyces cerevisiae Genome 

Database (SGD) [42] on March 2005.  All linkages and calculations of genome coverage 

are based on this gene set. 

 

Reference and benchmark sets 

In order to benchmark the assigned functional linkages in this study, three different 

reference sets were used.  As a major reference set for benchmarking, we’ve used the 
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Gene Ontology (GO) annotation, downloaded from the Saccharomyces cerevisiae 

Genome Database (SGD) [17] on March 2005.  The GO schema lists three hierarchies of 

function describing “biological process” (i.e., pathways and systems), “molecular 

function” (i.e., biochemical activities), and “cellular component” (i.e., subcellular 

localization).  For training the network, we used the Saccharomyces cerevisiae GO 

“biological process” annotation, which contains up to 14 different levels of information 

under the term “biological process” within the hierarchy.  We used terms belonging to 

levels 2 through 10.  We also excluded the term “protein biosynthesis” because it 

annotates so many genes as to significantly bias the benchmarking.  To construct the 

reference set of linkages, we considered all gene pairs as functionally linked if they 

shared annotation from this set of GO terms.  These pairs comprised our positive 

reference set for training network models. Negative examples were constructed as pairs 

of annotated genes not sharing any annotation terms, i.e., all other links among this 

annotated set of genes.  

Specifically, 66,174 positive reference pairs were employed, representing all gene 

pairs sharing any GO biological process terms between levels 2-10 (except for the biased 

term “protein biosynthesis”).  These pairs are provided on the supporting web site 

(http://www.yeastnet.org).  All other pairs of these genes were implicitly defined as the 

negative reference pairs.  For example, the genes NOP1 and SIK1 represent a positive 

example, sharing the GO terms ‘rRNA modification’, ‘35S primary transcript 

processing’, ‘processing of 20S pre-rRNA’.  The genes BUD5 (‘bud site selection’, 

‘pseudohyphal growth’, ‘small GTPase mediated signal transduction’) and NOG1 

(‘ribosome-nucleus export’) are annotated, but do not share terms, and represent a 

negative example. 

We also employed two independent functional linkage reference sets for testing 

functional linkages.  One was derived from the Munich Information Center for Protein 

Sequences (MIPS) [43] protein function annotation.  We used the 11 major categories 

from the top level MIPS functional category annotation.  The second reference set was 

derived from the clusters of orthologous group (COG) annotation [44], which is based on 

reconstructing homologous groups of proteins in such a manner as to considerably enrich 

for orthologous proteins within each group, with the functions of genes assigned within 
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23 broad categories (such as “Transcription” and “Signal Transduction Mechanisms”) 

based on the well-annotated proteins with each COG.  We use the version of COG that 

includes multicellular eukaryotic genomes (named eukaryotic orthologous groups, or 

KOG) [45].  Positive and negative linkage sets were constructed from each of these 

reference sets as for the GO set. 

 

Benchmarking and integrating heterogeneous functional genomics data 

Different types of genomics data sets differ considerably in their utility for inferring 

functional linkages.  We standardized the contributions from heterogeneous genomic data 

sets by scoring using the log likelihood score (LLS) scheme previously proposed in [1].   

In this scheme, the score for each data set (or subset; e.g., a set of gene pairs co-

expressed to a certain extent) is calculated as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(~/)(
)|(~/)|(ln

IPIP
DIPDIPLLS  , 

where P(I|D) and P(~I|D) are the probabilities for gene pairs linked by the given data 

(D) to share (I) or not share (~I) functional annotation, respectively, and P(I) and P(~I) 

represent the prior probabilities of sharing/not sharing functional annotation, respectively.  

For estimating the conditional probabilities P(I|D) and P(~I|D), we calculated the 

fraction of annotated gene pairs in the data set being analyzed that were also found in the 

positive or negative reference sets, respectively.  P(I) and P(~I) were calculated as the 

overall frequencies of positive reference pairs (annotated gene pairs sharing annotation) 

and negative reference pairs (annotated gene pairs not sharing annotations).  Thus, an 

LLS score of zero indicates that the data is no more informative than random expectation 

for discovering functional linkages; increasingly positive LLS scores indicate increasing 

information in the data set for discovering functional linkages.   

To avoid overtraining, we employed 0.632 bootstrapping [46,47] for all LLS 

calculations.  0.632 bootstrapping has been shown to provide a robust estimate of 

classifier accuracy, out-performing cross-validation [48], especially for very small data 

sets (e.g., see [49]), and is thus appropriate even for more poorly annotated genomes.  

Unlike cross-validation, which uses sampling without replacement for constructing test 
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and training data sets, 0.632 bootstrapping employs sampling with replacement, 

constructing the training set from data sampled with replacement and the test set from the 

remaining data that weren’t sampled.  Each linkage has a probability of 1-1/n of not being 

sampled, resulting in ~63.2% of the data in the training set and ~36.8% in the test set 

[50].  The overall LLS is the weighted average of results on the two sets, equal to 

0.632*LLStest + (1-0.632)*LLStrain. 

For data sets in which each gene pair is associated with a continuous score (e.g., 

correlation coefficient, mutual information, etc.), we calculated LLS scores for bins 

containing equal numbers of gene pairs.  Those LLS scores and their corresponding data 

scores (the mean data scores for a bin) were used to calculate regression models (see 

Figure 1B for examples), which were then used to map individual data intrinsic scores to 

LLS scores in a continuous manner, allowing calculation of LLS scores for gene pairs 

lacking annotation.  In general, quadratic curve fits tended to overscore gene pairs with 

the highest data-intrinsic scores (e.g., those with the highest correlation coefficients) 

during the extrapolation to unannotated genes; sigmoidal fits provided equivalent quality 

regression models, but were more conservative for the highest scoring cases. 

For integrating LLS scores from different data sets, we employed the weighted sum 

method [1] in order to take into account correlations among the data sets.  The published 

weighted sum method was modified by using linearly decaying weights for additional 

datasets, and by including a new free parameter, T, which represents a minimum LLS 

threshold on the data sets being integrated.  The weighted sum (WS) integrating multiple 

likelihood scores of functional association for a gene-pair was calculated as: 

WS = L0 +∑
= ⋅

n

i

i

iD
L

1
 , for all L ≥  T, 

where L0 represents the maximum LLS score for a given gene pair, D is a free 

parameter determining the decay rate of the weight for secondary evidence, and i is the 

rank order index of LLS scores, ranking gene pairs starting from the second highest LLS 

with descending magnitude for all n remaining LLS scores.  For integration, we consider 

only LLS scores above the threshold T, thereby excluding noisy low scoring linkages.  

The free parameter D ranges from 1 to +∞, and is optimized to maximize overall 

performance (measured as the area under a recall-precision curve) of the integrated 
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model.  As the optimal value of D approaches +∞, WS approaches L0, and lower scoring 

LLS scores do not provide any additional likelihood, as appropriate when all data sets are 

completely dependent.  We independently explicitly test the performance of a naïve 

Bayesian integration of the LLS scores (here, simply the sum of the LLS scores for a 

given gene pair), then select the integration approach maximizing the area under a plot of 

LLS versus gene pairs incorporated in the network. 

Regarding the choice of linear versus exponential decay of confidence in secondary 

evidence, we observe better performance (measured by recall-precision analysis) using 

the linear model when accompanied by more extensive secondary evidence and improved 

filtering of false positive linkages prior to integration.  In YeastNet v.1, more low-scoring 

false-positive linkages were incorporated, and their contributions as secondary evidence 

were more strongly down-weighted under the exponential model.  However, in YeastNet 

v. 2, new filters (in particular, new probabilistic scores for protein interactions and the 

introduction of thresholds for DNA microarray data) down-weight or remove many false 

positive associations prior to integration.  The addition of new data sets also has the effect 

of increasing the quantity of secondary evidence.  Thus we empirically observe that as 

secondary lines of evidence become more available and informative, the linear 

dependency model performs better. 

 

Inferring gene functional linkages from mRNA expression data 

Gene functional linkages were inferred from mRNA expression data deposited in the 

Stanford Microarray Database (SMD) by July 2005 [26].  Co-expression relationships 

were measured as the Pearson correlation coefficient (PCC) between pairs of genes’ 

mRNA expression vectors, accepting only PCC values statistically significant at the 99% 

confidence level by t-test.  From the set of gene pairs with significant PCC scores, we 

excluded pairs with cDNA sequence homology (defined as a BLAST E-value < 10-4 and 

percentage nucleotide sequence identity > 70% over the aligned regions [51]) in order to 

reduce false positive co-expression linkages caused by cross-hybridization on the DNA 

microarrays.  As demonstrated previously [1], overall recall/precision of expression-

derived linkages can be improved by analyzing subsets of arrays independently, rather 

than as a single composite expression vector.  We tested a total of 581 DNA microarray 
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experiments comprising 18 sets, as defined by SMD (Table 2).  We found that 14 SMD 

sets, containing a total of 500 array experiments, exhibited a significant correlation 

between PCC and the log likelihood score; we considered only these data sets further.    

We introduced two additional parameters to improve co-expression inferences: a 

threshold for the minimum observed change in mRNA levels across the set of array 

experiments (R in Table 2A), and a threshold for the minimum number of microarray 

experiments with expression values greater than R (M in Table 2A).  Thus, only genes 

that are differentially expressed by at least R-fold (in either direction) on at least M 

microarrays in the given data set will be considered for co-expression linkages.  These 

parameters considerably reduce the linkage false positive rate by removing genes that do 

not vary across the set of arrays being analyzed, under the premise that genes that are 

expressed at a constant level across the tested conditions are not likely to be relevant to 

the conditions of the experiments or to participate in strong co-expression relationships. 

These filters therefore remove false positive linkages derived from experimental noise 

and drift in otherwise unchanging baseline expression levels.  We optimized the two 

thresholds for each SMD array subset, maximizing the area under a curve plotting the 

number of genes incorporated in the inferred linkages versus cumulative log likelihood 

score of the linkages (Table 2A). 

In order to include otherwise robust co-expression linkages missed by these analyses, 

we also concatenated all 500 experiments derived from the 14 selected SMD data sets 

and derived co-expression linkages from these concatenated expression vectors.  These 

linkages plus those from each of the 14 SMD subsets were integrated by the weighted 

sum method.   

 

Inferring gene functional linkages from experimental protein-protein interaction 

data 

Physical protein-protein interactions (PPI) and genetic interactions (GI) were 

collected from the Database of Interacting Proteins (DIP) small-scale experiment set 

(downloaded March 2003) [30], BioGRID (downloaded on June 2006) in which all 

interactions are supported by literature curation [29] and literature collection by MIPS 

[43].  These interactions are highly confident, because genetic interaction screens 
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inherently provide low false-positive rates (Type I errors), and all physical interactions in 

these sets are derived from small-scale studies.  Additional physical interactions were 

collected from published genome-scale screens using mass spectrometry analyses of 

affinity-purified protein complexes [52-54] or high throughput yeast two hybrid (Y2H) 

assays [20,21,55-57]. 

We applied a quantitative error model developed for PPI data sets [41,58] in order to 

assign probabilistic confidence scores to each PPI or GI gene pair.  Instead of modeling 

simple binary bait-prey interactions for yeast two hybrid assays, inferred binary 

interactions from mass spectrometry analysis of affinity-purified protein complex [22], or 

binary genetic interactions, we calculated the hypergeometric probability of interaction 

between two proteins by random chance, assigning a probability (p-value) to the pair as: 
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and where k = the number of interactions observed between proteins A and B in the 

complete interaction data set (e.g., depending on the data set, counting the number of 

yeast two-hybrid interactions, mass spectrometry co-purifications, or genetic interactions 

involving both A and B), n = the number of observed interactions involving protein A, m 

= the number of observed interactions involving protein B, and N = total number of 

experiments with ≥ 1 interaction measured (e.g., depending on the data set, counting the 

number of total detected yeast two-hybrid interactions, the number of pull-down 

experiments with at least one interaction prey identified by mass spectrometry analysis, 

or the number of total detected genetic interactions).  Using this measure, interactions 

between proteins with many different interacting partners (i.e., frequent interactors) have 

a high probability of occurring by random chance, indicating either promiscuous or 
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strongly context-dependent interactions.  Given probable association with many other 

partners, such cases therefore receive a correspondingly low confidence in the gene pair’s 

specific interaction with each other. 

 

Inferring gene functional linkages from genome context 

We employ three genome context methods for inferring functional linkages from 

genome sequences: phylogenetic profiling (PG) [59-61], the Rosetta Stone protein (RS) 

(or gene-fusion) method [59,62-64], and gene neighbors [3,65,66].  Linkages for each 

method were derived from analysis of a database of 149 genomes (117 bacteria, 16 

archaea, and 16 eukaryotes).   

Briefly, each yeast protein sequence was compared to every other sequence using the 

program BLASTP with default settings [67].  Rosetta Stone linkages and gene neighbor 

linkages were calculated from these comparisons as in [68] and [3], respectively.  

Phylogenetic profiles were constructed from these comparisons and analyzed as in [69] 

with the following modifications.  We found the profiles corresponding to major 

phylogenetic groups of organisms varied widely in their utility for deriving functional 

gene associations.  In particular, inclusion of eukaryotic and archaeal genomes did not 

significantly improve performance. Instead, we found the best performance—measured 

as the performance maximizing the area under a plot of LLS versus the number of genes 

participating in the linkages—by inferring functional linkages from a profile constructed 

only from bacterial genomes.  For discretizing BLAST E-values prior to calculation of 

mutual information between phylogenetic profiles, we binned by equal numbers of 

examples rather than by equal intervals of E-values, accounting for the non-uniform 

distribution of BLAST E-values.  We observed the best results from using 3 bins.   

 

Inferring gene functional linkages from literature mining 

We identified functional linkages by mining the scientific literature (specifically, 

Medline abstracts) using the co-citation approach [70,71] as in [1]. We analyzed a set of 

N = 29,135 Medline abstracts that included the word “Saccharomyces cerevisiae” in the 

abstract for perfect matches to either the standardized names or common names (or their 

synonyms) of 5,794 yeast genes.  
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Inferring gene functional linkages from protein tertiary structure 

Functional linkages were also inferred from physical interactions predicted between 

proteins pairs based upon modeling their 3-dimensional structures into X-ray crystal 

structures of homologous protein complexes. We used the tertiary structure predictions 

reported by Aloy and Russell [72], using the reported P-values as the internal measure of 

confidence in the interactions. 

 

Summary of integration 

The final integrated gene network incorporates 10 fairly distinctive types of data: 1) 

small-scale protein physical interactions from literature curation, 2) co-citation evidence, 

3) mRNA co-expression, 4) genetic interactions, 5) protein complexes derived from 

affinity-purification followed by mass spectrometry, 6) high-throughput yeast two hybrid 

analyses, 7) gene neighbors, 8) phylogenetic profiles, 9) Rosetta Stone protein linkages, 

and 10) inferred interactions from tertiary structural modeling (Table 3).  The following 

pseudo-code summarizes the benchmarking and integration of these data: 

 

1. For DNA microarray data 
1.1. For each set of yeast DNA microarrays (corresponding to all arrays from a given 

category defined in SMD) 
1.1.1. Calculate the mean-centered Pearson correlation coefficient (PCC) 

between all pairs of genes’ expression profiles 
1.1.1.1.Calculate (by t-test) the minimum correlation coefficient for 99% 

confidence given the # of experiments in the set.  For further analyses, 
consider only pairs meeting this criterion. 

1.1.1.2.Eliminate all potential cross-hybridization pairs defined by cDNA 
BLAST score (E-value < 10-4 and nucleotide sequence identity > 70%), 
then evaluate the regression between PCC and the log likelihood score 
(LLS) of sharing Gene Ontology biological process annotations 

1.1.1.2.1. Reject set if no relationship is evident between PCC and LLS 
1.1.1.3.Filter genes considered in the correlation analysis by requiring each 

gene to exhibit significant expression changes (e.g., > R-fold, typically 
~1.5-fold) in at least M microarray experiments across the data set.  
Optimize these 2 parameters by recall-precision analysis, maximizing 
the area under a plot of LLS versus # of genes participating in the 
linkages. 

1.1.1.4.Fit regression (typically sigmoid) between PCC and LLS, considering 
only genes passing the optimized filtering criteria (1.1.1.3) and only 
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gene pairs whose correlation exceeds the 99% confidence level 
(1.1.1.1). 

1.1.1.5.Using regression fit, assign LLS scores to all gene pairs whose 
correlation exceeds the 99% confidence level, including unannotated 
gene pairs. 

1.1.1.6.Select minimum LLS threshold from inflection point of regression 
model.  Retain only LLS scores/gene pairs surpassing threshold. 

1.2. Integrate LLS scores from complete collection of sets of DNA microarrays  
1.2.1. Calculate the weighted sum of LLS scores for each gene pair across the 

analyses of DNA microarray sets 
1.2.2. Optimize the choice of the weighting parameters D and T using recall-

precision analysis by maximizing the area under a plot of LLS versus # of 
genes participating in the linkages.  Compare to naïve Bayesian integration, 
and choose from weighted integration versus naïve Bayes by recall-precision 
analysis. 

2. For each set of protein-protein physical interaction data (mass spectrometry analyses 
of purified complexes, genome-scale yeast 2 hybrid analysis, small-scale data 
collected by literature curation) and genetic interaction data (collected by literature 
curation)  
2.1. Fit regressions between LLS and data-intrinsic scores (–log(hypergeometric 

probability of interaction)) 
2.2. Using regression fit(s), assign LLS scores to all interacting gene pairs, including 

unannotated gene pairs 
2.3. Integrate LLS scores from homogeneous types of detection methods using 

weighted sum method (e.g., integrate LLS from three major mass spectrometry 
analysis of complex [52-54] into a single integrated set of gene linkages from all 
mass spectrometry analyses), optimizing D and T parameters by recall-precision 
analysis.  Compare to naïve Bayesian integration, and choose from weighted 
integration versus naïve Bayes by recall-precision analysis. 

3. For co-citation, phylogenetic profiles, Rosetta-stone proteins, gene neighbors data, 
and inferred protein interactions from protein tertiary structure  
3.1. Fit regressions between LLS and data-intrinsic scores (–log(random probability 

of co-citation), mutual information of phylogenetic profiles, (–log(random 
probability of gene-fusion), –log(random probability of being gene neighbors, 
and original P score as in [72], respectively) 

3.2. Using regression fit(s), assign LLS scores to all co-cited (or co-inherited or co-
neighboring) gene pairs, including unannotated gene pairs 

4. Integrate all linkages using the weighted sum method, optimizing the choice of D and 
T parameters by recall-precision analysis.  Compare to naïve Bayesian integration, 
and choose from weighted integration versus naïve Bayes by recall-precision 
analysis. 
 

Experimental validation of yeast ribosomal biogenesis genes        
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Yeast strains were cultured in YPD (1% yeast extract, 2% peptone, 2% dextrose) at 

30°C. The puf6Δ haploid MATa deletion strain [36] and  PUF6, NMD3, and TDH1 TAP-

tagged haploid MATa strains [40] were obtained from Open Biosystems. 

For polysome profile analysis, yeast strains were cultured to OD600 0.3-0.5, and 100 

μg/ml cycloheximide (Sigma) was added to each culture.  Cultures were immediately 

cooled with ice, and all subsequent steps were performed on ice or at 4°C.  Each cell 

pellet was washed once with lysis buffer (20 mM Tris pH 7.4, 20 mM KCl, 5 mM MgCl2, 

100 μg/ml cycloheximide, 12 mM β-mercaptoethanol, 2 μg/ml leupeptin, 2 μg/ml 

aprotinin, 1 μg/ml bestatin, 1 μg/ml pepstatin A) without protease inhibitors (MP 

Biomedicals Inc.). The cells were pelleted, resuspended in one volume lysis buffer, and 

lysed with glass beads. Crude lysates were centrifuged at 15,000g for 10 minutes. Fifteen 

OD260 units of each supernatant were loaded onto continuous 12 ml 7 to 47% sucrose 

gradients in lysis buffer without protease inhibitors, as in [73]. After a 2.5-h spin at 

40,000 rpm in a Beckman SW40 rotor, the sucrose gradient was fractionated and 

absorbance at 254 nm was measured. For TAP-tagged strains, fractions were collected, 

and proteins were precipitated with 10% cold trichloroacetic acid and washed with 100% 

cold acetone. 

For analysis of co-sedimentation with ribosomes, precipitated proteins were 

resuspended in 20 μl Laemmli buffer, and 2 μl of each sample was deposited onto a 

nitrocellulose membrane. TAP-tagged proteins were detected with a PAP antibody 

(Rockland Immunochemicals, Inc.) and electrochemiluminescence (ECL; GE 

Amersham). 
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Figure Legends 

Figure 1 

The effect of functionally biased Gene Ontology annotation on network training.  (A) 

Frequency histograms of the usage of 1,067 Gene Ontology “biological process” 

annotations, ranked by the number of genes annotated with each term (black bars) and by 

the number of reference linkages derived using that term (white bars).  Functional 

annotation is highly biased towards genes with the term “protein biosynthesis”.  This 

functional bias becomes more severe in the reference linkages, given the combinatorial 

increase after linking all genes sharing a given term.  As a result, linkages among protein 

biosynthesis genes compose > 27% of total reference linkages. By contrast, the second 

most frequent term accounts for < 5% of total reference linkages.  (B) The likelihood of 

functional association between genes on the basis of the co-expression of their mRNAs 

across DNA microarray experiments (here, following heat-shock [19]) is significantly 

affected by the dominant reference term “protein biosynthesis”.  For example, for the 

1,000 most strongly co-expressed gene pairs, the likelihood of functional association 

between co-expressed genes is ~30 fold higher than random chance (LLS ~ 3.4) (empty 

circles), but drops to ~6 fold (LLS ~ 1.8) after masking the term “protein biosynthesis” in 

the reference set (filled circles).  Thus, the high likelihood score from the biased 

reference set cannot be generalized to other functions.  The black and red lines indicate 

sigmoid curve fits to the unbiased and biased reference analyses, respectively. 

 

Figure 2  

Assigning confidence scores to physical or genetic interactions.  Performance of the 

hypergeometric probabilistic score is shown for gene functional associations inferred 

from (A) protein-protein physical interactions measured by the high-throughput yeast two 

hybrid (Y2H) screen of Ito et al. [20], (B) affinity-purified complexes identified by mass 

spectrometry by Gavin et al. [52], and (C) genetic interactions [43,74].  Performance with 

the probability score is measured cumulatively for each successive bin of 200 interactions 

(A-C, red filled triangles), ranked by probability score. Recall and precision are 

calculated using the reference linkages derived from Gene Ontology “biological process” 

annotation masking the term “protein biosynthesis”.  The Y2H core model described in 
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[20] (A, filled circle) is more precise than the complete data set (A, open circle), but with 

reduced recall.  Similarly, two different ways of inferring binary linkages from mass 

spectrometry-derived protein complexes [22]—the spoke (B, filled circle) and matrix 

models (B, open circle)—show differing trade-offs between precision and recall.  The set 

of binary genetic interactions (C, open circle) shows very low precision for functional 

inferences, although the false positive rate of genetic interactions is generally perceived 

to be low; in contrast, the hypergeometric probability identifies a functionally informative 

subset of linkages.  In general, the hypergeometric probability scores provide an excellent 

ranking of interactions in each of the data sets consistent with the linkages’ functional 

informativeness. 

 

Figure 3 

Optimizing the inference of linkages from mRNA co-expression.  (A) Examples of a 

functionally informative DNA microarray data set and a non-informative one.  Each set is 

illustrated as a scatter plot showing the log likelihood of functional association for each 

successive bin of 1,000 gene pairs (circles) ranked by decreasing Pearson correlation 

coefficient between expression vectors derived from that array set.  The set of microarray 

data measuring oxidative stress responses following Menadione treatment [75] (filled 

circles) does not show a significant relationship between co-expression and the likelihood 

of functional association.  In contrast, the set of cell cycle time course experiments [76] 

(open circles) shows a strong relationship.  The effect of filtering genes using the 

parameters M and R is illustrated in (B).  A data set of genes changing expression during 

the diauxic shift [77] (open circles) shows a noisy relationship between co-expression and 

the likelihood of functional association, especially for gene pairs with the highest Pearson 

correlation coefficients.  However, by introducing the two threshold parameters, the 

relationship improves (filled circles), in particular decreasing variance considerably and 

improving the corresponding regression model.  (C) The divide-test-integrate strategy [1] 

for inferring linkages, shown here calculated across all 500 microarray experiments 

(empty triangles) considerably outperforms analysis of the expression vectors constructed 

by concatenating the 500 experiments (filled circles).  Precision is measured using 

reference linkages derived from MIPS functional annotation, masking the term “protein 
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synthesis”, and recall is calculated for either reference linkages or total yeast genes 

(inset). 

 

Figure 4 

Summary of benchmarking for the YeastNet v. 2 integrated functional gene network, 

along with the functional linkage sets derived from the ten individual types of data.  

Precision and recall of yeast genes are calculated using the unbiased MIPS functional 

linkage reference set, as in Figure 3C.  Gene pairs in each set were ranked by LLS scores, 

then cumulative precision and recall were calculated for each successive bin of 1,000 

gene pairs (each symbol indicates a bin).  The confidence measures for each individual 

data type can be seen to rank the gene pairs effectively. YeastNet v. 2 shows high overall 

performance, with the integration of the heterogeneous genomics data improving both 

reliability and completeness of the overall model.    

 

Figure 5 

YeastNet v. 2 outperforms YeastNet v. 1 [1], as measured by precision and recall of 

either genes or reference linkages on independent reference sets.  (A) shows performance 

on the MIPS functional linkage reference set, with or without masking the term “protein 

synthesis”, while (B) shows performance on reference linkages derived from KOG 

functional categories.  For both reference sets, we observe significantly improved recall 

by YeastNet v. 2 for both yeast genes and reference linkages.  The effect of the 

annotation “protein synthesis” is revealed by a significant drop of precision in YeastNet 

v. 1 but not v. 2 after masking the term during benchmarking.  The higher fraction of 

linkages derived from “protein synthesis” in KOG (~17% of total linkages) than MIPS 

(~4% of total MIPS linkages) explains the apparently higher precision of v. 1 than v. 2 

when including the term in (B), resulting in a correspondingly larger drop in precision of 

v. 1 when the term is masked.  All analyses in (A) and (B) are for the 34,000 most 

confident linkages of each network. 

 

Figure 6 
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YeastNet v. 2 shows improved correlation between gene centrality and lethality.  Each 

plot presents the correlation (for a given network) between network centrality, calculated 

as the number of interactions per gene normalized by the maximum observed value, 

versus the essentiality of the genes, calculated as the fraction of essential yeast genes [27] 

for each successive bin (open circle) of 100 genes ranked by decreasing degree centrality. 

(A) shows the trend for a high quality protein-protein physical interaction network 

derived from DIP [30] and bioGRID [29], (B) shows the trend for YeastNet version 1 

(34,000 most confident linkages only), and (C) shows the trend for YeastNet version 2. 

For both functional networks, degree centrality is weighted by the interaction LLS scores 

(i.e., calculated as the sum of LLS scores for a gene, divided by the maximum sum of 

LLS scores observed in the network). The degree of correlation is measured as the 

Spearman rank correlation coefficient (rs). 

 

Figure 7 

Experimental validation of the participation of PUF6 in 60S ribosomal subunit 

biogenesis. (A) A puf6Δ deletion strain [27] shows a marked conditional growth defect 

compared to wild-type (WT) cells when grown at 20 ˚C, accompanied by (B) a decrease 

in the ratio of 60S/40S ribosomal subunits and the formation of halfmer polysomes, as 

measured by monitoring absorbance at 254 nm of clarified yeast cell lysate separated on a 

7 to 47 % sucrose density gradient.  Additional evidence for the participation of PUF6 in 

60S biogenesis can be seen (C) in the co-sedimentation of the TAP-tagged Puf6p protein 

[40] with the 60S ribosomal subunits, as measured by Western blotting of lysates 

separated by sucrose density gradient.  TDH1 encodes a cytoplasmic protein with no 

known association with ribosomal subunits, serving as a negative control.  NMD3 

encodes a known 60S biogenesis factor [38], serving as positive control.  Puf6-TAP 

shows a similar sedimentation profile as Nmd3-TAP, supporting the role of PUF6 in 60S 

ribosomal subunit biogenesis. 
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Tables 

 

Table 1.  A summary of major improvements to YeastNet version 2. 
 

YeastNet v1 (Science 2004) YeastNet v2 (This study) 
34,000 linkages among 4,681 genes 102,803 linkages among 5,483 genes 
Trained by KEGG pathway annotation Trained by Gene Ontology biological 

process annotation 
Training set includes linkages among 
biased term “Ribosome (KEGG:03010)” 

Training set excludes linkages among 
biased term “Protein biosynthesis 
(GO:0006412)” 

 Two new genome-wide complex mapping 
studies (Gavin et al. 2006, Krogan et al. 
2006) were incorporated 

 Probabilistic error model used to score 
functional linkages inferred from protein-
protein interaction data 

 Functional linkages inferred from “Gene 
neighbors” method were added 

Genome-context approaches (Phylogenetic 
profiling, Rosetta Stone proteins) with 57 
genomes 

Genome-context approaches (Phylogenetic 
profiling, Rosetta Stone proteins, Gene 
neighbors) with 149 genomes 

 Optimized methods inferring co-expression 
linkages including exclusion of gene pairs 
with potential cross-hybridization of cDNA 
and using two threshold parameters 

Integration by weighted-sum with 
exponentially decaying weights for 
secondary evidence, optimized by one free 
parameter (D) determining decay rate 

Integration by weighted-sum with linearly 
decaying weights for secondary evidence, 
optimized by two free parameters—D 
determining decay rate and T determining 
threshold of likelihood scores 

Over-fitting was tested by independent 
annotation sets. 

Over-fitting was tested by 0.632 
bootstrapping 

Additional functional linkages were 
inferred from network context 
(ContextNet) 

Network context linkages did not improve 
network model, and were therefore omitted 
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Table 2A. SMD data sets used for co-expression links (total 500 experiments) 
 
 

 
Table 2B. SMD data sets tested but rejected (total 81 experiments) 
SMD category N 
Calcium treatment 24 
Oxidative stress with Menadione 30 
Salt treatment 18 
Zinc treatment 9 

 

N: the number of experiments for the set 
R: minimum absolute value of log base 2 ratio of expression between treated experiment 
and control 
M: minimum number of microarray experiments that exceed the R threshold 

SMD category N R M 
Cell cycle 83 1.4 8 
Diamide treatment 8 1.6 6 
Diauxic shift 19 1.4 13 
DNA damage response in mec mutant 19 1.8 4 
DNA damage response in WT 19 1.4 7 
DTT treatment 15 1.3 10 
Heat shock treatment 31 1.8 16 
Nitrogen limitation 9 1.6 7 
Nutrition limitation (Leu, Ura, Phosphate, Sulfate) 100 1.0 4 
Osmotic shock (hyper, hypo) 26 1.2 13 
Oxidative stress with HP (H2O2) 40 1.5 14 
Measuring the number of mRNA-associated ribosome 42 1.3 29 
RNA decay measurement 58 1.9 36 
YPD stationary culture 31 1.1 20 
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Table 3. Ten genomics data sets incorporated into YeastNet version 2 

Linkage set Raw data sources N E 
Co-citation 29,135 PubMed abstracts for S. cerevisiae 3,605 29,483
Co-expression 500 S. cerevisiae microarray experiments from 

Stanford Microarray Database [26] 
2,923 31,543

Gene Neighbor BLAST hits for 133 completely sequenced 
archaeal and bacterial genomes  

1,098 4,961

Genetic Interaction MIPS genetic interactions and large-scale 
synthetic lethal screening [74] 

3,556 12,538

Affinity purified 
complex mapping by 
mass spectrometry 

Three large-scale mass spectrometry analyses 
of affinity purified complexes [52-54] 

3,368 31,931

Phylogenetic Profile BLAST hits for 117 completely sequenced 
bacterial genomes 

351 1,050

Rosetta Stone proteins BLAST hits for 149 completely sequenced 
genomes 

801 856

Literature curation Protein interactions supported by small scale 
experiments collected by manual literature 
curation, and deposited into BioGRID [29] and 
DIP [30] 

3,390 11,728

Inferred interaction 
from protein tertiary 
Structure 

Prediction of physical interaction based on 
protein tertiary structure data [72] 

1,092 3,405

High-throughput yeast 
2 hybrid 

Five large-scale yeast 2 hybrid screens 
[20,21,55-57] 

1,792 2,055

 

N : Total number of genes incorporated into the integrated YeastNet version 2 

E : Total number of linkages incorporated into the integrated YeastNet version 2
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Table 4.  Top five predictions of new ribosomal biogenesis genes 

Rank Gene Evidence GO description 

1 PUF6  CX, MS, LC 
nucleus, nucleolus, regulation of transcription, 
mating-type specific 

2 CIC1  CX, MS, LC 
proteasome complex (sensu Eukaryota), 
nucleolus, protein catabolism 

3 KRE33  MS, CX, LC nucleolus 
4 ESF2  CX, MS, LC, GT nucleolus, cytoplasm 
5 BFR2  CX, MS, LC, YH nucleolus, ER to Golgi transport 

 

Shadowed genes are experimentally validated by this study and others. 

CX: co-expression, GT: genetic interaction, LC: literature curation, MS: mass 

spectrometry complex analysis, YH: genome-scale yeast two hybrid  
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