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Mass spectrometry proteomics typically relies upon ana-
lyzing outcomes of single analyses; however, comparing
raw data across multiple experiments should enhance
both peptide/protein identification and quantitation. In
the absence of convincing tandem MS identifications,
comparing peptide quantities between experiments (or
fractions) requires the chromatographic alignment of MS
signals. An extension of dynamic time warping (DTW),
termed ordered bijective interpolated warping (OBI-
Warp), is presented and used to align a variety of elec-
trospray ionization liquid chromatography mass spec-
trometry (ESI-LC-MS) proteomics data sets. An algorithm
to produce a bijective (one-to-one) function from DTW
output is coupled with piecewise cubic hermite interpola-
tion to produce a smooth warping function. Data sets were
chosen to represent a broad selection of ESI-LC-MS
alignment cases. High confidence, overlapping tandem
mass spectra are used as standards to optimize and
compare alignment parameters. We determine that Pear-
son’s correlation coefficient as a measure of spectra
similarity outperforms covariance, dot product, and Eu-
clidean distance in its ability to produce correct align-
ments with optimal and suboptimal alignment parameters.
We demonstrate the importance of penalizing gaps for best
alignments. Using optimized parameters, we show that
OBI-Warp produces alignments consistent with time
standards across these data sets. The source and ex-
ecutables are released under MIT style license at http://
obi-warp.sourceforge.net/.

One major goal of proteomics, the comprehensive study of
cellular proteins across a variety of conditions, has been intensely
pursued through chromatographic separation and mass spec-
trometry analysis. Top-down approaches focus on intact proteins
while bottom-up approaches study peptide fragments, usually
created enzymatically. In “shotgun proteomics”, protein mixtures
are digested en masse. The complexity of the resulting peptide
mixture has prompted the advent of the MudPit style experiment
where proteins are subjected to multiple chromatographic dimen-
sions of separation and peptide identities are determined by
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fragmentation spectra in addition to their mass.! Quantification
of peptides (reviewed in ref 2) is generally achieved through
integration of peptide peaks in chromatographic traces acquired
by MS. Notable exceptions involve the use of iTRAQ (Applied
Biosystems) reagents (where quantification is coupled with MS/
MS acquisition) and peptide sampling methods (quantification
using statistics generated during peak picking).? Isotope labeling
strategies (e.g., ICAT or SILAC) allow peak ratios to be calculated
between two samples without regard to ion suppression, although
some have managed direct comparisons between successive
samples without isotopic labels.>

A formidable challenge in proteomics remains the integration
of quantitation information across multiple mass spectrometry
runs. When possible, data sets may be integrated based on peptide
identities discovered through tandem MS. Unfortunately, the
result of tackling high-complexity samples—tryptic digests may
contain vast numbers of peptides (there are ~300 000 yeast tryptic
peptides before considering posttranslational modifications (PTMs)),
fluctuating quantities, and orders of magnitude differences in
abundance—with the semistochastic, time-, and abundance-de-
pendent nature of MS/MS sampling and variable confidence
identifications, is that peptide identities in one run are never fully
duplicated in another. Paradoxically, as more samples are run on
a subject, so diminishes the overlapping set of peptide quantities
that can be compared. Also, proteins or peptides most important
to the experimental variable(s) in question are those most likely
to go unidentified in some of the analyses since their concentra-
tions are most likely to be in the greatest flux.

If LC—MS runs can be aligned chromatographically, then
identities acquired in one run can be leveraged across all the
others. For a given experimental subject, the union of peptide
identities discovered in this way would approach completeness
over time, and quantities could be compared for peptides without
an ID in each run. More complete peptide coverage and quanti-
tation has implications for low-abundance peptides. Peptides with
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low stoichiometry compared to sibling peptides are candidates
for PTMs, and additional searches may uncover these modified
peptides, which are often missed. Chromatographic alignment may
also benefit the development of better tandem MS search
algorithms by providing peptide identities for low confidence or
previously unidentified MS/MS spectra on a large scale.

The alignment and subsequent extraction of quantities from
MS proteomics data sets is a difficult problem. Fractions may
contain thousands to hundreds of thousands of eluants, many of
which will coelute. Significant percentages of the peaks may vary
or be absent in tests of biological variation. In the extreme but
common case, prefractionated samples to be aligned may only
contain a small fraction of overlapping signal, depending on the
quality and execution of the separation technique. Chroma-
tographic reproducibility will likely degrade across multiple
samples, especially over a long period of time. Nanoliter flow rates
are becoming common to reduce sample consumption and
enhance sensitivity but can be difficult to accurately reproduce.b
Finally, spectra with low signal-to-noise ratios are often encoun-
tered as MS sensitivities are pushed to their limits. Thus,
alignment algorithms for MS proteomics data must be especially
robust.

Chromatographic Alignment of Mass Spectrometry Data.
We briefly review methods that have been applied to the
chromatographic alignment of complex data or have some
potential in this regard, noting possible shortcomings for applica-
tion in this domain.

Methods relying on the introduction of chemical standards
have been proposed. Internal standards have been used for
alignments in metabolic studies.” A limited number of internal
standards may not be able to accurately capture nonlinear
chromatographic variability with a high degree of accuracy, but
too many standards may compete for valuable analytical signal
and introduce unwanted signal suppression. The addition of
mobile-phase tracer molecules can provide a continuous chro-
matographic reference (as a ratio of intensities) by which align-
ment may occur and even enhance MS/MS identifications in
complex proteomics samples.® However, the precision of align-
ment appears to be constrained by the gradient program, and
although the ratio of intensities shows less deviation than peak
retention times, this ratio is indirect to the actual peaks in question.

A class of alignment algorithms builds on MS/MS-derived peak
identities.?~12 While the reliance on MS/MS data appears to be
effective in these cases, the use of tandem spectra for alignment
presents some drawbacks: (1) It requires that there be a signifi-
cant percentage of overlapping MS/MS identifications. In par-
ticular, isotope labeling experiments where tandem spectra are
only collected for peaks with high concentration differences may
suffer a shortage of shared tandem spectra. Also, depending on
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prefractionation quality, consecutive fractions to be aligned may
contain few common identifications. (2) Misidentified MS/MS
spectra may be problematic to the alignment. The inclusion of
more tandem spectra may result in better alignments, but the
larger the group used, the more false positives will likely be
included in the set. (3) Samples to be aligned may suffer from
biases if they use different data-dependent sampling parameters
(the point along a chromatographic peak where a peptide is
sampled is subject to change). (4) Techniques relying on MS/
MS data for chromatographic alignment are incompatible with
pure MS approaches, which may offer significant advantages!®14
such as reduced analysis time and greater quantification accuracy.

Several methods are capable of producing alignments inde-
pendent of tandem spectra through peak picking and peak
matching. Some derive from metabolic studies where tandem
spectra are generally absent or rare.l56 “XCMS”, for example,
identifies and iteratively groups similar peaks from MS data and
fits with a loess function.’6 Choosing similar peaks may be more
challenging in proteomics with noisier data sets and 1 or 2 orders
of magnitude more peaks. Scenarios with few overlapping peaks
(low overlapping signal) may be especially troublesome for these
methods. In addition, it has been noted recently that all existing
peak matching methodologies require that “the deviation in
retention time from sample to sample be no greater than the time
between two adjacent peaks”,!6 a restraint not necessarily relevant
to other methods. Some methods require high-precision mass
spectrometers for the generation of accurate mass and retention
time pairs.}317 These typically rely on a user-defined window for
alignment. While they seem promising, the accurate mass/time
approaches are incompatible with lower resolution mass spec-
trometers and may be difficult to apply to multistage prefraction-
ation experiments.?

There are multiple methods from chemometrics for aligning
signals (e.g., using Bessel’s inequality!® or the Fraga-Synovec 2D
alignment method!?). Many require calibrant samples, and since
these are typically applied to fairly well defined systems, it is
unclear how they might respond to more complex alignment
scenarios. Polynomial fitting is an alternative approach that has
been proven difficult to apply to complex data.2’ Since the desired
result of an alignment is usually quantitation information, we
highlight the parallel factor analysis (PARAFAC2) algorithm. It
corrects for misalignment while simultaneously applying the
PARAFAC algorithm for determining component concentrations
in multiway analysis.?! The coupling of alignment and multiway
analysis?2 may be a drawback in some applications by proscribing
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the use of other quantification methods (e.g., higher-order singular
value decomposition) on the aligned data.

Correlation Optimized Warping (COW),?24 recently described
as a constrained variant of dynamic time warping (DTW),2 was
developed with the alignment of chromatographic samples in mind
and has seen much use toward that end.?#2627 However, COW
depends on proper selection of node positions, which may be
difficult to achieve in complex samples, and it may overlook areas
of significant nonlinear change.

Dynamic Time Warping. DTW, first used in speech process-
ing,?8 is an approach to align single or multivariate signals across
time while preserving the internal ordering of the signals. It has
been applied to the alignment of chromatographic signals for some
time.22:29.30

The dynamic time warping algorithm is as follows (adapted
from ref 31; see also ref 22): For time series X and Y having
lengths |X]| and |Y],

X = 21X, Xy X
Y = 319090V,

determine a warp path W (where W = wy,ws,...x) with a length
K, where the kth element of the path is

w, = (1, ))

(7 and J indices into X and Y respectively) such that

max (|X],|Y) = K < |X| + |Y]

Formally, the beginning of each time series should be used at
the start of the warp path, w; = (1,1), and the end of each series
finishing at wy, = (1X],|Y]), though this requirement is often relaxed
in practice. In addition, every index in both time series must be
used, and 7 and j must be monotonically increasing:

w,= 0N, W =0,7)i<i<i+1,j=<j7=<j+1
A path’s total score (7) is computed by summing the similarity

(S) between the data points X; and Y; in the kth element of the
warp path (wp, wy):
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TW) = ;S (wy, wy,)

If a warp path is drawn in two dimensions (with X and Y indices
on their respective axes) then steps along the diagonal represent
a perfect correspondence between the data. In this representation,
horizontal or vertical steps, equivalent to the advance of one index
without the other, are called gaps or transitions.

In speech processing, the similarity function, S, and total score,
T, are generally interpreted geometrically—similar data points have
a small Euclidean distance between them and the best score is
the shortest path in Euclidean space. For spectra, a benefit
function has been used as the similarity function, with the
maximum sum defining the optimal score.?? If the full spectrum
is used, each spectral comparison is at best O(n) (where # is the
number of peaks) in time.

The solution to DTW lends itself to dynamic programming
(DP) approaches where a globally optimal solution may be found
by recursively solving subproblems. For dynamic time warping,
the DP solution is O(»?) (where # is the number of time points
per sample) in space and time, a relatively efficient means to a
guaranteed optimal solution. Techniques are available to increase
the speed of DTW, such as warp path radii,?3* or FastDTW.3!

DTW Suited to Complex Proteomics Data. DTW has been
used to align complex proteomics samples in two cases: Wang
et al. use a small subset (~200) of chromatograms and apparently
a straightforward application of dynamic time warping for their
alignments.* Prakash et al. apply several novel methodologies to
dynamic time warping, including a score function that minimizes
the noise distribution in spectra and the use of adjacent spectra
in calculating spectral similarity scores.?2 They make available an
online web service (ChAMS) demonstrating their alignment
method and present a measure of alignment accuracy for at least
one alignment.

The potential absence or change in peak height for a large
fraction of peaks, and irregularities in the precise elution of
individual peaks introduces a strong element of noise to the
alignment of complex proteomics data. DTW as applied to spectra
is democratic—if different alignment interpretations exist, it is the
alignment with the greatest number of peaks in agreement that
wins (under ordering and gap penalty constraints). Random
fluctuations and variation in the elution time of individual analytes
may offer alternative alignment paths, but since these should be
self-canceling as they will be evenly distributed, the combined
voice of legitimate shared signal should be ample to overcome
significant amounts of spectral and biological noise. It should be
emphasized that DTW, like the alignment approaches discussed
earlier, produces a global alignment—individual peaks deviating
from the general ordering will be misaligned in proportion to their
deviation.

In this work, we optimize dynamic time warping parameters
for complex proteomics data sets, including several candidate
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spectral similarity functions and a gap penalty function (such as
is used in biological sequence alignment) using MS/MS-derived
peak identities as externally derived validation. We also demon-
strate a method to transform the discrete, many-to-many (non-
bijective) results obtained with dynamic time warping into a
smooth, bijective warping function. Finally, we compare our
alignments to those found by using ChAMS.

METHODS
Data Set Preparation. Raw MS runs and corresponding

SEQUEST search data were downloaded from the Open Proteo-
mics Database (OPD)% and the Peptide Atlas Repository.3
ThermoFinnigan RAW files were converted to mzXML?* with the
linux binary ReAdW (v. 2.5). No preprocessing was performed
but could easily be incorporated into the analysis if desired. MS
spectra were transformed into a uniform matrix by rounding to
the nearest m/z (summing in the event of multiple values) and
applying monotone piecewise cubic hermite interpolation (PCHIP)38
along the time dimension to fill in missing values and create
regularly spaced time samples of varying frequency (3-, 6-, and
12-s increments).

Chromatographic Standards and Measures of Accuracy.
Protein/Peptide Prophet data were downloaded from the data
repositories, if available. Data sets without these data were further
analyzed by Peptide/Protein Prophet (Trans-Proteomic Pipeline
v. 1.2.3). These analyses have been posted to OPD. MS/MS
identifications whose protein probability, initial peptide probability,
and NSP adjusted probability were >0.99 were chosen as
candidate time standards, and the time of the MS scan containing
the precursor ion was recorded. Peptides at a given charge
sampled >2 times were discarded, as it was reasoned that these
represent especially broad peaks that might offer less chroma-
tographic precision than those with fewer (albeit still highly
confident) IDs. A single elution time for peptides with two
identifications was estimated by taking a weighted average based
on the intensity of the precursor ion peak. Peak maximums could
serve as more precise time standards; however, we avoided this
since the peak finding process for complex, noisy data sets may
introduce additional noise. After selecting the overlapping peptides
for each alignment, outliers (likely caused by a mistaken identi-
fication) were thrown out by iteratively removing time points
appearing >5 standard deviations from the regression line.
Although this is only a rough estimate for outliers, the results
were generally consistent with the 0.99 probability threshold
chosen, thereby providing additional verification of Protein/
Peptide Prophet accuracy.

Bijective Synchronization. To create a bijective warp path,
we move sequentially along the DTW warp path and include or
discard points according to certain criteria: (1) The first and last
points of a warp path are always included. (2) Points along the
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diagonal not belonging to a transition are included. (3) The point
with the best similarity score in a transition is included, unless
(4) no more than one point in a transition can be included.

Occasionally, a horizontal and vertical transition may meet and
so include the same point at their vertex. In the case where the
vertex is the point of greatest similarity in the first transition, the
other points in the second transition would be ignored. In the
event that a nonvertex point in the second transition had a
similarity score higher than the vertex, a minor bias toward earlier
points would result.

Normalization of Similarity Functions. To standardize the
influence of a global gap penalty to different data sets using
different score comparisons, we normalize the similarity scores
by the mean and standard deviation of the similarity score
distribution. For consistency in executing the score functions, we
negated the normalized Euclidean distance distribution and
maximized the warp path (the exact equivalent of minimization).
We verified that the functions used here produce normal distribu-
tions of similarity scores using data sets of randomly generated
spectra (1000 spectra x 1000 time points; 0—1 000 000 in inten-
sity), justifying the normalization. Large sections of chromato-
graphic lead-in or trail-out time may influence the overall distri-
bution of similarity scores; we do not address that in this work.

Interpolation. Through interpolation, a bijective warp map is
used as the basis for constructing a smooth warping function that
may be applied to either run. The choice of interpolant and how
it is applied may influence the final outcome of an alignment. We
chose the monotone PCHIP*® method for all alignments here.

The responsiveness of the bijective interpolation can be
adjusted by altering the number of included bijective anchors—
fewer anchors will give a smoother interpolant (smaller derivatives
as viewed from the diagonal). Ordered bijective interpolated
warping (OBI-Warp) determines which anchors to include (if all
are not selected) by subdividing the bijective warp map based on
the number of selected anchors and selecting the point of highest
similarity in each section to become an anchor for interpolation.
Choosing fewer anchors effectively allows a user to disregard
subsections with low (i.e., potentially spurious) alignment signal
and still achieve a globally satisfying alignment using points of
strongest similarity spread throughout. Given a desired number
of anchors, A, the total set of bijective anchors T is divided into
segments with N anchors in each (N ~ T/A) where rounding is
distributed across the segments. A bijective anchor B is included
in A if it has the highest similarity score S among the N anchors
in the segment G:

B={x e G:S(x) = max{S®)x € G}}

For this paper, all possible bijective anchors were used so that
the warp path would be highly responsive to variation in the
alignment path during optimizations.

Interpolation in this work is applied to the bijective anchors
as points in traditional x, y coordinate space giving a diagonal warp
function. The bijective anchors may also be transformed into x, y
— x space to give an alternative interpolation, but this variant is
not explored here.

After choosing bijective anchors, OBI-Warp interpolation may
be applied in different ways with implications for peak integration
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Figure 1. Flow diagram showing the chromatographic alignment of mass spectra by OBI-Warp and verification/optimization by MS/MS peak
identities. (1) Alignment with bijective interpolated dynamic time warping. Raw data from two LC—MS runs, whether successive fractions or

across different biological conditions, (1) is interpolated into a (2) uniform matrix (or rectilinear matrix). (3) An all vs all similarity matrix of the
spectra is constructed. (4) The similarity matrix distribution is mean centered and normalized by the standard deviation. (5) Dynamic programming
is performed by adding similarity scores along a recursively generated optimal path while off-diagonal transitions are penalized by either a local
or global gap penalty to give (6) an additive score matrix. (7) Pointers are kept in a traceback matrix used to deliver (8) the optimal alignment
path. (9) High scoring points in the optimal path are selected to create a bijective (one-to-one) mapping, which is used as anchors for PCHIP
interpolation to generate a smooth warp function. (ll) Verification and optimization. (11) MS/MS spectra from the raw MS runs are searched via
SEQUEST and Peptide/Protein Prophet to determine peak identities. (12) High-confidence identifications are selected and (13) the overlapping
set of peptide identifications (after filtering outliers) is used as the alignment standard. (14) The warp function produced through the comparison
of MS data is applied to the standards. (15) The ideal alignment would shift all standards to the diagonal. The accuracy of an alignment is
calculated as the sum of the square residuals from the diagonal.

g

15) Calculate error

algorithms. The underlying data may be warped (changing the alignment would position (perfectly derived) standards precisely
underlying intensities through interpolation, stretching, and along the diagonal. We calculate error in one of two ways: the
shrinking), or, as applied in this work, the time points labeling
the intensity matrix axis may be altered, preserving the original
intensities of the data.

sum of the square residuals from the perfect alignment (SSR) and
(AAD).
accuracy we warp MS/MS-derived time standards with the

the average absolute time difference between time standards
Measures of Alignment Accuracy. To measure alignment
bijective warping obtained by aligning MS signals. A perfect

Other Alignment Experiments. Alignments for Supporting
Information Figure 1 were performed on the 6-s interpolated
alignment of F5 and F6 of the scx data set. For Figure A, random
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Table 1. Overview of the LC-MS Data Sets Used in Optimization

Run Database - Acc# /

Date MS Organism /

Label Emphasis . L Comparisons
P Label Name acquired Description P
OPD - 0pd00005_ECOLI Eschericia coli 000 14 (g;g & g;g) 4 020
e10 10/16/2002 020_1d_040 :: 020_Id_040,
L 021016.jp32A.10ul.3 10uL injection 040_Id_060 :: 040_Id_060,
ecoli ﬁ?e";ﬁ;a\“;‘l’fn:'th different 060_Id_080 :: 060_Id_080,
! OPD - 0pd00006_ECOLI Eschericia coli 080_Id_100 :: 080_Id_100,
100_Id_150::100_Id_150,
ets . 101072002 L 150_Id_200 :: 150_Id_200,
021010.jp32A.15ul.1 15uL injection 200_Id_300 :: 200_Id_300
) . PeptideAtlas - (none given) Saccharomyces cerevisiae F2:F3,F2:F4,F3:F4,
sex Adjacent chromatographic sox NA F4 ::F5,F5:F6,F6 : F7,
fractions Comp12vs12standSCX standard strong cation F7iF8.F8:F9,F9 P10,
mp exchange fractions F10: F11,F11 : F12, F12:F13
PeptideAtlas - (none given) Saccharomyces cerevisiae
size Chromatographlc fractions size NA
with little overlap
Comp12vs12sizefrac size fractions B1:C1.B2:C2 B3:C3
OPD - 0opd00014_MYCSM Mycob acterium smegmatis
early 07/17/2003
7-17-03 early exponential growth (early :: middle :: stat)
[compared all 3 ways]
OPD - 0pd00009_MYCSM Mycob acterium smegmatis ggg ggg ggg
msmeg Different biological state middle 06/17/2003 040 o 040 - 040
6-17-03 middle exponential growth 060 060 060
080 :: 080 :: 080
OPD - 0pd00028_MYCSM Mycobacterium smegmatis 100 :: 100 :: 100
stat 06/06/2003
6-06-03 stationary phase
OPD - opd00044_YEAST Saccharomyces cerevisiae
gly o 06/22/2004 py — (gly :ser)
" . . -22-04- one carbon metabolism 005a :: 005_1, 005b :: 005_2, 005¢ :: 005_3,
Diflerent biological state (very YM_N14N15_DAYGly040704_14_45_v0.4 with glycine 020a :: 020_1, 020b :: 020_2, 020 :: 020_3,
yeast different analysis conditions 060a - 060 1. 060b - 060 2. 0606 - 0603
from msmeg) OPD - 0pd00043_YEAST Saccharomyces cerevisiae | 900a - 900 1'. 900b = 900 2" 900G =900 3
ser 06/21/2004 - - - B
6-21-04- one carbon metabolism
YM_N14N15_DAY Ser040704_14_45_v0.4 with serine

noise at a desired fraction was generated by providing a random
value between 0 and 2x the fractional part of the signal selected.
The propagative multiple alignment test was performed on the
020 mM salt fraction of OPD accession numbers 8—21 (opd00008_
MYCSM—opd00021_MYCSM). Chromatographic time values
were taken directly from the data (no interpolation to create a
uniform matrix was performed).

Implementation. The software OBI-Warp is written in C++,
compiles under Linux and Windows (with MinGW), and should
compile under any system with gcc. All C++ objects are also
known to compile with Microsoft Visual C++ (6.0). Vector and
matrix classes were modeled after the Template Numerical Toolkit
(http://math.nist.gov/tnt/). Most scripts for the generation of
MS/MS time standards were written in Ruby. The PCHIM and
PCHFE routines (and dependencies) from the public domain
engineering/mathematical suite SLATEC were translated and
rewritten with modifications and additions into C++ code. In
particular, a subroutine for the interpolation of a sorted array of
evaluation points (as occurring in both instances used herein) was
written that only requires a single traversal of the input arrays,
an algorithmic improvement on the SLATEC routines of O(N+M)
compared to O(N*M). The OBI-Warp package is released under
an unrestrictive MIT style license and can be downloaded from
http://obi-warp.sourceforge.net/. A plugin, obiwarp, was written
in C++ for zlab (http://zlab.sourceforge.net/), a custom library
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of low-level gui-tools allowing direct access to openGL for scientific
data visualization. The plugin OBI-Warp allows the manipulation
of alignment parameters (e.g., gap penalty) and the real-time
visualization of the similarity matrix, additive score matrix,
traceback matrix, optimal path, bijective anchors, smooth warp
function, time standards, and sum of square residuals calculation.
The plugin is also released under the MIT style license and is
available with the OBI-Warp package.

RESULTS AND DISCUSSION

Figure 1 outlines the overall methodology followed in this
paper, illustrating the major steps in alignment by OBI-Warp and
also depicting the validation process used for verification and
optimization. We interpolate MS spectra into matrices, compare
spectra for their similarities, and perform dynamic time warping
to create a warp path. We transform the warp path into an optimal
one-to-one (bijective) mapping and interpolate to create a smooth
warp function. Overlapping, high-confidence MS/MS identifica-
tions are used as time standards by which to judge the validity of
alignments and optimize alignment parameters.

Data Set Selection. The data sets and comparisons used in
this study are shown in Table 1. All samples are of high
complexity, consisting of analyses of crude, trypsinized protein
fractions containing >1000 peptides each. They were selected to
provide a cross section of electrospray ionization liquid chroma-



tography mass spectrometry (ESI-LC-MS) alignment scenarios,
ranging from adjacent chromatographic fractions of the same
sample to parallel analyses of biologically varying samples. We
use the scx and size multifraction experiments to compare
alignments between successive fractions derived from these two
different prefractionation techniques. While strong cation ex-
change (SCX) fractions generally have significant overlap between
successive chromatography fractions, it is expected that there is
little overlap between different size fractions, thus testing perhaps
the most extreme alignment scenario. The ecoli data set repre-
sents an easier case for alignment where only the injection
quantity was altered between the two LC/LC/MS/MS runs. The
msmeg and yeast data sets represent tests of biological variation,
with each set employing different chromatography and MS
technique. The msmeg data sets were collected over nearly a
dozen SCX fractions. The yeast data sets contain only four salt
fractions and use a mass fractionation technique, dividing the
length of full MS scans for each analysis into thirds. These data
sets also have a 1:5 MS to MS/MS scan ratio, so the number of
MS scans per unit time is less than in other runs. Because all
alignments between different samples (as opposed to successive
fractions) were performed over multiple SCX fractions, we expect
that prefractionation variability will make some fractions more
difficult to align with their counterpart fraction.

Spectra Similarity Function. Although initial applications of
DTW to spectral data used spectra reduced to total ion chroma-
tograms (TIC),* the alignment of complex data sets undoubtedly
requires greater dimensionality than the TIC or base peak. Wang
et al. selected 200 representative m/z values and scored the
differences in intensities across these values.! Prakash et al. used
a fuzzy dot product on unbinned spectra and subtracted the value
of a shuffled comparison to minimize noise-related signal.3? We
compare Euclidean distance, the dot product, covariance, and
Pearson’s product-moment correlation coefficient (abbreviated in
figures “euc”, “prod”, “cov”, and “corr”, respectively) for their merit
as spectral similarity functions for DTW by using these functions.
Besides being the similarity function most frequently used in
DTW, Euclidean distance has been shown to be interpolatable
between sampling points, a desirable property for infrequently
sampled data.?

The covariance is the mean corrected dot product and
correlation coefficient the standard deviation corrected covariance.
OBI-Warp caches factorable values in the calculation of covariance
and correlation coefficient (i.e., the mean and standard deviations)
so that they are only computed once per spectra. With this
implementation, X x Y spectra comparisons for these two
measures of similarity take on the algorithmic equivalence of
calculating the dot product. Figure 2 provides empirical verification
of the similarity in performance of these score functions and
highlights the difference between the cached and noncached score
functions. It demonstrates that the correlation coefficient and
covariance take essentially the same time to calculate as the dot
product. We note that the use of very small warp path radii may
decrease the benefit of the caching somewhat.

To test these similarity functions for merit in correctly aligning
MS spectra, we apply each of them to the optimization of a local
weighting scheme and a global gap penalty function across

(39) Aach, J.; Church, G. M. Bioinformatics 2001, 17, 495—508.
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Figure 2. Comparison of spectra similarity function speed. Plot
demonstrates the equivalence of the cached correlation coefficient
(corr) and covariance (cov) compared to the dot product and
Euclidean distance. Each data point represents 10 computed n x n
comparisons on scans of length 10 000.
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Figure 3. Local weighting distributions by minima. Diagonal/gap
(D/G) ratios (logz) from 0.0 to 9.9 by 0.1 increments were summed
across all data sets and all time increments to create a distribution of
SSR scores. Candlesticks represent the min, first quartile, median,
third quartile, and max of these distributions. Each distribution is
centered on the diagonal/gap ratio of the minimum of the distribution.
Based on its minima and distribution, correlation coefficient (corr)
clearly outperforms the other similarity functions. The optimal D/G
ratio (position on the x-axis) correlates with the SSR distributions.

variably incremented (3, 6, 12 s) LC—MS runs, in all performing
1934 400 alignments. Two measures of performance are of
particular interest: error with optimal parameters and error across
a broad range of suboptimal conditions. By comparing similarity
functions across a range of DTW constraints we allow each
function to be compared on its own best terms (i.e., at optimal
parameters). At the same time, by inspecting performance across
different parameters and time increments, we measure a score
function’s robustness—a good similarity function will amplify the
true signal over the noise to give correct alignments not only
under ideal parameters but also under less than perfect conditions.
The similiarity score distribution for each alignment was normal-
ized to allow unbiased comparison of the different similarity
functions using the same range of optimization parameters.
Local weighting optimization was performed without the
application of a global gap penalty. In all, 186 comparisons (62
comparisons at 3 time increments each (3, 6, and 12 s)) were
tested against 100 local weight ratios. The log, diagonal/gap (D/
G) ratio was varied from 0 to 9.9 by 0.1 increments. Figure 3 plots
the distribution of sum of the SSR scores obtained for the 100
ratios for each similarity function. Correlation coefficient performs
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Figure 4. Gap penalty distributions. Candlesticks depict the min, first quartile, median, third quartile, and max of the distributions of SSR
scores summed for each gap penalty combination (0.0—14.7 by 0.3 increments for init and elongation penalties). Distributions include all time
increments and are plotted by score function for each data set. The corr shows the optimal performance (indicated by the minima) across these
data sets and is generally the most robust across the range of gap penalties tested (evidenced by low SSR score distributions).

best under these conditions, with good performance across the
range of D/G ratios. The minimum D/G ratio (distribution
location on the x-axis) is also indicative of the power of the
similarity function: a high D/G ratio suggests that the score
function needs “prodding” to keep from wandering off the diagonal
because amplification of the true signal is insufficient. Thus, the
minimum D/G ratios correlate with the SSR distributions.

We also aligned the set of 186 comparisons while varying
global gap penalty parameters. We tested all combinations of
initiation and elongation penalties from 0 to 14.7 by 0.3 increments
and then summed the resulting optimization landscapes to find
the global optimum for each score function. Figure 4 shows a
quartile summary of these distributions. Following the trend in
the local weighting optimization, the correlation coefficient stands
out as having the best minima and distributions, followed by
covariance and dot product, with Euclidean distance performing
poorly. Score distributions for individual alignments confirm this
trend, although some exceptions to this ordering do occur. Based
on these results, we select correlation coefficient as the default
spectral similarity function for OBI-Warp.

Various preprocessing techniques (e.g., baseline correction)
may alter these results somewhat, but the ordering of score
function performance should, in general, remain unaltered. Future
studies could examine the correlation coefficient in combination
with the benefit function of Prakash et al.** and the quadratic
variants used by Stein and Scott.4

DTW Constraints. Various constraints may be applied to
DTW, including local weighting, slope constraints,3* and a global
gap penalty. Without constraints, DTW has been shown to be “too
flexible” for some univariate chromatographic data sets.?

The main purpose for a local weighting scheme is to correct
for the double score bias of transitions. Assuming identical
similarity scores, paths incorporating transitions will receive twice
the score of diagonal paths. Without correction of some kind, this
phenomenon will produce alignments biased toward the diagonal
when minimizing a cost function (e.g., for Euclidean distance)
and tending toward transitions when maximizing a benefit function
(e.g., dot product). A simple weighting scheme has been used to
increase the benefit of a diagonal step compared with that of a

transition.?%3 To compare local alignments (i.e., where w;, = (1,1)
or wg = (1X],|Y])), the total alignment score is normalized by the
sum of the weighting coefficients used.?

To examine the influence of different score functions across a
broad range of conditions, we also modulated the local weighting
scheme (see Figure 3).

Although DTW has traditionally relied upon slope constraints
(or rules) to generate optimal alignments,3* here we use a global
gap penalty function such as is used in biological sequence
alignment.*! To relate DTW with chromatography, any change in
chromatographic rate will introduce gaps in the DTW alignment.
A gap penalty function is used to penalize transitions relative to
the gap length. It achieves the same end as traditional slope
constraints—discouraging high rates of change in the alignment
path—but it may offer more flexibility. A global gap penalty may
be preferable to slope constraints for a number of reasons: a
global gap penalty (1) encourages the warp path to disregard
instances of local noise, preferring transitions only when they are
significantly better than the diagonal (as determined by the
function), (2) allows very disjoint alignment segments (i.e., large
transitions) if there is enough evidence to support them, and (3)
can be finely adjusted for the alignment task at hand. The optimal
global gap penalty is influenced by deviations from a perfect
alignment and noise in the alignment signal (see Supporting
Information Figure 2). To effectively test the gap penalty, we used
relaxed slope constraints—allowing vertical or horizontal transi-
tions (even following one after the other). Athough OBI-Warp
allows for any arbitrary gap function (requiring slightly more
memory to keep track of gap sizes), here we tested a linear gap
penalty with a separate parameter for initiation.

The use of a global gap penalty (at a set local weighting D/G
ratio of 2) was found to be comparable or superior to the use of
a local weighting scheme alone in almost all cases (see Table 2).
Optimal initiation and elongation penalties determined across all
186 comparisons are shown in Figure 5. From Figure 5A it is
evident that the initiation and elongation penalties are anticorre-
lated. The data suggest that better score functions prefer less
stringent gap penalties (with Euclidean distance being the
pronounced exception). The optimal gap penalty shows moderate

(40) Stein, S. E.; Scott, D. R. J. Am. Soc. Mass Spectrom. 1994, 5, 859—66.
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Table 2. Percent Difference between Minima from Local Weighting and Global Gap Penalty Optimizations?

ecoli msmeg scx size yeast

(% diff) (% diff) (% diff) (% diff) (% diff)
AAD awres?| AAD awres?| AAD awres?’| AAD awres?| AAD awres?
corr 51.1 1175 0 3.6 36 1246 40.3 31.3 -0.7 -0.4
cov 108 733.6| -12.8 -8.8| 366.7 2670.3 20.6 98.7 16.3 29.6
prod 219.7 6926.1 6.7 3.9| 399.5 2883.1 28.5 108.4 254 43.7
euc 18.5 214 73.7 320.5| 159.7 684.2 35.5 84.8 21.3 23.2

@ Calculated as 100(LW — GP)/GP. In all cases except three, the global gap penalty outperforms the local weighting alone, as indicated by
positive AAD values and the average squared residual (avg res?) values.

levels of clustering across the four similarity functions. Since
optimal gap penalties often had different initiation and elongation
penalties, future work on nonlinear gap functions may be useful.
Figure 5B shows that optimal gap penalties vary somewhat
between different run types across the four similarity functions.
Figure 5C compares the optimal gap penalties found using the
two different measures of alignment accuracy, SSR and the
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Figure 5. Global gap penalty optima. Each symbol represents the
minimum elongation/initiation parameter obtained. SSR scores are
summed within each data set by similarity function and (A) shown by
score function and (B) shown by data set. (C) depicts the minima
obtained by summing across all data sets with both SSR and AAD
per similarity function. Anticorrelation between initiation and elongation
penalties is evident. Score function minima tend to cluster somewhat.
There is less, but still evident, clustering by data sets across the
different score types. Optimization using the AAD measure of error
selects larger gap penalties than the SSR.

average absolute time difference (AAD), for each similarity
function. SSR penalizes big mistakes more than smaller ones,
while AAD weights all time differences equally and reports the
accuracy in units easy to understand (seconds between eluting
peaks). We excluded the size data set from this calculation since
it represents an exceptional case and its distributions and minima
were extreme compared to the other data sets and significantly
skewed the final results. In all cases, AAD favored heavier gap
penalties. The default gap penalty parameters in OBI-Warp are
set to the optima discovered here using SSR as the accuracy
measure ([init, elong] corr 0.3, 2.4; cov 0.0, 11.7; prod 0.0, 7.8;
euc 0.9, 1.8).

The choice of an optimal gap penalty is related to signal/noise
of the true alignment path, the frequency of chromatographic
variation, and the extent of the variations. Algorithms to estimate
these parameters from a given similarity matrix could produce
gap penalties tailored to a given alignment scenario.

Time Increment Comparison. Analyte in an ESI experiment
is infused continuously but sampled discretely by the mass
spectrometer in time; however, the sampling frequency may be
varied by interpolation of the discrete signal. Since the unit upon
which DTW and associated constraints act is a single spectrum,
the sampling frequency (i.e., the time increment of interpolation)
may influence the accuracy of an alignment for a given gap penalty.
We examined the influence of sampling frequency on the accuracy
of alignments. Figure 6A suggests a slight bias toward larger
increments when viewed across all data sets and global gap
penalties tested above. However, Figure 6B shows that, for the
correlation coefficient, it is the 3-s increment that is favored over
longer increment times. This may be attributed to the range tested
for gap penalties: a significant subset of the initiation and elonga-
tion parameters are high (to include parameter space for all the
score functions), and smaller increments would allow the warp
path to transition to correct paths more easily than large incre-
ments under stringent conditions (e.g., the warp path may make
lots of single step transitions even with a large elongation penalty).

Bijective Interpolation. In some applications of DTW includ-
ing chromatography, a process termed “synchronization” is used
to apply the DTW mapping to one or both data sets in order to
bring them into register one with another.?2?> In symmetric
synchronization, transitions are dealt with by duplicating the
response of the series whose index remains unchanged. With this
approach, however, the units describing a time series become
inapplicable to the warped run, and the length of the warped
signals is increased to the length of the warp path. In asymmetric
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Figure 6. Effect of sampling frequency (x axis (in seconds)) on
alignment accuracy. (Left) SSR across all score types and data sets.
(Right) response to varying time increments across all data sets when
using correlation coefficient as the spectral similarity function. Across
all score types, a small bias toward runs incremented with larger steps
is evident while the opposite seems to be the case for the correlation
coefficient.

synchronization, one run is considered the reference and the other
run is warped to fit the reference. Multiple points in the reference
corresponding to a single point in the other are treated as above,
duplicating the points in the nonreference sample. However, when
multiple points in the nonreference correspond to a single point
in the reference, the average of these points is taken. The run
warped by asymmetric synchronization takes on the same length
as the reference. A synchronization method where segments with
more points are interpolated to have the same number of data
points as the reference has also been suggested.?

In initial investigations, we found that the use of asymmetric
synchronization as the basis for combining a series of runs gave
unnatural emphasis to transition areas (data not shown). A desire
to achieve more natural synchronizations and produce mappings
that could be applied symmetrically (e.g., for use in the alignment
of multiple SCX fractions) led to the development of an algorithm
to produce a one-to-one (bijective) mapping from the many-to-
many warp map produced by DTW and a smooth interpolant for
warping either run. The one-to-one mapping includes all bijective
points from the traditional DTW mapping and creates bijectivity
by including a single point of greatest similarity per nonbijective
region (dropping other, less similar points in a one-to-many
transition area). In areas with adjacent horizontal and vertical
transitions, this gives the effect of rounding off the corners.

We use monotone PCHIP to create a smooth warp function
from the bijective warp path. PCHIP ensures that the interpolant
will not exceed the extrema at each change in monotonic direction,
avoiding some of the “wiggles” or extremes seen in other
interpolation methods. It was designed to give a reasonable
interpolant for data with both steep and flat sections, conditions
frequently observed in chromatography. In practice, we observe
this approach to give natural, conservative interpolations consistent
with actual chromatographic variation. In this study, we included
all bijective mappings in the interpolant. The final bijective
interpolant is a warping function that conservatively strings
together the bijective mappings. Figure 7 shows a DTW warp path,
the bijective warp anchors, and the smooth PCHIP interpolant
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Figure 7. Bijective interpolation. The dynamic time warp path is
discrete and not one-to-one. To create a bijective (one-to-one)
mapping, all diagonal points and the point of highest similarity in each
transition is included. The resulting map is PCHIP interpolated into a
continuous warping function.

through these points. The interpolant in this example uses all
possible bijective anchors just as in the current study.

Interpolated bijective synchronization offers several benefits:
(1) Either run may be warped to fit the other. This may be
especially useful in situations involving the alignment of multiple
runs where no single run can be considered the reference. (2)
The warping preserves the essence of the nonlinear changes
suggested by DTW without its drawbacks. (3) Points of greatest
similarity become interpolation anchors in transition areas,
whereas in traditional DTW, all points in a transition are
considered equivalent (though they likely are not). (4) Warped
time series are “natural” in appearance and are likely better
approximations of most chromatographic variation. Potential
shortcomings of the method would include instances where
chromatographic variation took on a fully discrete form; these will
be modeled as rapid, but smooth transitions, where the slope will
be proportional to the length of the transition—nearly, but not
completely, capturing the discrete form.

When normalized by the path length, the DTW traceback score
provides a means for comparing the similarity of runs. This score
is based on similarity in analyte signal less differences in
chromatography as modeled by the gap penalty. The smooth warp
function allows the deconvolution of these factors. Warped runs
may be judged similar in composition (i.e., in the substance of
the spectral signal) by any applicable metric (e.g., covariance)
apart from chromatographic differences. Chromatographic differ-
ences can be measured directly from the warp function itself (as
viewed from the diagonal). For instance, the integral of the warp
function gives a measure of total chromatographic difference while
the derivative gives a measure of chromatographic variability.

Comparison With ChAMS. The recent study by Prakash et
al. used dynamic time warping to align spectra from complex
proteomics samples. Their method uses a benefit function
designed for use with mass spectrometry proteomics: a fuzzy dot
product based on mass spectra resolution and a noise estimating
parameter. They attempted to reduce the influence of noise on
alignments by using adjacent scans to influence the similarity
score of the scan in question, reasoning that true signals are
preserved over time. We ran each comparison used here through
the ChAMS server. To compare the results to ours in a quantitative
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Figure 9. Example alignment. msmeg early and msmeg middle fractions (E020 and M020, respectively) were aligned using optimized
parameters. (A) Section of the global alignment. All three plots share the same axis dimensions: m/z 829—1153 and time ~860—2500 s (of
~5100 s MS runs). Triangular markers to shared peaks are provided as points of reference; markers between M020 (warped) and E020 are on
the same horizontal line. (B) A citrate synthase peptide not identified in E020. XIC is from m/z 733 (+2 peptide charge). (C) A peptide from an
NADH-dependent glutamate synthase. No peptides from this protein were identified at any confidence level in the msmeg early runs. XIC is

from m/z 884 (+2 peptide charge).

fashion, we applied our bijective interpolation algorithm to their
warp path and calculated SSR from the MS/MS time standards
used here. We alternatively chose anchors based on the points
of most and least similarity and interpolated linearly and using
PCHIP to give four possible interpolants. We note that Prakash
et al. used the ChAMS-generated warp path to successfully pick
related peaks and that using their results for bijective warping
goes beyond the scope of their work. In addition, since four of
these data sets were collectively used to determine OBI-Warp gap
penalty parameters, these represent a biased test set. However,
the size data set was held back from determining gap penalty
parameters and represents a fair test (for difficult alignments). In
these comparisons, we use the default parameters determined

above (correlation coefficient, the optimized gap penalty param-
eters (init 0.3, elong 2.4)) and runs interpolated to 6-s intervals.
The actual warp paths, interpolated paths, and time standards may
be compared for all alignments (see Supporting Information
Figure 1). Supporting Information Table 1 gives the SSR and AAD
scores for each alignment and indicates that the OBI-Warp
alignments are comparable to or better than those derived from
the ChAMS warp paths.

The ChAMS alignments are nearly identical to OBI-Warp’s in
runs and sections within runs with medium to high similarity.
However, as demonstrated in Figure 8 on late SCX fractions, in
runs or sections with weaker signal—but still having legitimate
MS/MS identifications—ChAMS often wanders from the true path.
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Several factors may be responsible for this outcome and are
discussed in likely order of influence: (1) Gap Penalty. ChAMS
makes no correction for the double benefit gained from transitions.
Thus, in instances where the true signal is weaker, the benefit
from transitioning often outweighs the benefit of following the
correct signal. Furthermore, ChAMS implements no global gap
penalty. Our study shows that a modest gap penalty, in addition
to doubling the benefit of stepping diagonal, is beneficial to
recovering correct alignments, probably by persuading the warp
path to ignore small amounts of distracting noise. (2) Minimal
Similarity Cutoff ChAMS sets a 0.2 score threshold before
including a point in the warp path. As it turns out, some of the
runs used here had few data points passing this criterion. To be
fair, comparisons were only made on time standards falling within
the upper and lower bounds of the ChAMS warp path. This still
left some legitimate time standards (high-confidence MS/MS IDs)
without mappings in ChAMS, and so many of the runs contained
interpolated sections that had little to no guidance from the actual
warp path. In some instances, these sections made disproportional
contribution to poor scores. (3) Similarity Function. It may be
that the correction for mean and standard deviation offers some
advantage over the ChAMS benefit function. A similarity function
such as the one ChAMS uses, but with added mean and standard
deviation correction, might be superior to either individually.
Comparison with ChAMS highlights the importance of constraints
in DTW, especially between runs with low alignment signal.

Multiple Alignment and Example Application To Identify
Differentially Expressed Proteins. Chromatographic alignment
can be useful, or even critical, across a variety of mass spectrom-
etry proteomics experiments. For single chromatographic dimen-
sion runs (as is typical of current biomarker studies), OBI-Warp
may be used to align each successive analysis of a particular
specimen type to some base run or some meta-run formed by
summing the mass spectrometry signals across the aligned
experiments. Then, identities may be extended to peaks across
the data set and quantities extracted from each run. Further, OBI-
Warp may allow multidimensional chromatographic separation for
these experiments, since multiple dimensions may be aligned,
signal summed, and compared with other analyses. OBI-Warp can
be used in a similar fashion to extend the reach of isotope labeling
experiments. Successive runs may be aligned, peak identities
extended to unknown isotopic doublets, and these quantities
extracted and compared with those from other runs.

To demonstrate OBI-Warp’s suitability for multiple alignment
scenarios, 14 runs were aligned in succession with each run being
aligned to the warped form of the previous (and then warped
itself). Such a test likely exceeds the requirements of any typical
multiple alignment (e.g., each run aligned to the same template).
ChAMS alignments, postprocessed to create warp functions, were
applied to the same set for comparison. The time differences for
OBI-Warp shown in Table 3 compare favorably with the direct
alignment of two runs and reveal little propagative error.

Finally, to illustrate the differential identification of peptides
using OBI-Warp, we present an alignment of biologically varying
samples. Figure 9A depicts a segment of the alignment of the 020
fractions of msmeg early (referred to as E020) and middle (called
MO020) using default parameters and a 6-s time increment. These
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Table 3. Transitive Error Measured as the Average
AAD in Seconds of Warped Peptide Standards from
Each Run Back to the Original Template Run (4-03-03)2

AAD (sec) betw een
4-04-03 and last aligned

Alignment None OBFWarp ChAMS
4-03-03 :: 7-25-03 (Direct) 149.87 1156  164.19

4-03-03 :: 6-17-03 242.72 19.25 43.35
6-17-03(w arp) :: 6-18-03 306.58 27.94 49.06
6-18-03(w arp) :: 6-28-03 258.04 2247 43.78
6-28-03(w arp) :: 7-11-03 216.67 21.6 35.81
7-11-03(w arp) :: 7-13-03 206.52  21.59 44.7
7-13-03(w arp) :: 7-17-03 179.59 19.07 38.88
7-17-03(w arp) :: 7-19-03 176.46 17.87 36.59
7-19-03(w arp) :: 7-20-03 185.82 18.11 30.23
7-20-03(w arp) :: 7-21-03 212.69 231 48.86
7-21-03(w arp) :: 7-22-03 171.45 21.2 40.81
7-22-03(w arp) :: 7-23-03 433.96 104.53 92.32
7-23-03(w arp) :: 7-24-03 152.15 5245 58.46
7-24-03(w arp) :: 7-25-03 149.87  38.81 7214

@The transitive error accumulated through 13 alignments and
warping compares favorably with a direct alignment for OBI-Warp.
ChAMS alignments were postprocessed to create bijective interpolants
for warping so its results could be used for comparison.

samples are derived from Mycobacterium smegmatis cells har-
vested early in log-phase growth and from mid-log phase cells.
The 100 high-confidence peptides (as defined above (including
the criteria for duplicate peptides)) found in M020 were not found
at any confidence in any of the msmeg early data sets. We
highlight two peptides from this set that belong to proteins directly
involved in metabolism (protein identities were assigned by
sequence similarity to Mycobacterium tuberculosis). Figure 9B
shows the extracted ion chromatogram (XIC) of a peptide from
citrate synthase, the enzyme responsible for the first step in the
citric acid cycle. The surrounding XIC appears to be correctly
aligned for neighboring peaks. There are 27 peptides in this high-
confidence set where the entire protein (at any confidence) is
missing from all msmeg early fractions. Figure 9C shows the
alignment of one of these peptides, which is derived from a
probable NADH-dependent glutamate synthase (small subunit).
This example demonstrates the potential for OBI-Warp to provide
identities and quantities for differentially expressed peptides and
proteins.

CONCLUSIONS

In this study, we have verified the ability of dynamic time
warping to correctly align ESI-LC-MS runs of varying similarity,
both between samples differing due to biological variation and
between those differing due to prefractionation. We show that
Pearson’s correlation coefficient, followed by covariance, dot
product, and Euclidean distance, achieved the most correct
alignments under the widest set of gap penalty parameters. We
optimize gap penalty parameters and show that a global gap
penalty function generally outperforms a local weighting scheme
alone. We demonstrate the utility of bijective interpolated syn-
chronization for delivering smooth, natural warpings based on the
discrete DTW warp path. We compare our results with those of
a recent, independent implementation of DTW and, because of
the use of local weighting, a global gap penalty, and other factors,
find our implementation to be comparable or better across a series



of alignments. Finally, we demonstrate OBI-Warp’s utility for
multiple alignments and present a case of using OBI-Warp to
identify differentially expressed proteins between bacteria har-
vested from two different growth conditions, illustrating the
potential of LC—MS alignment for differential proteomics.
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