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ABSTRACT: We describe a strategy for de novo peptide
sequencing based on matched pairs of tandem mass spectra
(MS/MS) obtained by collision induced dissociation (CID)
and 351 nm ultraviolet photodissociation (UVPD). Each
precursor ion is isolated twice with the mass spectrometer
switching between CID and UVPD activation modes to obtain
a complementary MS/MS pair. To interpret these paired
spectra, we modified the UVnovo de novo sequencing software
to automatically learn from and interpret fragmentation
spectra, provided a representative set of training data. This
machine learning procedure, using random forests, synthesizes
information from one or multiple complementary spectra, such
as the CID/UVPD pairs, into peptide fragmentation site
predictions. In doing so, the burden of fragmentation model definition shifts from programmer to machine and opens up the
model parameter space for inclusion of nonobvious features and interactions. This spectral synthesis also serves to transform
distinct types of spectra into a common representation for subsequent activation-independent processing steps. Then,
independent from precursor activation constraints, UVnovo’s de novo sequencing procedure generates and scores sequence
candidates for each precursor. We demonstrate the combined experimental and computational approach for de novo sequencing
using whole cell E. coli lysate. In benchmarks on the CID/UVPD data, UVnovo assigned correct full-length sequences to 83% of
the spectral pairs of doubly charged ions with high-confidence database identifications. Considering only top-ranked de novo
predictions, 70% of the pairs were deciphered correctly. This de novo sequencing performance exceeds that of PEAKS and
PepNovo on the CID spectra and that of UVnovo on CID or UVPD spectra alone. As presented here, the methods for paired
CID/UVPD spectral acquisition and interpretation constitute a powerful workflow for high-throughput and accurate de novo
peptide sequencing.

The adoption of high throughput bottom-up mass
spectrometry for proteomics has accelerated rapidly in

the past decade.1−3 Driven by improvements in both
instrumentation and software interpretation of protein mass
spectral data, more spectra of higher quality may be identified
from an experiment than ever before. There have also been
significant gains in de novo peptide sequencing, through which
peptide sequences are inferred directly from the MS/MS
spectra. De novo methods therefore offer a compelling approach
that alleviates the reliance on annotated reference databases,
but there remains significant room for further improve-
ments.4−7 Limitations inherent in most MS/MS spectra
prevent accurate and full-length de novo sequence assignment
for standard bottom-up proteomics experiments, and the gap is
being filled with ever more elaborate database search and
custom processing pipelines for identification of unanticipated

post-translational modifications, sequence variants, and other
novel proteoforms.8

Our previous study illustrated how 351 nm ultraviolet
photodissociation (UVPD) combined with protein carbamyla-
tion and chromophore derivatization of N-terminal amines
alleviated two major obstacles to successful de novo sequencing:
incomplete peptide sequence coverage and spectral symmetry
due to observation of both N- and C-terminal ions.9 Here, we
describe a strategy that uses high-throughput collection of
matched CID/UVPD spectral pairs in conjunction with de novo
sequencing. The greater fragment ion diversity in CID spectra
complements the y ions that predominate 351 nm UVPD mass
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spectra of chromophore-tagged peptides, and the combination
of UVPD and CID spectra offers superior de novo sequencing
performance compared to the use of UVPD or CID alone.
The collection of paired spectra, in efforts to improve de novo

sequencing, has over a decade of precedence.10−18 Matched
spectra from a single precursor isolation window, when
produced through different precursor activation methods,
contain complementary information that can substantially
improve sequencing performance. Savitski et al., in 2005, first
described “proteomics-grade” de novo sequencing from high
resolution CID/ECD spectral pairs.10 Many software tools now
support sequencing of paired or triplet spectra, PEAKS and
pNovo+ being the most popular.11−18 These programs are each
limited to select combinations from CID, HCD, ETD, and
ECD spectra. Here, we report on both the first methods for
paired CID/UVPD acquisition and computational methods,
implemented in the UVnovo software, to merge information
from multiple spectra of the same peptide.
UVnovo uses a novel machine learning approach to spectral

interpretation. From any type of peptide fragmentation process
or combination of different processes, it can automatically learn
how observed MS/MS peak features relate to true peptide
fragmentation sites. These models are later employed for
interpretation of unknown spectra. Thus, the generalized
UVnovo framework removes a great burden from the
programmer and obviates the need for explicit human
definition of the fragment ions, their importance, and
correlation structure. We apply UVnovo to complementary
pairs of UVPD and CID spectra and show that de novo
sequencing performance is greatly improved relative to that for
individual spectra.

■ METHODS
Materials. Trypsin Gold (Promega, Madison, WI, USA),

LC-MS grade acetonitrile and water (EMD Millipore;
Darmstadt, Germany), phosphate buffered saline (PBS) and
dimethyl sulfoxide (DMSO; Thermo Fisher Scientific Inc.; San
Jose, CA, USA), and sulfosuccinimydyl-7-amino-4-methyl-
coumarin-3-acetic acid (Sulfo-NHS-AMCA; Pierce Biotechnol-
ogy; Rockford, IL, USA) were used as received. E. coli lysate
was graciously donated by Dr. M. Stephen Trent at the
University of Georgia.
Mass Spectrometry and Paired CID/UVPD Collection.

We used a Thermo Velos Pro dual linear ion trap mass
spectrometer (Thermo Fisher Scientific, San Jose, CA, USA)
coupled to a 351 nm excimer laser (Coherent, Santa Clara, CA,
USA) for UVPD in the ion trap.19 Collection of paired CID/
UVPD data required modification of the standard data
acquisition procedures, accomplished with custom scripts in
Thermo Fisher Scientific’s proprietary ion trap control language
(ITCL). Briefly, five CID/UVPD MS/MS pairs were collected
for each survey MS1 scan. Spectra in a pair were acquired
sequentially, CID then UVPD, both from the same precursor
isolation window. As instructed in the custom ITCL code, the
instrument collision energy (NCE) value was switched between
35 and 0 for the CID and UVPD scans, respectively. Under a
nonzero NCE, precursor ions were retained for CID activation
in the high-pressure cell, and the product ions were then
shuttled to the low-pressure cell for detection. At an NCE of 0,
the intact precursors were transferred immediately to the low-
pressure cell and the laser pulsed to induce UVPD.
Sample Preparation for UVPD Analysis. Whole cell E.

coli lysate was used for development and testing of the paired

CID/UVPD acquisition and sequencing workflow presented
here. Sample preparation and N-terminal chromophore peptide
modification were performed as described previously.9 E. coli
lysate was carbamylated to block the reactive primary amines of
the lysine side-chains by mixing 50 μg of lysate in 50 mM
sodium carbonate with 8 M urea and heating for 4 h at 80 °C.
The resulting carbamylated proteins were then buffer
exchanged into PBS to remove urea and subsequently digested
using trypsin at 37 °C overnight. After digestion, 25 μL of 20
mM AMCA in DMSO was added to the solution and kept in
the dark overnight at room temperature. A C18 SPE cartridge
was used to clean the samples and remove residual AMCA.
Finally, the samples were dried and reconstituted for LC-MS/
MS in 98% water/2% acetonitrile with 0.1% formic acid.

LC-MS/MS Analysis and Acquisition of a CID/UVPD
Data Set for Benchmarking. Peptides were separated by
reverse phase chromatography using a Dionex NSLC 3000
nanoLC (Thermo Scientific; Waltham, MA, USA) interfaced to
the UVPD-enabled Thermo Velos Pro mass spectrometer
described above. Samples eluted over a 360 min gradient,
starting with 3% B and increasing to 50% B and under a flow
rate of 300 nL/min. Mobile phase A was water with 0.1%
formic acid (v/v), and mobile phase B was acetonitrile with
0.1% formic acid (v/v). Approximately 5 μg of peptide mixture
was loaded on a 15 cm column, packed in-house with a C18
stationary phase (3.5 μm particles of 140 Å pore size). Five
precursor ions were selected following each MS1 scan.
Fragmentation switched between CID (NCE 35, 10 ms) and
UVPD (15 pulses at 500 Hz and 3 mJ per pulse), and a
complementary pair of MS/MS was generated for each selected
precursor ion.

UVnovo. UVnovo provides both de novo sequencing
functionality and an automated training procedure for learning
how to interpret new types and combinations of fragmentation
spectra. Briefly, UVnovo trains a random forest (RF) model
against previously identified spectra. It then applies the RF to
unknown spectra generated through the same activation
method(s) to predict the mass position of each subsequent
precursor peptide residue. These predictions are put into a
graphical model framework where each node represents the
mass of a possible inter-residue amide bond, and each vertex
between nodes spans the mass of a single amino acid. The best
path through the graph maximizes the product of individual
node probabilities and defines the de novo peptide sequence
prediction. This spectrum inference and sequence prediction is
repeated for each likely peptide length and at the observed
precursor mass as well as at the observed mass −1 Da and +1
Da, to compensate for the low mass resolution afforded
through ion trap analysis. This yields multiple sequence
candidates for each precursor, and these are scored and ranked.
A more thorough description of UVnovo is included in the
Supporting Information (including Figures S1 and S2) and our
previous publication.9

Benchmarking. SEQUEST. The E. coli CID/UVPD spectra
from three replicate injections were processed using the
SEQUEST and Percolator nodes in Proteome Discoverer v.
1.4 (Thermo Fisher Scientific, San Jose, Ca, USA). Both N-
terminal AMCA and lysine carbamylation were required as
fixed modifications, and optional methionine oxidation was
allowed. Spectra were searched against a sequence database that
included the UniProt E. coli strain K12 reference proteome and
the MaxQuant common contaminants. We established a data
set for UVnovo training and validation from these search results
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and recognized each CID/UVPD pair as the top-ranked
peptide spectrum match (PSM) from the CID spectrum. We
limited this set to spectral pairs with high confidence PSMs
(Percolator false discovery rate < %1) from doubly charged
precursors with a theoretical precursor mass within ±1.6 Da of
the observed value.
UVnovo. We evaluated UVnovo de novo sequencing

performance on the CID/UVPD spectral pairs as well as on
the individual sets of CID and UVPD spectra. Using a 3-fold
cross validation (CV) regime, we were able to test performance
against all PSMs while maintaining independence between the
data used for training and testing. Spectra were divided based
on their assigned peptide sequence into three partitions. In
each of the three CV rounds, spectra and PSMs from two of the
partitions were used for training an RF, with which UVnovo
was used for interpretation of “unknown” spectra from the
remaining partition.
The UVnovo sequence predictions for a given spectral pair,

ranked by de novo score, were compared against the
corresponding SEQUEST PSM. To be considered correct, we
required each residue in the full-length PSM to correspond
exactly in position and unit mass to a residue in the de novo
sequence. In other words, no sequence gaps were allowed, and
ambiguous residue pairs I/L and F/Moxidation were treated as
equivalent in the comparison.
PEAKS and PepNovo. The performance of UVnovo was

compared to that of the popular de novo sequencing programs
PEAKS and PepNovo.11,20,21 As these programs were not
designed to interpret UVPD spectra, we applied them only to
the CID component of each spectral pair from the E. coli data
set. Individual program parameters were chosen for optimal
analysis of low resolution CID spectra and are detailed in the
Supporting Information. We filtered the results of PepNovo to

exclude all predictions with sequence gaps and reranked the
remaining sequences accordingly.

■ RESULTS AND DISCUSSION

Paired CID and UVPD MS/MS. The general de novo
sequencing workflow entailed protein carbamylation followed
by tryptic digestion, derivatization with the chromophore
AMCA, LC-MS/MS analysis, and last, data processing via
UVNovo. Using whole cell E. coli lysate, proteins were
carbamylated at all primary amines (lysines and N-termini)
prior to digestion. Carbamylation proceeds with near 100%
efficiency and effectively blocks all lysine reactive sites, thus
preventing their subsequent reaction.1 The carbamylated
proteins were digested with trypsin, active now only C-terminal
to arginine, and the resulting peptides were incubated with
AMCA to install the chromophore at the new peptide N-
terminal primary amines. Lacking the amine, the N-terminal
peptide of each protein was not labeled. Derivatization with this
UV chromophore rendered peptides susceptible to 351 nm UV
photoactivation. LC−MS/MS of the AMCA-modified digest
was performed using a dual cell linear ion trap mass
spectrometer equipped with a 351 nm excimer laser. Following
each MS1 survey scan, CID/UVPD spectral pairs were acquired
for each of five selected precursors. Modification of the ion trap
control software, required for collection of paired spectra,
instructed the instrument to switch between CID in the high-
pressure cell and UVPD in the low-pressure cell for alternating
scans.
UVPD of AMCA-modified peptides produces spectra with a

dominant y ion series. The 351 nm photoactivation induces
cleavage of the C−N peptide bonds and generates b- and y-type
fragment ions.1 The b ions retain the N-terminal chromophore
and are consequently annihilated with repeated laser pulses
during UVPD, while the y ions were not activated further and

Figure 1. Example CID/UVPD pair for peptide K[AMCA,carbamyl]AAITAEIR and synthetic spectra derived from the pair. (a) CID (NCE 35) and (b)
UVPD (3 mJ per pulse, 15 pulses). (c) A random forest algorithm merges both into a single synthetic spectrum. Peaks scoring below 0.5 are shaded
gray. (d) A hidden Markov model assigns a probability to each possible fragmentation site. The precursor is labeled with an asterisk.
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survived in the trap. CID spectra from the same peptides
display conventional b and y ions; the b ions shifted by
+215.058 Da, the mass of AMCA. Figure 1 shows matched CID
and UVPD spec t r a f r om the E . c o l i pep t i d e
K[AMCA,carbamyl]AAITAEIR.
UVnovo Overview. We initially developed UVnovo for de

novo interpretation and sequencing of 351 nm UVPD mass
spectra,9 and here we describe software improvements that
allow de novo sequence inference from any type or combination
of spectra. Spectra, individual or matched, are transformed
using a random forest classifier into a single “spectrum” of
prediction scores for each potential N-terminal fragmentation
site (Figure 1c). High-scoring positions ideally manifest as a
complete and clean sequence ladder traversal of the parent
peptide in the N- to C-terminal direction. UVnovo uses hidden
Markov models to both identify and score peptide sequences
which fit the RF-generated spectra (Figure 1d). Multiple
sequence predictions for each precursor are generated, one at
each likely peptide length. To accommodate for precursor mass
errors, RF spectral synthesis and de novo sequencing are
performed using the instrument-assigned precursor mass and
again at −1 and +1 Da from the given mass. All predictions for
a given precursor are then ranked by the de novo sequence
score.
Machine Learning for Spectral Interpretation. UVnovo

differs from most other de novo sequencing programs in how it
models and interprets fragmentation spectra.1 Most such
programs are constructed around the offset frequency function
(OFF), which represents a descriptive statistical model for
understanding and interpreting peptide fragmentation.22 Early
implementations assumed independence between the expected
fragmentation peaks or features (e.g., b ions, neutral losses),

and models now are able to capture simple feature depend-
encies, for example, through use of a directed graph structure.20

The models are typically hand-tuned or provided a concrete set
of fragment ions and dependencies, and for well-characterized
types of spectra, they can perform quite well.
In a departure from the frequency-based statistical models,

UVnovo takes a machine learning approach, using a random
forest algorithm, to automatically learn from and interpret mass
spectra.1 Popular and powerful for machine learning
application, random forests are ensembles composed of many
individual binary decision trees.23 A major strength of decision
trees and random forests is their ability to exploit a much larger
space of features and feature interactions when compared to
classical statistical models.24 The recent de novo sequencing
program Novor employs this advantage through use of two
large decision trees for spectral interpretation and scoring.25

UVnovo also combines and utilizes spectral features at a scale
that is combinatorially impractical with OFF-based models.
Novor uses the same set of spectral features regardless of

activation type; in contrast, UVnovo selects automatically those
it finds most important from a much larger space of potential
features.1 In this regard UVnovo follows the work of Datta and
Bern, whose spectrum fusion algorithm used the OFF to learn
features important for paired CID and ETD spectra
interpretation.26 With these, it identified simple feature
dependencies and constructed effective tree-augmented net-
works for making predictions. Unfortunately, the spectrum
fusion algorithm was presented only as a demonstration of
automated supervised learning and was not released for general
use. UniNovo also applies the OFF in a similar scheme for
automated fragment ion learning.15 However, it does not
permit user-defined peptide modifications or custom protease

Figure 2. Overlap in de novo sequencing results from the E. coli lysate benchmarking data set of 4616 doubly charged CID/UVPD pairs. (a)
Comparison of CID spectra identification between UVnovo-CID, PEAKS, and PepNovo. This considers all de novo candidates for each spectrum.
(b−d) Only the top ranked de novo prediction for each spectrum or CID/UVPD pair is included.
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specificities, therefore precluding its use for UVPD spectra of
AMCA-derivatized peptides.
UVnovo Benchmarking on E. coli Lysate. A total of

51 525 CID/UVPD spectral pairs (103 050 MS/MS spectra)
were collected across three replicate injections. We processed
the spectra using Proteome Discoverer SEQUEST with the
Percolator node and identified with high-confidence 4616
CID/UVPD pairs (all 2+) describing 1842 unique peptides.
These 4616 pairs were applied for UVnovo testing, using 3-fold
cross validation (CV) to maintain independence between
training and testing examples. UVnovo generated predictions
for each at its instrument-assigned precursor mass and
additionally at −1 Da and +1 Da from observed. The use of
the expanded mass offset was essential as 43% of pairs diverged
from the assigned PSMs by ±1 Da. Therefore, each of the 4616
CID/UVPD examples in the E. coli benchmark was provided
potentially several putative de novo sequence assignments, and
the predictions were scored and ranked.
We benchmarked the UVnovo predictions against the

corresponding SEQUEST PSMs, counting a de novo sequence
as correct if it matched exactly the PSM, with no gaps allowed.
This is a more stringent criterion than commonly used for de
novo benchmarks. Isobaric residues I/L and the residues F/
Moxidation, indistinguishable in the ion trap, were judged
equivalent. In addition to the CID/UVPD predictions, we ran
UVnovo using only single scan types to compare the capacities
of CID, UVPD, and paired spectra for de novo sequencing.
Results are presented in Figures 2−5 and Table 1.

The degree of overlap in the de novo sequencing results
obtained from the analysis of all spectra and the 4616 CID/
UVPD pairs are summarized in Figure 2 with various
comparisons showcased in Venn diagram format (all candidates
or top-ranked candidates, as well as evaluation of CID spectra
alone versus CID+UVPD). The top-ranked UVnovo sequence
prediction correctly matched the corresponding PSM for 3227
(69.9%) of the paired CID/UVPD spectra (Figure 2). In
contrast, UVnovo sequencing on the individual spectral types
produced 1895 (41.1%) and 2351 (50.9%) correct top-ranked
predictions, for CID and UVPD, respectively (Figure 2). When
including the three best scoring de novo predictions for each
precursor, UVnovo correctly sequenced 82.0% (CID/UVPD),
54.1% (CID), and 69.5% (UVPD) of the E. coli examples.
There is substantial overlap in these correct assignments
(Figure 3a).

We compare these results to those from CID-only analyses
with PEAKS and PepNovo, which returned up to 10 and 50
sequence predictions for each spectrum, respectively. Neither
program identified as many correct sequences as UVnovo for
the CID spectra, let alone for the paired CID/UVPD data
(Figure 4, Table 1). Only 151 (3.3%) of the 4616 total spectra
were correctly recognized by one or both of PEAKS and
PepNovo and not UVnovo-CID/UVPD. In contrast, UVnovo
recovered 982 (21.3%) sequences from the paired spectra that
were not identified by either PEAKS or PepNovo (Figure 3b).
The length of correct reconstructions averaged from 10.08

residues (PepNovo) to 11.00 residues (UVnovo-CID/UVPD),
and PEAKS and all three UVnovo experiments identified
peptides up to 24 residues long, the longest in our data set
(Figure 5). We also compare the ability of each program to
score its predictions and discriminate between correct and
incorrect sequences. In this regard, UVnovo and PEAKS greatly
outperform PepNovo in ranking correct sequences highly
(Figure 4). This is important in practice when the sequence
identity is not known a priori.
These results show the advantage of UVPD for de novo

sequencing, compared to CID, though the largest benefits are
realized through synthesis of both CID and UVPD spectra,

Figure 3. Counts and overlap of spectra that were identified correctly
from the E. coli benchmark set. (a) UVnovo identifications from the
paired, CID-only, and UVPD-only spectra. (b) Paired spectra UVnovo
identifications and CID spectra identified through PEAKS and
PepNovo. Numbers shown include correct de novo predictions of
any rank.

Figure 4. Cumulative fraction of correct de novo sequences by
descending prediction rank on paired (UVnovo) and individual
(UVnovo, PEAKS, and PepNovo) spectra. UVnovo interpretation of
paired CID/UVPD outperforms that using only the CID or UVPD
subset of spectra. The data set contains 4616 charge 2+ paired spectra
from E. coli lysate. Correct sequence predictions match the full-length
SEQUEST PSM with no gaps allowed. I/L and F/Moxidation residue
assignments are treated as equivalent.

Figure 5. Fraction of sequences of each length with a correct de novo
prediction.
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whereby UVnovo harnesses the best properties of each
activation method.
UVPD Provides Comprehensive Fragmentation and

Sequence Directionality. UVPD fragmentation occurs
consistently across a whole peptide, and the resulting spectra
generally provide more complete sequence coverage than seen
from CID. This characteristic is essential for successful full
peptide sequencing and accounts for much of the difference in
CID and UVPD performance, especially for longer peptides
(Figure 5).
Additionally, the absence of abundant N-terminal ions in

UVPD spectra of peptides tagged at their N-termini with
chromophores eliminates one of the central problems in
standard de novo analysis. Known as the “antisymmetric path
problem,” confusion of ion series directionality can lead to
inversions in the assigned de novo sequence.27 This is a factor
for all fragmentation methods which generate symmetric pairs
of N- and C-terminal ions such as the b and y ion series of CID
spectra. No commonly used proteomics workflows for de novo
sequencing avoid this problem, though it can be alleviated
through various specialized labeling and instrumentation
methods.5,28 As presented here, our AMCA-derivatization and
351 nm UVPD workflow offers another way to overcome this
problem.
CID Complexity Complements UVPD Simplicity. The

complexity of CID spectra is beneficial in combination with the
interpretability of UVPD spectra. The symmetries in CID
spectra are modeled automatically during UVnovo training as
interactions between feature variables, for example, those
representing b and y ion peaks, and they influence spectral
fragment site predictions. The additional b ions and neutral
losses therefore substantiate true peptide fragmentation site
predictions. Furthermore, the symmetry between b and y ions is
effective for inference of the MS/MS precursor mass in
UVnovo. UVPD spectra, lacking N- and C-terminal ion
symmetries, do not provide such a means. When initialized
with an incorrect precursor mass, N- and C-terminal features
are misaligned relative to each other, and this is reflected in
lower scoring RF predictions. Consequently, sequence
predictions made using the correct precursor mass will typically
score better.
The CID symmetries also improve deconvolution of signals

from coeluting peptides of differing precursor mass. Such
discrimination between these ions is difficult or impossible
when using only UVPD spectra, and this can lead to chimeric
sequence predictions spanning the fragmentation sites of two
or more peptide species. CID symmetries here provide a means
to differentiate peptide ions from species of different mass,
sometimes enabling de novo sequence generation for both. For

example, UVnovo recovers from a single CID/UVPD pair the
sequences “TENLYILPASQTR” and “VYDALEVQNGNER,”
with respective prediction ranks of 6 and 1 (Figure S2).
“TENLYILPASQTR” matches the SEQUEST PSM and was
also identified by PepNovo (rank 4), and both sequences
appear as tryptic peptides in the E. coli database, differing in
mass by 0.92 Da. The b and y ion symmetries manifest
differently for each and allow correct sequencing for both.

Future Improvements. These results for paired spectra are
comparable to the current state of the art in de novo peptide
sequencing, where high resolution mass spectrometry is widely
considered to be “exceedingly important.”29 That the CID/
UVPD data were collected on a low resolution ion trap mass
spectrometer illustrates the power of 351 nm UVPD for de novo
analysis, either stand-alone or when complemented with a
second activation method. We expect translation of our
methods to high resolution CID/UVPD acquisition and
analysis will bring significant improvements. Of the incorrect
E. coli CID/UVPD sequence assignments, around half differ at
only one fragment site from the corresponding PSM. High
resolution MS/MS spectra, or even an accurate precursor mass,
would help substantially in correcting these point errors. It
could also improve local sequence confidence scoring and the
ability to fill sequence gaps.30,31

■ CONCLUSIONS

We achieve accurate and comprehensive de novo peptide
sequencing through a combined experimental and computa-
tional approach. Key to this success, the MS workflow generates
both conventional MS/MS spectra exhibiting b/y ions and y-
only mass spectra. The latter is a unique feature of 351 nm
UVPD for peptides tagged with chromophores at the N-
termini. For de novo analysis of these complementary CID/
UVPD spectral pairs, we have generalized the machine learning
framework of the UVnovo software to work with matched MS/
MS produced through any combination of precursor activation
methods. Provided a set of training examples, UVnovo
effectively learns from and then utilizes the best properties of
each activation method. We are not aware of any other software
that provides such flexibility for interpreting any combination of
complementary spectra.
Applied here to CID/UVPD paired spectra, UVnovo

concurrently synthesizes evidence from both to derive stronger
predictions of peptide bond location (fragmentation site) than
either spectrum would provide on its own. In general, the
UVPD spectra provide comprehensive fragmentation coverage
and a clear directionality for ion series, while the symmetries
and redundancies in CID spectra are necessary for precursor

Table 1. Comparison of UVnovo, PEAKS, and PepNovo on the E. coli CID/UVPD Data Seta

no. spectra identifiedb

(fraction, %)
no. identified by top de novoc

(fraction, %)
avg
rankd

max
rank

avg
lengthe

no. peptides identifiedf

(fraction, %)

total data set 4616 11.43 1842
UVnovo (CID + UVPD) 3835 (83.1) 3227 (69.9) 1.23 11 11.00 1544 (83.8)
UVnovo (CID) 2617 (56.7) 1895 (41.1) 1.47 11 10.44 1142 (62.0)
UVnovo (UVPD) 3422 (74.1) 2351 (50.9) 1.60 14 10.86 1415 (76.8)
PEAKS (CID) 2069 (44.8) 1485 (32.2) 1.70 10 10.61 1058 (57.4)
PepNovo (CID) 2488 (53.9) 1064 (23.05) 4.80 44 10.08 1094 (59.4)

aThe data set consists of charge 2+ CID/UVPD spectral pairs with high confidence sequence annotations. bTotal number of spectral pairs (first
row) and number of spectra/pairs with correct full length de novo predictions. cNumber of spectra identified by top ranked de novo prediction.
dAverage rank of correct de novo predictions. eAverage length of correct predictions. fNumber of unique peptides identified.
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mass assignment and improve fragmentation site discrim-
ination.
We identify correct full-length de novo sequences for 83% of

spectral pairs using this matched CID/UVPD approach,
benchmarking on an E. coli lysate data set of doubly charged
spectral pairs with high-confidence PSMs. These results,
obtained from low-resolution ion trap mass spectra, demon-
strate the effectiveness of CID/UVPD paired spectra for de
novo peptide sequencing and the power of automated machine
learning applied to new spectral acquisition methods.
Continued development of UVPD workflows, on high
resolution instrumentation and perhaps using alternatives to
CID, will offer exciting prospects for the future of de novo
proteome analysis.
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